A STEADY-STATE EXTERIOR NAVIER-STOKES PROBLEM THAT IS NOT WELL-POSED

GIOVANNI P. GALDI

(Communicated by Walter Craig)

ABSTRACT. We prove that the exterior Navier-Stokes problem with zero velocity at infinity is not well-posed in homogeneous Sobolev spaces. This result complements and clarifies well-known previous results obtained by various authors.

1. Introduction

Let Ω be the complement of the closure of a bounded domain, Ω_0 , of \mathbb{R}^3 of class C^2 . The objective of this paper is to investigate the well-posedness of the following Navier-Stokes boundary value problem:

$$-\nu\Delta \boldsymbol{u} + \boldsymbol{u} \cdot \operatorname{grad} \boldsymbol{u} = -\operatorname{grad} p + \boldsymbol{f}
\operatorname{div} \boldsymbol{u} = 0 \quad \text{in } \Omega,$$

$$\boldsymbol{u} = \boldsymbol{0} \quad \text{at } \partial\Omega,$$

$$\lim_{|x| \to \infty} \boldsymbol{u}(x) = \boldsymbol{0},$$

in homogeneous Sobolev spaces. We recall that (1.1) governs the steady-state motion of a viscous liquid, \mathcal{L} , in the exterior of the "rigid obstacle" Ω_0 . In particular, \boldsymbol{u} and \boldsymbol{p} are velocity and pressure fields, respectively, and $\nu > 0$ is the (constant) kinematical viscosity of \mathcal{L} , while \boldsymbol{f} is the prescribed body force acting on \mathcal{L} .

In order to describe our results, we denote by $D_0^{1,q}(\Omega)$, $1 < q < \infty$, the homogeneous Sobolev space defined as the completion of smooth vector functions with compact support in Ω , $C_0^{\infty}(\Omega)$, in the Dirichlet norm $|\cdot|_{1,q} := \left(\int_{\Omega} |\mathrm{grad} \cdot|^q\right)^{1/q}$, and by $D_0^{-1,q'}(\Omega)$ its (strong) dual with corresponding norm $|\cdot|_{-1,q'}(q':=q/(q-1))$; see, e.g. [3, § II.5, § II.6]. We also indicate by $D_{0,\sigma}^{1,q}(\Omega)$ the subspace of $D_0^{1,q}(\Omega)$ of solenoidal functions, \boldsymbol{v} , namely, satisfying div $\boldsymbol{v}=0$ in Ω .

It is well known-basically, since the work of J. Leray [10]-that for each $\mathbf{f} \in D_0^{-1,2}(\Omega)$, (1.1) has at least one solution (in the sense of distributions) $\mathbf{u} \in D_{0,\sigma}^{1,2}(\Omega)$, with corresponding $p \in L^2(\omega)$, for an arbitrary bounded domain $\omega \subset \Omega$. Moreover,

Received by the editors January 9, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 76D05, 76D03; Secondary 76D07.

Key words and phrases. Navier-Stokes equations, exterior problem, homogeneous Sobolev spaces.

This work was supported in part by NSF Grant #DMS-0707281.

if f is sufficiently smooth and decays "fast enough" at large distances, then u belongs also to $D_{0,\sigma}^{1,q}(\Omega)$, for all q > 2 [13, 4].

