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A STEADY-STATE EXTERIOR NAVIER-STOKES PROBLEM
THAT IS NOT WELL-POSED

GIOVANNI P. GALDI

(Communicated by Walter Craig)

ABSTRACT. We prove that the exterior Navier-Stokes problem with zero ve-
locity at infinity is not well-posed in homogeneous Sobolev spaces. This result
complements and clarifies well-known previous results obtained by various au-
thors.

1. INTRODUCTION

Let Q be the complement of the closure of a bounded domain, g, of R? of class
C?. The objective of this paper is to investigate the well-posedness of the following
Navier-Stokes boundary value problem:

—vAu+u-gradu = —gradp + f

divu =0 in 2,

u=0 at o,

lim u(z) =0,
|z]—o0

in homogeneous Sobolev spaces. We recall that (I governs the steady-state mo-
tion of a viscous liquid, £, in the exterior of the “rigid obstacle” €. In particular,
u and p are velocity and pressure fields, respectively, and v > 0 is the (constant)
kinematical viscosity of £, while f is the prescribed body force acting on £.

In order to describe our results, we denote by Dé’q(Q), 1 < ¢ < oo, the homo-
geneous Sobolev space defined as the completion of smooth vector functions with

1/q
b

compact support in €, C§°(€2), in the Dirichlet norm |-|1 4 := ([, |grad - [7) and

by Dgl’q,(Q) its (strong) dual with corresponding norm |- |_1,¢ (¢’ :=¢q/(¢ —1));
see, e.g. [3, §IL.5, §I1.6]. We also indicate by Dé:g(Q) the subspace of Dy%(Q) of
solenoidal functions, v, namely, satisfying diveo = 0 in €.

It is well known-basically, since the work of J. Leray [I0]-that for each f €
Dy *(Q), () has at least one solution (in the sense of distributions) u € Déﬁ(ﬂ),
with corresponding p € L?(w), for an arbitrary bounded domain w C €. Moreover,
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if f is sufficiently smooth and decays “fast enough” at large distances, then w
belongs also to Dé:Z(Q), for all ¢ > 2 [13] 4].

The interesting question that has attracted the attention of several mathemati-
cians is the solvability of (L)) in the class of those u € Dég(Q) N Dé:i (), when
q < 2; see [B, 8 2, M1, @ [7]. The results proved in these papers are many-fold,
and we would like to recall the most relevant. In the first place, because of the
particular structure of the nonlinear term, u - grad w, one has to restrict to the
case ¢ = 3/2. Furthermore, if Q = R3 (namely, Q¢ = @), then under the assump-
tion f € D, L3/2(R3) 0 Dy " (R?) of “sufficiently small” magnitude, solutions do
exist in the class where u € Dé:i/Z(R3) N D(l)i(R:’) By the standard theory on
representation of functionals on homogeneous Sobolev spaces [3, Theorem II1.5.2],
it then follows that p € L3/2(R%) N L?(R?). In addition, these solutions are also
unique and depend continuously upon the data. On the other side, if Qy # 0, we
have that, under the assumption f € DSI’S/Q(Q) N Dy "2(2) = Y*(Q), a solution
u € DyY2(Q) N DE2(Q) = X1(Q), with associated p € L¥2() N L2(2) = X»(9),
can exist only if u, p and f satisfy the nonlocal compatibility condition

(1.2) 0:/ [v(gradu + (gradu) ") — pI] - m + F-n=-3% — 3,

a0 1)
in a distributional sense. In this equation, T denotes transpose, I is the identity
matrix, n is the unit outer normal to 02, and div F = f.

The objective of this paper is to show that, in fact, if Qg # 0, problem (LI
is not well-posed in the space X () = X1(Q) x X2(Q). More precisely, we prove
that if, for a certain f € Y*(Q2), (LI) has a solution {w,p} € X (1), then in any
arbitrary Y *-neighborhood of f we can find a “body force” f such that problem
(CI) has no solution {u,p} € X(Q); see Theorem BIl We obtain this result by
using classical properties of nonlinear Fredholm maps with negative index, due to
S. Smale [12], that we recall in the following section.

The physical interpretation of our result goes as follows. Because of (I1)4, the
obstacle g is at rest. This implies that the total force, §, acting on {2y must vanish.
In general, § is the sum of three contributions: §1, due to the action of the liquid;
o, due to the body force acting on the liquid, and §3, representing the external
force directly applied to Q. Clearly, for any §; and §o, we can always find §3 such
that 1 + F2 + F3 = 0, so that Qg is “kept in place”. However, condition (2)) tells
us that, in the class X (), §5 is necessarily zero and, consequently, the obstacle €
must be kept in place only by the contribution due to the body force, f, acting on
the liquid. Our result then states that forces f for which this happens are “rare”.
Notice that, of course, the case Qg = () does not present such a problem.

