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(Communicated by Daniel Ruberman)

Abstract. Let M be a compact, orientable 3-manifold and F an essential
closed surface which cuts M into M1 and M2. Suppose that Mi has a Heegaard
splitting Vi ∪Si

Wi with distance D(Si) � 2g(Mi) + 1, i = 1, 2. Then g(M) =
g(M1)+ g(M2)− g(F ), and the amalgamation of V1 ∪S1 W1 and V2 ∪S2 W2 is
the unique minimal Heegaard splitting of M up to isotopy.

1. Introduction

Let Mi be a connected, compact, orientable 3-manifold, Fi an essential boundary
component of Mi with g(Fi) � 1, i = 1, 2, and F1

∼= F2. Let ϕ : F1 → F2 be a
homeomorphism, and M = M1∪ϕ M2. Suppose Vi∪Si

Wi is a Heegaard splitting of
Mi (i = 1, 2). Then V1 ∪S1 W1 and V2 ∪S2 W2 induce a natural Heegaard splitting
V ∪S W of M with g(S) = g(S1)+g(S2)−g(F ), which is called the amalgamation of
V1∪S1 W1 and V2∪S2 W2 along F1 and F2. Clearly, g(M) � g(M1)+g(M2)−g(F ).

There exist examples which show that an amalgamation of two minimal genus
Heegaard splittings of M1 and M2 is stabilized (refer to [1], [8], etc.). On the other
hand, it has been shown that under some conditions on the manifolds and the gluing
maps, the equality g(M) = g(M1) + g(M2) − g(F ) holds; see [10], [11], [17], etc.

The concept of Hempel’s Heegaard distance of a Heegaard splitting ([5]) is a nat-
ural generalization of the concept of Casson-Gordon’s weakly reducible Heegaard
splitting ([3]); its relations to the genus of the Heegaard splitting have been dis-
cussed in [4], [6], [14], etc. For a Heegaard splitting V ∪S W , we use D(S) to denote
the Heegaard distance of V ∪S W .

Recently, Kobayashi and Qiu ([9]) proved the following theorem:

Theorem 1.0. Let M be a connected, compact, orientable 3-manifold, and F an
essential closed surface which cuts M into two 3-manifolds M1 and M2. Suppose
that Mi has a Heegaard splitting Vi ∪Si

Wi with D(Si) � 2(g(M1)+ g(M2)− g(F )),
i = 1, 2. Then M has a unique minimal Heegaard splitting up to isotopy, i.e. the
amalgamation of V1 ∪S1 W1 and V2 ∪S2 W2.

The main result of this paper is as follows:
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Theorem 1.1. Let Mi be a connected, compact, orientable 3-manifold, Fi an es-
sential boundary component of Mi with g(Fi) � 1, i = 1, 2, and F1

∼= F2. Let
ϕ : F1 → F2 be a homeomorphism, and M = M1 ∪ϕ M2, F = F2 = ϕ(F1). Suppose
Mi has a Heegaard splitting Vi ∪Si

Wi with D(Si) � 2g(Mi) + 1, i = 1, 2. Then the
amalgamation of V1∪S1 W1 and V2∪S2 W2 is the unique minimal Heegaard splitting
of M up to isotopy. In particular, it is unstabilized.

As a direct consequence of Theorem 1.1, we have

Corollary 1.2. Under the conditions as in Theorem 1.1, the minimal Heegaard
splitting of M is weakly reducible.

The paper is organized as follows. In section 2, we introduce some preliminaries,
lemmas and propositions. The main part of section 2 is to prove Proposition 2.5,
which is a stronger version of Lemma 3.3 in [2]. In section 3, we first prove some
results that will be used in the proof of Theorem 1.1, and then give a proof of
Theorem 1.1, where Proposition 2.5 plays a key role in our proofs.

The concepts and terminologies which are not defined in the paper are standard;
see, for example, [5], [7].

2. Preliminaries

In this section, we will review some fundamental definitions and facts on surfaces
in 3-manifolds.

Let F be either a properly embedded connected surface in a 3-manifold M or
a subsurface of ∂M . If there is an essential curve in F which bounds a disk in M
or F is a 2-sphere which bounds a 3-ball in M , then we say F is compressible in
M . Otherwise, F is incompressible in M . If F is an incompressible surface in M
and not parallel to a subsurface of ∂M , then F is an essential surface in M . When
F is not connected, then F is said to be incompressible if each component of F
is incompressible. F is said to be essential if F is incompressible and at least one
component of F is essential in M .