The interesting question that has attracted the attention of several mathematicians is the solvability of (1.1) in the class of those $\boldsymbol{u} \in D_{0,\sigma}^{1,q}(\Omega) \cap D_{0,\sigma}^{1,2}(\Omega)$, when q < 2; see [5, 8, 2, 11, 9, 7]. The results proved in these papers are many-fold, and we would like to recall the most relevant. In the first place, because of the particular structure of the nonlinear term, $\boldsymbol{u} \cdot \operatorname{grad} \boldsymbol{u}$, one has to restrict to the case q = 3/2. Furthermore, if $\Omega = \mathbb{R}^3$ (namely, $\Omega_0 = \emptyset$), then under the assumption $\boldsymbol{f} \in D_0^{-1,3/2}(\mathbb{R}^3) \cap D_0^{-1,2}(\mathbb{R}^3)$ of "sufficiently small" magnitude, solutions do exist in the class where $\boldsymbol{u} \in D_{0,\sigma}^{1,3/2}(\mathbb{R}^3) \cap D_{0,\sigma}^{1,2}(\mathbb{R}^3)$. By the standard theory on representation of functionals on homogeneous Sobolev spaces [3, Theorem III.5.2], it then follows that $p \in L^{3/2}(\mathbb{R}^3) \cap L^2(\mathbb{R}^3)$. In addition, these solutions are also unique and depend continuously upon the data. On the other side, if $\Omega_0 \neq \emptyset$, we have that, under the assumption $\boldsymbol{f} \in D_0^{-1,3/2}(\Omega) \cap D_0^{-1,2}(\Omega) \equiv Y^*(\Omega)$, a solution $\boldsymbol{u} \in D_{0,\sigma}^{1,3/2}(\Omega) \cap D_{0,\sigma}^{1,2}(\Omega) \equiv X_1(\Omega)$, with associated $p \in L^{3/2}(\Omega) \cap L^2(\Omega) \equiv X_2(\Omega)$, can exist only if \boldsymbol{u} , p and \boldsymbol{f} satisfy the nonlocal compatibility condition

(1.2)
$$\mathbf{0} = \int_{\partial\Omega} [\nu(\operatorname{grad} \boldsymbol{u} + (\operatorname{grad} \boldsymbol{u})^{\top}) - p\boldsymbol{I}] \cdot \boldsymbol{n} + \int_{\partial\Omega} \boldsymbol{F} \cdot \boldsymbol{n} \equiv -\mathfrak{F}_1 - \mathfrak{F}_2,$$

in a distributional sense. In this equation, $^{\top}$ denotes transpose, I is the identity matrix, n is the unit outer normal to $\partial\Omega$, and div F=f.

The objective of this paper is to show that, in fact, if $\Omega_0 \neq \emptyset$, problem (1.1) is not well-posed in the space $X(\Omega) \equiv X_1(\Omega) \times X_2(\Omega)$. More precisely, we prove that if, for a certain $\overline{f} \in Y^*(\Omega)$, (1.1) has a solution $\{\overline{u}, \overline{p}\} \in X(\Omega)$, then in any arbitrary Y^* -neighborhood of \overline{f} we can find a "body force" f such that problem (1.1) has no solution $\{u, p\} \in X(\Omega)$; see Theorem 3.1. We obtain this result by using classical properties of nonlinear Fredholm maps with negative index, due to S. Smale [12], that we recall in the following section.

The physical interpretation of our result goes as follows. Because of $(1.1)_4$, the obstacle Ω_0 is at rest. This implies that the total force, \mathfrak{F} , acting on Ω_0 must vanish. In general, \mathfrak{F} is the sum of three contributions: \mathfrak{F}_1 , due to the action of the liquid; \mathfrak{F}_2 , due to the body force acting on the liquid, and \mathfrak{F}_3 , representing the external force directly applied to Ω_0 . Clearly, for any \mathfrak{F}_1 and \mathfrak{F}_2 , we can always find \mathfrak{F}_3 such that $\mathfrak{F}_1 + \mathfrak{F}_2 + \mathfrak{F}_3 = \mathbf{0}$, so that Ω_0 is "kept in place". However, condition (1.2) tells us that, in the class $X(\Omega)$, \mathfrak{F}_3 is necessarily zero and, consequently, the obstacle Ω_0 must be kept in place only by the contribution due to the body force, \mathbf{f} , acting on the liquid. Our result then states that forces \mathbf{f} for which this happens are "rare". Notice that, of course, the case $\Omega_0 = \emptyset$ does not present such a problem.

In conclusion, we wish to mention that, as shown in [6, 7], problem (1.1) is well-posed (for "small" \mathbf{f}) in appropriate function spaces other than $X(\Omega)$, where condition (1.2) does not necessarily hold.