In conclusion, we wish to mention that, as shown in [6l [7], problem (LI]) is
well-posed (for “small” f) in appropriate function spaces other than X (£2), where
condition (2] does not necessarily hold.

2. SOME PRELIMINARY RESULTS

In this section we recall some standard properties of nonlinear Fredholm maps.
Let X and Z be separable Banach spaces, with norms ||-|| x and ||-|| 7, respectively,
and let M be a map defined on the whole X with range R(M) C Z. For z € Z,
we put op(2) = {x € X : M(xz) = 2z} (the solution set of the map M at z) and
N(M) :={x € X : M(z) = 0} (the null set of the map M). Furthermore, we shall
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write M € C*(X, Z), k a nonnegative integer, if, at each x € X, M has continuous
derivatives, in the sense of Fréchet, up to the order k£ included. The derivative of
M at z is denoted by M'(x).

A map M € CY(X,Z) is said to be Fredholm if and only if the integers a :=
dim N[M'(z)] and 3 := codim R[M’(x)] are both finite. The integer ind(M) :=
a— [ is then independent of the particular z € X [I4] §5.15] and is called the index
of M.

For a given M € C1(X, Z), apoint x € X is a regular point iff M'(z) is surjective.
A point z € Z is called a regular value iff either opr(2) = 0 or opr(2) is constituted
only by regular points.

The following well-known result is due to Smale [12].

Lemma 2.1. Let M € C*¥(X,Z) be a Fredholm map with k > max{ind(M),0}.
Then, the set of reqular values of M, R, is dense in Z. More specifically, Z —*R is
of Baire first category.

An immediate, and fundamental to our aims, consequence of Lemma [2.]is given
by the following corollary, whose simple proof we include for the reader’s conve-
nience.

Corollary 2.1. Suppose M satisfies the assumption of Lemma 211 and that, for
some z € Z, op(Z) # 0. Then, if ind (M) < 0, the problem M(x) = z is not
well-posed, in the sense that the solution x cannot depend continuously on the data
z. Precisely, for any € > 0, we can find z € Z such that ||z — Z||z < € and the
equation M (x) = z has no solution.

Proof. For the given ¢, by Lemma 2.l we may choose z to be a regular value. Now,
if we suppose, by contradiction, oas(2) # 0, we would have that M’(x) is surjective,
for all x € opr(2), which would imply ind (M) = dim N[M’(z)] > 0, in contrast with
the assumption. O

An equivalent way of phrasing Corollary 2.1lis that, under the stated assumptions
on M, the interior of R(M) is empty.

3. APPLICATION TO THE EXTERIOR NAVIER-STOKES PROBLEM

We begin to rewrite (II) as a nonlinear equation in a suitable Banach space.
We set Y = Y(Q) := Dy*(Q) + DE*(Q) equipped with the norm

lelly i=inf {lio1lus + 21,2 @ = 01+2, 01 € D), 05 € D ()}

Since both Dy (Q) and Dy?(Q) are reflexive, it follows that for any ¢ € Y there
exist ¢, € Dé’S(Q) and @, € Dé’Q(Q) such that

(3.1) lelly = leilis +[w2li2-

Also, since {¢ € C5°(Q) : dive = 0} is dense in Dy*(Q) N DF?(Q) [, Ex-
ercise II1.6.2], we have that the (strong) dual, Y*, of Y can be isomorphically
represented as Y* = DSI’S/Q(Q) N Dy "2(Q) with associated norm || - |
|- |-1,3/2 + |- |-1,2; see [1]. Moreover, Y* is separable [3, Exercise I1.5.1].

If we now multiply, formally, (LT)); by ¢ € Y and integrate by parts over €2, we
find:

(3.2) v(gradu, grad @) — (p,dive) — (u - grad p,u) = (f,¢),

Yy =
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where (-,-) and (-,-) represent the L2-scalar product and duality pairing between
Y* and Y, respectively. Set

X1 =X1(Q) := Dé:i/Q(Q) N Déf,(Q), I llx, =1 |32 +]
Xo =X5(Q) := L2 ()N L*(Q), || llxo:=1"llzs2+ 1"z
X =X(Q):=X1 x X2, [{u,p}tl|x = [ullx, + [Ipllx,-

The space X is separable [3, Exercise I1.5.1]. Because of the continuous embeddings

1,2

(3.3) Dyy*(9) € L(Q), Dyy (@) € L(Q)
(see [3, Theorem I1.5.1)), it is immediately checked (by the Holder inequality) that,
for any {u,p} € X, the left-hand side of (8.2 defines two linear functionals, A(u,p)
(Stokes operator) and M (u), on Y as follows:
) ) = v(grad o, grad ) — (o, diveg), (M(u)y ) o= —(a-grad ).
Therefore, [B.2]) can be rewritten in the following operator equation form:
(3.5) N(u,p)=f inY™
where the map NN is defined as
N:{u,p}eXr— A(u,p)+ M(u) e Y".
Set Bo(y) :=={f €Y :|f -y

Theorem 3.1. Let Qo # 0. Assume that [B.3) has a solution {@,p} € X corre-
sponding to some f € Y*. Then, for any € > 0, there exists f € B.(f) such that
B3) does not have a solution.

y+ < a}, a > 0. We have the following.