Let F be a properly embedded connected surface in a 3-manifold M . If there is
an essential arc α in F and an arc β in ∂M such that α ∩ β = ∂α = ∂β and α ∪ β
bounds a disk ∆ in M , then F is said to be ∂-compressible in M .

A compression body is a 3-manifold V obtained from a connected closed orientable
surface S by attaching some 2-handles to S × {0} ⊂ S × I and capping off any
resulting 2-sphere boundary components. We denote S×{1} by ∂+V and ∂V −∂+V
by ∂−V . An essential disk for V is a compressing disk of ∂+V in V .

A Heegaard splitting of a 3-manifold M is a decomposition M = V ∪S W of M in
which V and W are compression bodies such that V ∩W = ∂+V = ∂+W = S and
M = V ∪W . S is called a Heegaard surface of M . The genus g(S) of S is called the
genus of the splitting V ∪S W . We use g(M) to denote the Heegaard genus of M ,
which is equal to the minimal genus of all Heegaard splittings of M . A Heegaard
splitting V ∪S W for M is minimal if g(S) = g(M).

Let V ∪S W be a Heegaard splitting. V ∪S W is reducible (weakly reducible, or
stabilized, respectively) if there are essential disks D1 ⊂ V and D2 ⊂ W such that
∂D1 = ∂D2 (∂D1∩∂D2 = ∅, or |∂D1∩∂D2| = 1, respectively). Otherwise, V ∪S W
is irreducible (strongly irreducible, unstabilized, respectively).

A generalized Heegaard splitting for a 3-manifold M is a structure M =
(V1 ∪S1 W1) ∪F1 (V2 ∪S2 W2) ∪F2 · · · ∪Fm−1 (Vm ∪Sm

Wm), where each Vi ∪Si
Wi is
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a Heegaard splitting, and {Mi = Vi ∪Si
Wi, 1 � i � m} is a union of submanifolds

of M .
It was shown by Scharlemann and Thompson [12] that any irreducible Heegaard

splitting M = V ∪S W can be broken up into a series of strongly irreducible Hee-
gaard splittings by rearranging the order of adding the 1-handles and 2-handles
as

M = V ∪S W = (V1 ∪S1 W1) ∪F1 (V2 ∪S2 W2) ∪F2 · · · ∪Fm−1 (Vm ∪Sm
Wm),

such that each Vi ∪Si
Wi is a strongly irreducible Heegaard splitting with ∂−Wi ∩

∂−Vi+1 = Fi, 1 � i � m − 1, ∂−V1 = ∂−V , ∂−Wm = ∂−W , and for each i,
each component of Fi is a closed incompressible surface of positive genus, and only
one component of Mi = Vi ∪Si

Wi is not a product, and none of the compression
bodies Vi, Wi−1, 2 � i � m, is trivial. Such a rearrangement of handles is called
an untelescoping of the Heegaard splitting V ∪S W . Then it is easy to see g(S) �
g(Si), g(Fi) for each i, and when m � 2, g(S) > g(Si), g(Fi) for each i. In fact,
χ(S) =

∑m
i=1 χ(Si) −

∑m−1
i=1 χ(Fi).

Let M = V ∪S W be a Heegaard splitting, α and β be two essential simple closed
curves in S. The distance d(α, β) of α and β is the smallest integer n � 0 such that
there is a sequence of essential simple closed curves α = α0, α1, · · · , αn = β in S
with αi−1 ∩ αi = ∅, for 1 � i � n. The distance of the Heegaard splitting V ∪S W
is defined to be D(S) = min {d(α, β)}, where α bounds an essential disk in V and
β bounds an essential disk in W .

D(S) was first defined by Hempel [6]. It is clear that V ∪S W is reducible if and
only if D(S) = 0, and V ∪S W is weakly reducible if and only if D(S) � 1.

Next we introduce some basic results on Heegaard splittings and the distance of
a Heegaard splitting.

Lemma 2.1. Let V be a compression body and F be a properly embedded incom-
pressible surface in V with ∂F ⊂ ∂+V . Then each component of V \F is a com-
pression body.

The proof of Lemma 2.1 can be found in [15].