2. Some preliminary results

In this section we recall some standard properties of nonlinear Fredholm maps. Let X and Z be separable Banach spaces, with norms $\|\cdot\|_X$ and $\|\cdot\|_Z$, respectively, and let M be a map defined on the whole X with range $\mathsf{R}(M) \subset Z$. For $z \in Z$, we put $\sigma_M(z) = \{x \in X : M(x) = z\}$ (the solution set of the map M at z) and $\mathsf{N}(M) := \{x \in X : M(x) = 0\}$ (the null set of the map M). Furthermore, we shall

write $M \in C^k(X, Z)$, k a nonnegative integer, if, at each $x \in X$, M has continuous derivatives, in the sense of Fréchet, up to the order k included. The derivative of M at x is denoted by M'(x).

A map $M \in C^1(X, Z)$ is said to be *Fredholm* if and only if the integers $\alpha := \dim \mathbb{N}[M'(x)]$ and $\beta := \operatorname{codim} \mathbb{R}[M'(x)]$ are both finite. The integer $\operatorname{ind}(M) := \alpha - \beta$ is then independent of the particular $x \in X$ [14, §5.15] and is called the *index* of M.

For a given $M \in C^1(X, Z)$, a point $x \in X$ is a regular point iff M'(x) is surjective. A point $z \in Z$ is called a regular value iff either $\sigma_M(z) = \emptyset$ or $\sigma_M(z)$ is constituted only by regular points.

The following well-known result is due to Smale [12].

Lemma 2.1. Let $M \in C^k(X, Z)$ be a Fredholm map with $k > \max\{\operatorname{ind}(M), 0\}$. Then, the set of regular values of M, \Re , is dense in Z. More specifically, $Z - \Re$ is of Baire first category.

An immediate, and fundamental to our aims, consequence of Lemma 2.1 is given by the following corollary, whose simple proof we include for the reader's convenience.

Corollary 2.1. Suppose M satisfies the assumption of Lemma 2.1 and that, for some $\overline{z} \in Z$, $\sigma_M(\overline{z}) \neq \emptyset$. Then, if $\operatorname{ind}(M) < 0$, the problem M(x) = z is not well-posed, in the sense that the solution x cannot depend continuously on the data z. Precisely, for any $\varepsilon > 0$, we can find $z \in Z$ such that $||z - \overline{z}||_Z < \varepsilon$ and the equation M(x) = z has no solution.

Proof. For the given ε , by Lemma 2.1 we may choose z to be a regular value. Now, if we suppose, by contradiction, $\sigma_M(z) \neq \emptyset$, we would have that M'(x) is surjective, for all $x \in \sigma_M(z)$, which would imply ind $(M) = \dim \mathsf{N}[M'(x)] \geq 0$, in contrast with the assumption.

An equivalent way of phrasing Corollary 2.1 is that, under the stated assumptions on M, the interior of $\mathsf{R}(M)$ is empty.

3. Application to the exterior Navier-Stokes problem

We begin to rewrite (1.1) as a nonlinear equation in a suitable Banach space. We set $Y=Y(\Omega):=D_0^{1,3}(\Omega)+D_0^{1,2}(\Omega)$ equipped with the norm

$$\|\boldsymbol{\varphi}\|_{Y} := \inf \left\{ |\boldsymbol{\varphi}_{1}|_{1,3} + |\boldsymbol{\varphi}_{2}|_{1,2} : \boldsymbol{\varphi} = \boldsymbol{\varphi}_{1} + \boldsymbol{\varphi}_{2} \,, \,\, \boldsymbol{\varphi}_{1} \in D_{0}^{1,3}(\Omega) \,, \boldsymbol{\varphi}_{2} \in D_{0}^{1,2}(\Omega) \right\}.$$

Since both $D_0^{1,3}(\Omega)$ and $D_0^{1,2}(\Omega)$ are reflexive, it follows that for any $\varphi \in Y$ there exist $\varphi_1 \in D_0^{1,3}(\Omega)$ and $\varphi_2 \in D_0^{1,2}(\Omega)$ such that

(3.1)
$$\|\varphi\|_{Y} = |\varphi_{1}|_{1,3} + |\varphi_{2}|_{1,2}.$$

Also, since $\{\varphi \in C_0^\infty(\Omega) : \operatorname{div} \varphi = 0\}$ is dense in $D_0^{1,3}(\Omega) \cap D_0^{1,2}(\Omega)$ [3, Exercise III.6.2], we have that the (strong) dual, Y^* , of Y can be isomorphically represented as $Y^* = D_0^{-1,3/2}(\Omega) \cap D_0^{-1,2}(\Omega)$ with associated norm $\|\cdot\|_{Y^*} := |\cdot|_{-1,3/2} + |\cdot|_{-1,2}$; see [1]. Moreover, Y^* is separable [3, Exercise II.5.1].

