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A STEADY-STATE EXTERIOR NAVIER-STOKES PROBLEM
THAT IS NOT WELL-POSED

GIOVANNI P. GALDI

(Communicated by Walter Craig)

Abstract. We prove that the exterior Navier-Stokes problem with zero ve-
locity at infinity is not well-posed in homogeneous Sobolev spaces. This result
complements and clarifies well-known previous results obtained by various au-
thors.

1. Introduction

Let Ω be the complement of the closure of a bounded domain, Ω0, of R
3 of class

C2. The objective of this paper is to investigate the well-posedness of the following
Navier-Stokes boundary value problem:

(1.1)

−ν∆u + u · gradu = −grad p + f

div u = 0

⎫⎬
⎭ in Ω,

u = 0 at ∂Ω ,

lim
|x|→∞

u(x) = 0 ,

in homogeneous Sobolev spaces. We recall that (1.1) governs the steady-state mo-
tion of a viscous liquid, L, in the exterior of the “rigid obstacle” Ω0. In particular,
u and p are velocity and pressure fields, respectively, and ν > 0 is the (constant)
kinematical viscosity of L, while f is the prescribed body force acting on L.

In order to describe our results, we denote by D1,q
0 (Ω), 1 < q < ∞, the homo-

geneous Sobolev space defined as the completion of smooth vector functions with
compact support in Ω, C∞

0 (Ω), in the Dirichlet norm |·|1,q :=
(∫

Ω
|grad · |q

)1/q, and
by D−1,q′

0 (Ω) its (strong) dual with corresponding norm | · |−1,q′ (q′ := q/(q − 1));
see, e.g. [3, § II.5, § II.6]. We also indicate by D1,q

0,σ(Ω) the subspace of D1,q
0 (Ω) of

solenoidal functions, v, namely, satisfying div v = 0 in Ω.
It is well known–basically, since the work of J. Leray [10]–that for each f ∈

D−1,2
0 (Ω), (1.1) has at least one solution (in the sense of distributions) u ∈ D1,2

0,σ(Ω),
with corresponding p ∈ L2(ω), for an arbitrary bounded domain ω ⊂ Ω. Moreover,
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if f is sufficiently smooth and decays “fast enough” at large distances, then u
belongs also to D1,q

0,σ(Ω), for all q > 2 [13, 4].
The interesting question that has attracted the attention of several mathemati-

cians is the solvability of (1.1) in the class of those u ∈ D1,q
0,σ(Ω) ∩ D1,2

0,σ(Ω), when
q < 2; see [5, 8, 2, 11, 9, 7]. The results proved in these papers are many-fold,
and we would like to recall the most relevant. In the first place, because of the
particular structure of the nonlinear term, u · gradu, one has to restrict to the
case q = 3/2. Furthermore, if Ω = R

3 (namely, Ω0 = ∅), then under the assump-
tion f ∈ D

−1,3/2
0 (R3) ∩ D−1,2

0 (R3) of “sufficiently small” magnitude, solutions do
exist in the class where u ∈ D

1,3/2
0,σ (R3) ∩ D1,2

0,σ(R3). By the standard theory on
representation of functionals on homogeneous Sobolev spaces [3, Theorem III.5.2],
it then follows that p ∈ L3/2(R3) ∩ L2(R3). In addition, these solutions are also
unique and depend continuously upon the data. On the other side, if Ω0 �= ∅, we
have that, under the assumption f ∈ D

−1,3/2
0 (Ω) ∩ D−1,2

0 (Ω) ≡ Y ∗(Ω), a solution
u ∈ D

1,3/2
0,σ (Ω) ∩ D1,2

0,σ(Ω) ≡ X1(Ω), with associated p ∈ L3/2(Ω) ∩ L2(Ω) ≡ X2(Ω),
can exist only if u, p and f satisfy the nonlocal compatibility condition

(1.2) 0 =
∫

∂Ω

[ν(gradu + (gradu)�) − pI] · n +
∫

∂Ω

F · n ≡ −F1 − F2,

in a distributional sense. In this equation, � denotes transpose, I is the identity
matrix, n is the unit outer normal to ∂Ω, and div F = f .