Lemma 2.2. Let M = V ∪S W be a strongly irreducible Heegaard splitting. If α is
an essential simple loop in S which bounds a disk D in M such that D is transverse
to S, then α bounds an essential disk in V or W .

The proof of Lemma 2.2 can be found in [13].

Lemma 2.3. Let V ∪SW be a Heegaard splitting of M and F be a properly embedded
incompressible surface (maybe not connected) in M . Then any component of F is
parallel to ∂M or D(S) � 2 − χ(F ).

The proof of Lemma 2.3 can be found in [4].

Lemma 2.4. Let M = V ∪S W and M = V
′ ∪S′ W

′
be two different Heegaard

splittings. Then V
′ ∪S′ W

′
is a stabilization of V ∪S W or D(S) � 2g(S

′
).

The proof of Lemma 2.4 can be found in [14].
The following proposition is a stronger version of Lemma 3.3 in [2].

Proposition 2.5. Let M = V ∪S W be a non-trivial strongly irreducible Heegaard
splitting and F be a 2-sided essential surface (not a disk or 2-sphere) in M . Then
F can be isotoped such that
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(1) each component of S ∩ F is an essential loop in both F and S;
(2) at most one component of S\F is compressible in M\F .

Proof. (1) is due to Schultens [16].
If (2) is not true, then at least two components of S\F are compressible in M\F

and by Lemma 2.2, at least two components of S\F are compressible in V or W .
Since V ∪S W is strongly irreducible, we may assume that at least two components
of S\F are compressible in V and any component of S\F is incompressible in W .
Choose an essential disk D of W and isotope F if necessary so that |D ∩ (F ∩ W )|
is minimal subject to the conditions that any component of S ∩ F is essential in
both F and S, and at least two components of S\F are compressible in V .

Since V ∪S W is strongly irreducible, D ∩ (F ∩ W ) �= ∅. By the standard inner-
most circle argument, we know that D ∩ (F ∩ W ) has no circle component. Let α
be an outermost arc of D ∩ (F ∩ W ) in D and � be the corresponding outermost
disk. We denote ∂�− α by β. α is an essential arc in F ∩ W by the minimality
of |D ∩ (F ∩ W )|. β is an essential arc in S\F , too. Otherwise, there is an arc γ

in S\F with γ ∩ β = ∂γ = ∂β and β ∪ γ bounds a disk �′
. Then either � ∪�′

is a compressing disk of F , a contradiction, or α ∪ γ is trivial, contradicting the
minimality of |D ∩ (F ∩ W )|.

If the component P of F ∩ W containing α is not an annulus, then ∂-compress
P along � to get F ∗, which is, isotopic to F . Any component of F ∗∩S is essential
in both S and F ∗. At least one component of S\F ∗ is compressible in V since
at least two components of S\F are compressible in V . If only one component of
S\F ∗ is compressible, then Proposition 2.5 (2) is true. If at least two components
of S\F ∗ are compressible in V , we have |D ∩ (F ∗ ∩ W )| < |D ∩ (F ∩ W )|, again a
contradiction to the minimality of |D ∩ (F ∩ W )|.

Now assume P is an annulus. P is not parallel to any component of S\F .
Otherwise, pushing P from W into V , this corresponds to an isotopy of F , denoted
by F ∗, too. Then any component of F ∗ ∩ S is essential in both S and F ∗. At
least one component of S\F ∗ is compressible in V . Then by the same argument as
above, either Proposition 2.5 (2) is true or we get a contradiction.

So P is an essential annulus in W . We ∂-compress P along � to get an essential
disk E with E ∩F = ∅ in W . At least two components of S\F are compressible in
V . This is a contradiction to the assumption that V ∪S W is strongly irreducible.

This completes the proof. �

3. The main results and proofs

First, we have

Theorem 3.1. Let M be a compact, orientable 3-manifold and F be an essential
closed surface which cuts M into M1 and M2. If Mi has a Heegaard splitting
Vi ∪Si

Wi with D(Si) � 2g(Mi) + 1, i = 1, 2, and V ∪S W is a Heegaard splitting
of M with g(S) � g(M1) + g(M2) − g(F ), then V ∪S W is weakly reducible.