If we now multiply, formally, $(1.1)_1$ by $\varphi \in Y$ and integrate by parts over Ω , we find:

(3.2)
$$\nu(\operatorname{grad} \boldsymbol{u}, \operatorname{grad} \boldsymbol{\varphi}) - (p, \operatorname{div} \boldsymbol{\varphi}) - (\boldsymbol{u} \cdot \operatorname{grad} \boldsymbol{\varphi}, \boldsymbol{u}) = \langle \boldsymbol{f}, \boldsymbol{\varphi} \rangle,$$

where (\cdot, \cdot) and $\langle \cdot, \cdot \rangle$ represent the L^2 -scalar product and duality pairing between Y^* and Y, respectively. Set

$$X_1 = X_1(\Omega) := D_{0,\sigma}^{1,3/2}(\Omega) \cap D_{0,\sigma}^{1,2}(\Omega), \quad \|\cdot\|_{X_1} := |\cdot|_{1,3/2} + |\cdot|_{1,2}$$

$$X_2 = X_2(\Omega) := L^{3/2}(\Omega) \cap L^2(\Omega), \quad \|\cdot\|_{X_2} := \|\cdot\|_{3/2} + \|\cdot\|_2$$

$$X = X(\Omega) := X_1 \times X_2, \quad \|\{\boldsymbol{u}, p\}\|_{X} := \|\boldsymbol{u}\|_{X_1} + \|p\|_{X_2}.$$

The space X is separable [3, Exercise II.5.1]. Because of the continuous embeddings

(3.3)
$$D_{0,\sigma}^{1,3/2}(\Omega) \subset L^3(\Omega), \ D_{0,\sigma}^{1,2}(\Omega) \subset L^6(\Omega)$$

(see [3, Theorem II.5.1]), it is immediately checked (by the Hölder inequality) that, for any $\{u,p\} \in X$, the left-hand side of (3.2) defines two linear functionals, $\mathbf{A}(u,p)$ (Stokes operator) and $\mathbf{M}(u)$, on Y as follows: (3.4)

$$\langle A(u, p), \varphi \rangle := \nu(\operatorname{grad} u, \operatorname{grad} \varphi) - (p, \operatorname{div} \varphi), \quad \langle M(u), \varphi \rangle := -(u \cdot \operatorname{grad} \varphi, u).$$

Therefore, (3.2) can be rewritten in the following operator equation form:

$$N(\boldsymbol{u}, p) = \boldsymbol{f} \text{ in } Y^*,$$

where the map N is defined as

$$N: \{u, p\} \in X \mapsto A(u, p) + M(u) \in Y^*$$
.

Set
$$B_a(y) := \{ f \in Y^* : ||f - y||_{Y^*} < a \}, a > 0$$
. We have the following.

Theorem 3.1. Let $\Omega_0 \neq \emptyset$. Assume that (3.5) has a solution $\{\overline{\boldsymbol{u}}, \overline{p}\} \in X$ corresponding to some $\overline{\boldsymbol{f}} \in Y^*$. Then, for any $\varepsilon > 0$, there exists $\boldsymbol{f} \in B_{\varepsilon}(\overline{\boldsymbol{f}})$ such that (3.5) does not have a solution.