The objective of this paper is to show that, in fact, if Ω0 �= ∅, problem (1.1)
is not well-posed in the space X(Ω) ≡ X1(Ω) × X2(Ω). More precisely, we prove
that if, for a certain f ∈ Y ∗(Ω), (1.1) has a solution {u, p} ∈ X(Ω), then in any
arbitrary Y ∗-neighborhood of f we can find a “body force” f such that problem
(1.1) has no solution {u, p} ∈ X(Ω); see Theorem 3.1. We obtain this result by
using classical properties of nonlinear Fredholm maps with negative index, due to
S. Smale [12], that we recall in the following section.

The physical interpretation of our result goes as follows. Because of (1.1)4, the
obstacle Ω0 is at rest. This implies that the total force, F, acting on Ω0 must vanish.
In general, F is the sum of three contributions: F1, due to the action of the liquid;
F2, due to the body force acting on the liquid, and F3, representing the external
force directly applied to Ω0. Clearly, for any F1 and F2, we can always find F3 such
that F1 + F2 + F3 = 0, so that Ω0 is “kept in place”. However, condition (1.2) tells
us that, in the class X(Ω), F3 is necessarily zero and, consequently, the obstacle Ω0

must be kept in place only by the contribution due to the body force, f , acting on
the liquid. Our result then states that forces f for which this happens are “rare”.
Notice that, of course, the case Ω0 = ∅ does not present such a problem.

In conclusion, we wish to mention that, as shown in [6, 7], problem (1.1) is
well-posed (for “small” f) in appropriate function spaces other than X(Ω), where
condition (1.2) does not necessarily hold.

2. Some preliminary results

In this section we recall some standard properties of nonlinear Fredholm maps.
Let X and Z be separable Banach spaces, with norms ‖·‖X and ‖·‖Z , respectively,

and let M be a map defined on the whole X with range R(M) ⊂ Z. For z ∈ Z,
we put σM (z) = {x ∈ X : M(x) = z} (the solution set of the map M at z) and
N(M) := {x ∈ X : M(x) = 0} (the null set of the map M). Furthermore, we shall
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write M ∈ Ck(X, Z), k a nonnegative integer, if, at each x ∈ X, M has continuous
derivatives, in the sense of Fréchet, up to the order k included. The derivative of
M at x is denoted by M ′(x).

A map M ∈ C1(X, Z) is said to be Fredholm if and only if the integers α :=
dim N[M ′(x)] and β := codimR[M ′(x)] are both finite . The integer ind(M) :=
α−β is then independent of the particular x ∈ X [14, §5.15] and is called the index
of M .

For a given M ∈ C1(X, Z), a point x ∈ X is a regular point iff M ′(x) is surjective.
A point z ∈ Z is called a regular value iff either σM (z) = ∅ or σM (z) is constituted
only by regular points .

The following well-known result is due to Smale [12].

Lemma 2.1. Let M ∈ Ck(X, Z) be a Fredholm map with k > max{ind(M), 0}.
Then, the set of regular values of M , R, is dense in Z. More specifically, Z −R is
of Baire first category.

An immediate, and fundamental to our aims, consequence of Lemma 2.1 is given
by the following corollary, whose simple proof we include for the reader’s conve-
nience.

Corollary 2.1. Suppose M satisfies the assumption of Lemma 2.1 and that, for
some z ∈ Z, σM (z) �= ∅. Then, if ind (M) < 0, the problem M(x) = z is not
well-posed, in the sense that the solution x cannot depend continuously on the data
z. Precisely, for any ε > 0, we can find z ∈ Z such that ‖z − z‖Z < ε and the
equation M(x) = z has no solution.

Proof. For the given ε, by Lemma 2.1 we may choose z to be a regular value. Now,
if we suppose, by contradiction, σM (z) �= ∅, we would have that M ′(x) is surjective,
for all x ∈ σM (z), which would imply ind (M) = dimN[M ′(x)] ≥ 0, in contrast with
the assumption. �

An equivalent way of phrasing Corollary 2.1 is that, under the stated assumptions
on M , the interior of R(M) is empty.

3. Application to the exterior Navier-Stokes problem

We begin to rewrite (1.1) as a nonlinear equation in a suitable Banach space.
We set Y = Y (Ω) := D1,3

0 (Ω) + D1,2
0 (Ω) equipped with the norm

‖ϕ‖Y := inf
{
|ϕ1|1,3 + |ϕ2|1,2 : ϕ = ϕ1+ϕ2 , ϕ1 ∈ D1,3

0 (Ω) , ϕ2 ∈ D1,2
0 (Ω)

}
.