Proof. Suppose V ∪S W is a strongly irreducible Heegaard splitting. F is essential
in M , so F ∩ S �= ∅. Then by Proposition 2.5, we may assume that F ∩ S consists
of loops which are essential in both F and S and at most one component of S\F
is compressible in W or V , so in M1 or M2. With no loss of generality, we assume
any component of S ∩ M1 is incompressible. Thus any component of S ∩ M1 is
essential in M1. By Lemma 2.3, 2 − χ(S ∩ M1) � D(S1) � 2g(M1) + 1.
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By assumption, g(S) � g(M1) + g(M2) − g(F ). So

χ(S ∩ M1) + χ(S ∩ M2) = χ(S) = 2 − 2g(S)
� 2 − 2(g(M1) + g(M2) − g(F )).

Therefore,

−χ(S ∩ M2) � χ(S ∩ M1) + 2(g(M1) + g(M2) − g(F )) − 2
� 2g(M2) − 2g(F ) − 1.

By Proposition 2.5, S ∩ M2 has at most one component which is compressible in
M2, and since 2 − χ(S ∩ M2) � 2g(M2) − 2g(F ) + 1 < 2g(M2) < D(S2), any
incompressible component of S ∩ M2 is parallel to a subsurface of F in M2.

If S ∩ M2 is incompressible, then we can isotope F such that F ∩ S = ∅, a
contradiction. So S ∩ M2 has only one component Q which is compressible in V
or W , say V . We compress Q as much as possible in V , and the resulting surface
is denoted by Q∗. Then Q∗ is incompressible in M2 since V ∪S W is strongly
irreducible. Since 2 − χ(Q∗) � 2 − χ(S ∩ M2) < D(S2), Q∗ is parallel to the
subsurfaces of F ; see Figure 1.
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Figure 1

Obviously, any component of F ∩V is incompressible in V and any component of
F ∩W is incompressible in W . Then by Lemma 2.1, any component of V ∩M2 and
W ∩ M2 is a compression body. We denote the component of V \F which contains
the component Q by U and the component of W\F which contains the component Q
by U∗. Then U ∪Q U∗ is homeomorphic to M2 since any incompressible component
of S ∩ M2 is parallel to F in M2. For any component A of Q∗, let FA be the
subsurface of F which is parallel to A with ∂A = ∂FA and FQ∗ = {FA : A ∈ Q∗}.
If there are two components A and B of Q∗ such that FA ⊆ FB, then set A1 =
{A′ : A′ ∈ Q∗, FA′ ⊂ FB, FA′ �= FB} and A2 = {A′ : A′ ∈ Q∗, FA′ ∩ FB = ∅}, and
we may assume that Q is compressed into Q∗ in V by cutting Q open along a
collection D = {D1, · · · , Dn} of pairwise disjoint compressing disks in V . We claim
that A2 = ∅. Otherwise, since Q is connected, there must exist A1 ∈ A1 and
A2 ∈ A2, and Dp1 , Dp2 ∈ D such that the two cutting sections of Dpi

lie in Ai and
B respectively, i = 1, 2. But this contradicts the assumption that Q is separating.
So A2 = ∅. Then M2

∼= R is a compression body, where R, A and B are shown
as in Figure 2 and V2 ∪S2 W2 is weakly reducible, a contradiction to the fact that
D(S2) � 2g(M2) + 1.
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Let C = U ∪ N(F ∩ U∗, U∗) and C∗ = U∗\N(F ∩ U∗, U∗). Then C is a com-
pression body and C∗ is a compression body with ∂+C = ∂+C∗ = S∗ and C∪S∗ C∗

is a Heegaard splitting of U ∪Q U∗ = M2; see Figure 3.
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Clearly, 2g(S∗) = 2 − χ(S∗) � 2 − χ(Q) − χ(F ) � 2 − χ(S ∩ M2) − χ(F ).
Note that we have proved that −χ(S ∩ M2) � 2g(M2) − 2g(F ) − 1. Thus

2g(S∗) � 2 + 2g(M2) − 2g(F ) − 1 + 2g(F ) − 2 = 2g(M2)− 1. So g(S∗) < g(M2), a
contradiction.

�
Proposition 3.2. Let M be a compact, orientable 3-manifold and F be an essential
closed surface which cuts M into M1 and M2. If Mi has a Heegaard splitting
Vi ∪Si

Wi with D(Si) � 2g(Mi) + 1, i = 1, 2, then for any closed incompressible
surface F ∗ in M with g(F ∗) < g(M1) + g(M2), we can isotope F in M such that
F ∩ F ∗ = ∅.