Proof. In view of Corollary 2.1, it suffices to show that N is a Fredholm map of negative index. In order to reach this goal, we begin to observe that $N \in C^1(X, Y)$ and that

$$[\mathbf{N}'(\mathbf{u}, p)](\mathbf{w}, \tau) = \mathbf{A}(\mathbf{w}, \tau) + [\mathbf{M}'(\mathbf{u})](\mathbf{w}),$$

where

(3.6)
$$\langle [\mathbf{M}'(\mathbf{u})](\mathbf{w}), \varphi \rangle = -(\mathbf{u} \cdot \operatorname{grad} \varphi, \mathbf{w}) - (\mathbf{w} \cdot \operatorname{grad} \varphi, \mathbf{u}), \quad \varphi \in Y.$$

(The proof of these properties is completely standard, and, therefore, it will be omitted.) We prove, next, that M'(u) is compact at each $u \in X_1$. Let $\{w_m\}$ be a sequence in X_1 such that

$$||\boldsymbol{w}_m||_{X_1} \leq M_1,$$

where M_1 is independent of the integer m. Since $D_{0,\sigma}^{1,3/2}(\Omega)$ and $D_{0,\sigma}^{1,2}(\Omega)$ are reflexive, we can select a subsequence (again denoted by $\{\boldsymbol{w}_m\}$) and find $\boldsymbol{w} \in X_1$ such that

(3.8)
$$\boldsymbol{w}_m \to \boldsymbol{w}$$
 weakly in $D_{0,\sigma}^{1,3/2}(\Omega)$ and in $D_{0,\sigma}^{1,2}(\Omega)$.

From (3.6) we find that

(3.9)
$$\langle [\mathbf{M}'(\mathbf{u})](\mathbf{v}_m), \boldsymbol{\varphi} \rangle = -(\mathbf{u} \cdot \operatorname{grad} \boldsymbol{\varphi}, \mathbf{v}_m) - (\mathbf{v}_m \cdot \operatorname{grad} \boldsymbol{\varphi}, \mathbf{u}), \quad \boldsymbol{\varphi} \in Y,$$

where $\boldsymbol{v}_m := \boldsymbol{w} - \boldsymbol{w}_m$. For sufficiently large R > 0, we set $\Omega_R = \Omega \cap \{|x| < R\}$, $\Omega^R = \Omega \cap \{|x| > R\}$ and denote by $\|\cdot\|_{r,A}$ the $L^r(A)$ -norm. Recalling that

 $\varphi=\varphi_1+\varphi_2$, where $\varphi_i,\,i=1,2$, satisfy (3.1), with the help of the Hölder inequality we find

$$(3.10) \begin{aligned} |(\boldsymbol{u} \cdot \operatorname{grad} \boldsymbol{\varphi}_{1}, \boldsymbol{v}_{m})| &\leq \|\boldsymbol{u}\|_{3} \|\boldsymbol{v}_{m}\|_{3,\Omega_{R}} |\boldsymbol{\varphi}_{1}|_{1,3} + \|\boldsymbol{u}\|_{3,\Omega^{R}} \|\boldsymbol{v}_{m}\|_{3,\Omega^{R}} |\boldsymbol{\varphi}_{1}|_{1,3} \\ &\leq \left(\|\boldsymbol{u}\|_{3} \|\boldsymbol{v}_{m}\|_{3,\Omega_{R}} + M \|\boldsymbol{u}\|_{3,\Omega^{R}}\right) \|\boldsymbol{\varphi}\|_{Y}, \\ |(\boldsymbol{u} \cdot \operatorname{grad} \boldsymbol{\varphi}_{2}, \boldsymbol{v}_{m})| &\leq \|\boldsymbol{u}\|_{6} \|\boldsymbol{v}_{m}\|_{3,\Omega_{R}} |\boldsymbol{\varphi}_{2}|_{1,2} + \|\boldsymbol{u}\|_{6,\Omega^{R}} \|\boldsymbol{v}_{m}\|_{3,\Omega^{R}} |\boldsymbol{\varphi}_{2}|_{1,2} \\ &\leq \left(\|\boldsymbol{u}\|_{6} \|\boldsymbol{v}_{m}\|_{3,\Omega_{R}} + M_{2} \|\boldsymbol{u}\|_{6,\Omega^{R}}\right) \|\boldsymbol{\varphi}\|_{Y}, \end{aligned}$$

where M_2 denotes an upper bound for $\|\boldsymbol{v}_m\|_X$. Set $M_3 = \max\{\|\boldsymbol{u}\|_3, \|\boldsymbol{u}\|_6, M_2\}$. Collecting (3.9) and (3.10), we thus obtain

$$(3.11) ||[\boldsymbol{M}'(\boldsymbol{u})](\boldsymbol{v}_m)||_{Y^*} \leq M_3 \left(||\boldsymbol{v}_m||_{3,\Omega_R} + ||\boldsymbol{u}||_{3,\Omega^R} + ||\boldsymbol{u}||_{6,\Omega^R}\right).$$