Proof. In view of Corollary 2.1, it suffices to show that N is a Fredholm map of
negative index. In order to reach this goal, we begin to observe that N € C1(X,Y)
and that

[N (u, p)|(w, 7) = A(w, 7) + [M'(uw)](w),,
where
36)  ([M'(u)](w), ) = —(u-gradp,w) — (w-gradp,u), Y.

(The proof of these properties is completely standard, and, therefore, it will be
omitted.) We prove, next, that M’ (u) is compact at each u € X;. Let {w,,} be a
sequence in X such that

(3.7) [wmlx, < M,

where M, is independent of the integer m. Since Dé:g/ ?(€) and Déi(Q) are reflex-
ive, we can select a subsequence (again denoted by {w,,}) and find w € X; such
that

(3.8) w,, — w weakly in Dy>/*(2) and in Dy ().

From (B6) we find that

(3.9 (IM'(w)l(vm), ) = —(u-grad,vym) — (vm - gradp,u), @€Y,

where v,, := w — w,,. For sufficiently large R > 0, we set Qr = QN {|z| < R},
Qf = Qn{|z| > R} and denote by || - ||, 4 the L"(A)-norm. Recalling that
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© = p1+pq, where @,, i = 1,2, satisfy (3], with the help of the Holder inequality
we find

3.0rlP1l18 + [ullsorlvmlls.onleils

< (lulisllvm
[(u - grad ¢y, vm)| < |lulls|lvm

< (lulisllvm l6.00) llelly .

where My denotes an upper bound for ||v,|x. Set M3 = max{||ulls, ||[u|s, M2}
Collecting ([B9) and ([BI0), we thus obtain

(3.11) 1M (w)] (o)l v+ < Ms (|lvm 3,07 + [ulls0r) -

We now let m — oo in [BI1)). By 33), we find that X; continuously embeds in the
Sobolev space W12(Qg), for all R > 0. Thus, by @B.1), by B.8) and by the Rellich
theorem, the first term on the right-hand side of (3.I1]) tends to zero as m’ — oo,
for some {m'} C {m}. Successively, we let R — oo, which, again with the help of
[B3), causes the second and the third term to go to zero as well. We thus deduce
M’ (w)](vm)|ly= — 0 as m’ — oo, for each fixed u € X, which completes the
proof of the compactness of the operator M’(u). Our next and final objective is
to show that the linear operator A : {u,p} € X — A(u,p) € Y* defined in (B4) is
Fredholm and that ind(A) = —3; after that, from the definition of a Fredholm map
and from the fact that the index of a (linear) Fredholm operator is left invariant
by a compact perturbation [14, Theorem 5.E], we find ind(IN) = —3. Clearly, the
operator A is graph-closed. Moreover, from [3] p. 282 and Theorem V.5.1] it follows
that

(3.12) N(A)={0}, RA)={feY*: (f,hD)=0, i=1,2,3},

|(w- grad @y, vm)| < [lufls]lvm

l3.90q + M [lull o) llelly,
(3.10) " )

3,0z 102112 + ulls or lvmlls.arleali2

3,05 + Ma||u

|31QR + HU

where h; € Dé:i () (CY),i=1,2,3, are three independent functions. It is now
easy to show that there exist three independent elements of Y*, I, k = 1,2, 3, such
that, denoting by S their linear span, we have

(3.13) Y*=R(A)®S.

Since dim(S) = 3, from ([BI2) we then find ind(A) = dim[N(A)] — codim[R(A)]
= —3. In order to prove (BI3), let Ly, k = 1,2,3, be the vector spaces generated
by {h®,h®}, {hV ™} and {hM, B}, respectively. Set dj := infper, A —
hlly (> 0). From a corollary to the Hahn-Banach theorem (see, e.g., [14, Proposi-
tion 1.2.3]) we know that there exists I, € Y* such that

(3.14) IZelly~ = dits @k, BY) = 6.

We claim the validity of (3I3]), where S is the vector space generated by {l;,13,13}.
In fact, obviously, R(A) NS = (. Furthermore, for any f € Y* we have, with the

help of (B.14), that

(f. Rl € R(A)
k=1
and ([B.I3) follows. O

f_

3

Remark 3.1. The assumption, in Theorem [3.I], that Qg # 0 is crucial. In fact, if
0 = R3, then ind (A) = 0 [3, Theorem IV.2.2], and so, by the same argument used
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in the proof of Theorem Bl we can show that ind (IN) = 0. This is consistent with
the results of [§] that prove (local) well-posedness of problem (1] in the space

Dy3%(R%) N Dy2 (R).
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