Proof. Since F and F ∗ are incompressible, we can isotope F such that any com-
ponent of F ∩ F ∗ is essential in both F and F ∗. Suppose |F ∩ F ∗| is minimal. If
|F ∩ F ∗| > 0, then any component of F ∗ ∩ Mi is essential in Mi since |F ∩ F ∗| is
minimal.
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So by Lemma 2.3, we have

2 − χ(F ∗ ∩ M1) � D(S1) � 2g(M1) + 1

and
2 − χ(F ∗ ∩ M2) � D(S2) � 2g(M2) + 1.

Then
4 − χ(F ∗ ∩ M1) − χ(F ∗ ∩ M2) � 2g(M1) + 2g(M2) + 2;

i.e., 4−χ(F ∗) � 2g(M1) + 2g(M2) + 2, so g(F ∗) � g(M1) + g(M2), a contradiction
to the assumption. �

Now we come to the proof of Theorem 1.1.

Proof. By assumption, M = M1 ∪F M2 and Vi ∪Si
Wi is a Heegaard splitting with

D(Si) � 2g(Mi) + 1, i = 1, 2. Then by Lemma 2.4, Vi∪Si
Wi is the unique minimal

genus Heegaard splitting of Mi. Obviously, Mi is irreducible, so M is irreducible.
We may assume that F ⊂ ∂−W1, ∂−V2. Let V

′ ∪S′ W
′
be an unstabilized Heegaard

splitting of M with
g(S

′
) � g(M1) + g(M2) − g(F ).

Then by Theorem 3.1, V
′ ∪S′ W

′
is a weakly reducible and irreducible Heegaard

splitting. By the result of [12], V
′ ∪S′ W

′
is an amalgamation of n strongly irre-

ducible Heegaard splittings V
′ ∪S′ W

′
= (V

′

1 ∪S
′
1
W

′

1)∪F
′
1
(V

′

2 ∪S
′
2
W

′

2)∪F
′
2
· · · ∪F

′
n−1

(V
′

n ∪S′
n

W
′

n). Since g(F
′

i ) < g(S
′
) � g(M1) + g(M2) − g(F ) < g(M1) + g(M2),

by Proposition 3.2, we can isotope F so that (
⋃

F
′

i ) ∩ F = ∅. So F lies in the
non-trivial component V ∗

j ∪S∗
j

W ∗
j of V

′

j ∪S
′
j
W

′

j , for some 1 � j � n.

If F is parallel to some component, say F ∗, of
⋃

F
′

i , we amalgamate the Heegaard
splitting sequence V

′

1 ∪S
′
1
W

′

1, V
′

2 ∪S
′
2
W

′

2, · · · , V
′

n ∪S′
n

W
′

n along
⋃

F
′

i − F ∗, and we

obtain an unstabilized Heegaard splitting V
′∗
1 ∪S

′∗
1

W
′∗
1 of M1 and an unstabilized

Heegaard splitting V
′∗
2 ∪S

′∗
2

W
′∗
2 of M2, such that ∂−W

′∗
1 = ∂−V

′∗
2 = F ∗ and

g(S
′∗
1 ) + g(S

′∗
2 )− g(F ) = g(S

′
) � g(M1) + g(M2) − g(F ). Then by Lemma 2.4, we

have g(S1) = g(M1) � g(S
′∗
1 ) and g(S2) = g(M2) � g(S

′∗
2 ), so g(S1) = g(S

′∗
1 ) and

g(S2) = g(S
′∗
2 ). By Lemma 2.4, V

′ ∪S′ W
′
is the amalgamation of V1 ∪S1 W1 and

V2 ∪S2 W2.
So we may assume that F is not parallel to any component of

⋃
F

′

i . Then by
Proposition 2.5, we may assume that any component of F ∩ S∗

j is essential in both
S∗

j and F , and at most one component of S∗
j \F is compressible in M\F . Since

F is essential, F ∩ S∗
j �= ∅. We may assume that any component of S∗

j \F is
incompressible in M1. Then S∗

j ∩ M1 is essential in M1. So 2 − χ(S∗
j ∩ M1) �

D(S1) � 2g(M1) + 1.
If any component of S∗

j ∩ M2 is incompressible in M2, then any component of
S∗

j ∩ M2 is parallel to a subsurface of F . Since

2 − χ(S∗
j ∩ M2) = 2 − χ(S∗

j ) + χ(S∗
j ∩ M1)