Since both D1,3
0 (Ω) and D1,2

0 (Ω) are reflexive, it follows that for any ϕ ∈ Y there
exist ϕ1 ∈ D1,3

0 (Ω) and ϕ2 ∈ D1,2
0 (Ω) such that

(3.1) ‖ϕ‖Y = |ϕ1|1,3 + |ϕ2|1,2 .

Also, since {ϕ ∈ C∞
0 (Ω) : div ϕ = 0} is dense in D1,3

0 (Ω) ∩ D1,2
0 (Ω) [3, Ex-

ercise III.6.2], we have that the (strong) dual, Y ∗, of Y can be isomorphically
represented as Y ∗ = D

−1,3/2
0 (Ω) ∩ D−1,2

0 (Ω) with associated norm ‖ · ‖Y ∗ :=
| · |−1,3/2 + | · |−1,2; see [1]. Moreover, Y ∗ is separable [3, Exercise II.5.1].

If we now multiply, formally, (1.1)1 by ϕ ∈ Y and integrate by parts over Ω, we
find:

(3.2) ν(gradu, gradϕ) − (p, divϕ) − (u · gradϕ, u) = 〈f , ϕ〉 ,
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where (·, ·) and 〈·, ·〉 represent the L2-scalar product and duality pairing between
Y ∗ and Y , respectively. Set

X1 = X1(Ω) := D
1,3/2
0,σ (Ω) ∩ D1,2

0,σ(Ω), ‖ · ‖X1 := | · |1,3/2 + | · |1,2

X2 = X2(Ω) := L3/2(Ω) ∩ L2(Ω), ‖ · ‖X2 := ‖ · ‖3/2 + ‖ · ‖2

X = X(Ω) := X1 × X2, ‖{u, p}‖X := ‖u‖X1 + ‖p‖X2 .

The space X is separable [3, Exercise II.5.1]. Because of the continuous embeddings

(3.3) D
1,3/2
0,σ (Ω) ⊂ L3(Ω) , D1,2

0,σ(Ω) ⊂ L6(Ω)

(see [3, Theorem II.5.1]), it is immediately checked (by the Hölder inequality) that,
for any {u, p} ∈ X, the left-hand side of (3.2) defines two linear functionals, A(u, p)
(Stokes operator) and M(u), on Y as follows:
(3.4)
〈A(u, p), ϕ〉 := ν(gradu, gradϕ) − (p, divϕ) , 〈M(u), ϕ〉 := −(u · gradϕ, u) .

Therefore, (3.2) can be rewritten in the following operator equation form:

(3.5) N(u, p) = f in Y ∗,

where the map N is defined as

N : {u, p} ∈ X �→ A(u, p) + M(u) ∈ Y ∗ .

Set Ba(y) := {f ∈ Y ∗ : ‖f − y‖Y ∗ < a}, a > 0. We have the following.

Theorem 3.1. Let Ω0 �= ∅. Assume that (3.5) has a solution {u, p} ∈ X corre-
sponding to some f ∈ Y ∗. Then, for any ε > 0, there exists f ∈ Bε(f) such that
(3.5) does not have a solution.

Proof. In view of Corollary 2.1, it suffices to show that N is a Fredholm map of
negative index. In order to reach this goal, we begin to observe that N ∈ C1(X, Y )
and that

[N ′(u, p)](w, τ ) = A(w, τ ) + [M ′(u)](w) ,

where

(3.6) 〈[M ′(u)](w), ϕ〉 = −(u · gradϕ, w) − (w · gradϕ, u) , ϕ ∈ Y .

(The proof of these properties is completely standard, and, therefore, it will be
omitted.) We prove, next, that M ′(u) is compact at each u ∈ X1. Let {wm} be a
sequence in X1 such that

(3.7) ‖wm‖X1 ≤ M1 ,

where M1 is independent of the integer m. Since D
1,3/2
0,σ (Ω) and D1,2

0,σ(Ω) are reflex-
ive, we can select a subsequence (again denoted by {wm}) and find w ∈ X1 such
that

(3.8) wm → w weakly in D
1,3/2
0,σ (Ω) and in D1,2

0,σ(Ω).