� 2g(S
′
) − 2g(M1) + 1

� 2g(M2) − 2g(F ) + 1
< D(S2),

we can isotope S∗
j and F such that F ∩ S∗

j = ∅, a contradiction.
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Then we denote the compressible component of S∗
j ∩M2 by Q

′
and assume that

Q
′

is compressible in V ∗
j . We compress Q

′
as much as possible in V ∗

j to obtain
a surface Q

′∗. Then any component of Q
′∗ is incompressible in V ∗

j ∪S∗
j

W ∗
j since

V ∗
j ∪S∗

j
W ∗

j is strongly irreducible. Furthermore, Q
′∗ is incompressible in M2 since

⋃
F

′

i is incompressible in M . Q
′∗ is parallel to the subsurfaces FQ′∗ of F since

2 − χ(Q
′∗) � 2 − χ(Q

′
) � 2 − χ(S∗

j ∩ M2) < D(S2). If one component of FQ′∗

contains another component of FQ′∗ , then by the similar arguments of Theorem
3.1, V

′

j ∪S
′
j
W

′

j is a non-trivial compression body. The Heegaard splitting V
′

j ∪S
′
j
W

′

j

is not strongly irreducible, a contradiction.
Any component of F ∩ V ∗

j is incompressible in V ∗
j . Then by Lemma 2.1 any

component of V ∗
j \F is a compression body. By the same reason as above, any

component of W ∗
j \F is a compression body. Let U

′

1 be the component of V ∗
j \F

containing Q
′
and U

′

2 be the component of W ∗
j \F containing Q

′
. We amalgamate

the Heegaard splitting V ∗
j ∪S∗

j
W ∗

j and the Heegaard splittings contained in M2 of
the Heegaard sequence V

′

1 ∪S
′
1
W

′

1, V
′

2 ∪S
′
2
W

′

2, · · · , V
′

n∪S′
n
W

′

n along the components

contained in M2 of
⋃

F
′

i to obtain a Heegaard splitting V3 ∪S3 W3 such that the
following conditions are satisfied:

(1) V3 ∩ M1 = V ∗
j ∩ M1 and W3 ∩ M1 = W ∗

j ∩ M1;
(2) S3 ∩ F = S∗

j ∩ F and S3 ∩ M1 = S∗
j ∩ M1;

(3) only one component of S3 ∩ M2 is compressible in V3, denoted by Q
′′
, and

other incompressible components are just the components of S∗
j ∩ M2.

Then any component of V3\F and W3\F is a compression body. Let U
′

be
the component of V3\F which contains Q

′′
and U

′∗ be the component of W3\F
which contains Q

′′
. Then by the similar arguments of Theorem 3.1, the 3-manifold

U
′ ∪Q′′ U

′∗ is homeomorphic to M2. Let C
′

= U
′ ∪ N(F ∩ U

′∗, U
′∗) and C

′∗ =
U

′∗\N(F ∩ U
′∗, U

′∗). Then C
′

and C
′∗ are compression bodies, ∂+C

′
= ∂+C

′∗ =
S

′∗. So C
′ ∪S′∗ C

′∗ is a Heegaard splitting of M2. We compare g(S
′∗) with g(M2).

Obviously, g(S3) � g(S
′
) � g(M1) + g(M2) − g(F ),

2 − χ(S3 ∩ M1) = 2 − χ(S∗
j ∩ M1) � D(S1) � 2g(M1) + 1,

−χ(S
′∗) � −χ(S3 ∩ M2) − χ(F ) = −χ(S3) + χ(S∗

j ∩ M1) − χ(F ).

So

2g(S
′∗)−2 � 2g(M1) + 2g(M2) − 2g(F ) − 2+χ(S∗

j ∩M1)+2g(F )−2 � 2g(M2) − 3.

Thus we have g(S
′∗) < g(M2), a contradiction.

Hence V
′ ∪S′ W

′
is isotopic to the amalgamation of V1 ∪S1 W1 and V2 ∪S2

W2 and g(M) = g(S
′
) = g(M1) + g(M2) − g(F ). This completes the proof of

Theorem 1.1. �
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