From (3.6) we find that

(3.9) 〈[M ′(u)](vm), ϕ〉 = −(u · gradϕ, vm) − (vm · gradϕ, u) , ϕ ∈ Y ,

where vm := w − wm. For sufficiently large R > 0, we set ΩR = Ω ∩ {|x| < R},
ΩR = Ω ∩ {|x| > R} and denote by ‖ · ‖r,A the Lr(A)-norm. Recalling that



A STEADY-STATE EXTERIOR NAVIER-STOKES PROBLEM 683

ϕ = ϕ1+ϕ2, where ϕi, i = 1, 2, satisfy (3.1), with the help of the Hölder inequality
we find

(3.10)

|(u · gradϕ1, vm)| ≤ ‖u‖3‖vm‖3,ΩR
|ϕ1|1,3 + ‖u‖3,ΩR‖vm‖3,ΩR |ϕ1|1,3

≤
(
‖u‖3‖vm‖3,ΩR

+ M ‖u‖3,ΩR

)
‖ϕ‖Y ,

|(u · gradϕ2, vm)| ≤ ‖u‖6‖vm‖3,ΩR
|ϕ2|1,2 + ‖u‖6,ΩR‖vm‖3,ΩR |ϕ2|1,2

≤
(
‖u‖6‖vm‖3,ΩR

+ M2 ‖u‖6,ΩR

)
‖ϕ‖Y ,

where M2 denotes an upper bound for ‖vm‖X . Set M3 = max{‖u‖3, ‖u‖6, M2}.
Collecting (3.9) and (3.10), we thus obtain

(3.11) ‖[M ′(u)](vm)‖Y ∗ ≤ M3

(
‖vm‖3,ΩR

+ ‖u‖3,ΩR + ‖u‖6,ΩR

)
.

We now let m → ∞ in (3.11). By (3.3), we find that X1 continuously embeds in the
Sobolev space W 1,2(ΩR), for all R > 0. Thus, by (3.7), by (3.8) and by the Rellich
theorem, the first term on the right-hand side of (3.11) tends to zero as m′ → ∞,
for some {m′} ⊂ {m}. Successively, we let R → ∞, which, again with the help of
(3.3), causes the second and the third term to go to zero as well. We thus deduce
‖[M ′(u)](vm′)‖Y ∗ → 0 as m′ → ∞, for each fixed u ∈ X1, which completes the
proof of the compactness of the operator M ′(u). Our next and final objective is
to show that the linear operator A : {u, p} ∈ X �→ A(u, p) ∈ Y ∗ defined in (3.4) is
Fredholm and that ind(A) = −3; after that, from the definition of a Fredholm map
and from the fact that the index of a (linear) Fredholm operator is left invariant
by a compact perturbation [14, Theorem 5.E], we find ind(N) = −3. Clearly, the
operator A is graph-closed. Moreover, from [3, p. 282 and Theorem V.5.1] it follows
that

(3.12) N(A) = {0} , R(A) = {f ∈ Y ∗ : 〈f , h(i)〉 = 0, i = 1, 2, 3} ,

where hi ∈ D1,3
0,σ(Ω) (⊂ Y ), i = 1, 2, 3, are three independent functions. It is now

easy to show that there exist three independent elements of Y ∗, lk, k = 1, 2, 3, such
that, denoting by S their linear span, we have

(3.13) Y ∗ = R(A) ⊕ S .

Since dim(S) = 3, from (3.12) we then find ind(A) = dim[N(A)] − codim[R(A)]
= −3. In order to prove (3.13), let Lk, k = 1, 2, 3, be the vector spaces generated
by {h(2), h(3)}, {h(1), h(3)} and {h(1), h(2)}, respectively. Set dk := infh∈Lk

‖h(k)−
h‖Y (> 0). From a corollary to the Hahn-Banach theorem (see, e.g., [14, Proposi-
tion I.2.3]) we know that there exists lk ∈ Y ∗ such that

(3.14) ‖lk‖Y ∗ = d−1
k , 〈lk, h(j)〉 = δkj .

We claim the validity of (3.13), where S is the vector space generated by {l1, l2, l3}.
In fact, obviously, R(A) ∩ S = ∅. Furthermore, for any f ∈ Y ∗ we have, with the
help of (3.14), that

f −
3∑

k=1

〈f , h(k)〉lk ∈ R(A)

and (3.13) follows. �

Remark 3.1. The assumption, in Theorem 3.1, that Ω0 �= ∅ is crucial. In fact, if
Ω = R

3, then ind (A) = 0 [3, Theorem IV.2.2], and so, by the same argument used



684 GIOVANNI P. GALDI

in the proof of Theorem 3.1, we can show that ind (N) = 0. This is consistent with
the results of [8] that prove (local) well-posedness of problem (1.1) in the space
D

1,3/2
0,σ (R3) ∩ D1,2

0,σ(R3).
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