We now let $m \to \infty$ in (3.11). By (3.3), we find that X_1 continuously embeds in the Sobolev space $W^{1,2}(\Omega_R)$, for all R > 0. Thus, by (3.7), by (3.8) and by the Rellich theorem, the first term on the right-hand side of (3.11) tends to zero as $m' \to \infty$, for some $\{m'\} \subset \{m\}$. Successively, we let $R \to \infty$, which, again with the help of (3.3), causes the second and the third term to go to zero as well. We thus deduce $\|[\mathbf{M}'(\mathbf{u})](\mathbf{v}_{m'})\|_{Y^*} \to 0$ as $m' \to \infty$, for each fixed $\mathbf{u} \in X_1$, which completes the proof of the compactness of the operator $\mathbf{M}'(\mathbf{u})$. Our next and final objective is to show that the linear operator $\mathbf{A}: \{\mathbf{u}, p\} \in X \mapsto \mathbf{A}(\mathbf{u}, p) \in Y^*$ defined in (3.4) is Fredholm and that $\mathrm{ind}(\mathbf{A}) = -3$; after that, from the definition of a Fredholm map and from the fact that the index of a (linear) Fredholm operator is left invariant by a compact perturbation [14, Theorem 5.E], we find $\mathrm{ind}(\mathbf{N}) = -3$. Clearly, the operator \mathbf{A} is graph-closed. Moreover, from [3, p. 282 and Theorem V.5.1] it follows that

(3.12)
$$N(\mathbf{A}) = \{\mathbf{0}\}, \quad R(\mathbf{A}) = \{\mathbf{f} \in Y^* : \langle \mathbf{f}, \mathbf{h}^{(i)} \rangle = 0, i = 1, 2, 3\},$$

where $\mathbf{h}_i \in D_{0,\sigma}^{1,3}(\Omega)$ ($\subset Y$), i = 1, 2, 3, are three independent functions. It is now easy to show that there exist three independent elements of Y^* , \mathbf{l}_k , k = 1, 2, 3, such that, denoting by S their linear span, we have

$$(3.13) Y^* = \mathsf{R}(\mathbf{A}) \oplus \mathsf{S}.$$

Since dim(S) = 3, from (3.12) we then find ind(\mathbf{A}) = dim[N(\mathbf{A})] - codim[R(\mathbf{A})] = -3. In order to prove (3.13), let L_k , k = 1, 2, 3, be the vector spaces generated by { $\mathbf{h}^{(2)}, \mathbf{h}^{(3)}$ }, { $\mathbf{h}^{(1)}, \mathbf{h}^{(3)}$ } and { $\mathbf{h}^{(1)}, \mathbf{h}^{(2)}$ }, respectively. Set $d_k := \inf_{\mathbf{h} \in L_k} ||\mathbf{h}^{(k)} - \mathbf{h}||_Y$ (> 0). From a corollary to the Hahn-Banach theorem (see, e.g., [14, Proposition I.2.3]) we know that there exists $\mathbf{l}_k \in Y^*$ such that

(3.14)
$$\|\boldsymbol{l}_{k}\|_{Y^{*}} = d_{k}^{-1}, \ \langle \boldsymbol{l}_{k}, \boldsymbol{h}^{(j)} \rangle = \delta_{kj}.$$

We claim the validity of (3.13), where S is the vector space generated by $\{l_1, l_2, l_3\}$. In fact, obviously, $R(A) \cap S = \emptyset$. Furthermore, for any $f \in Y^*$ we have, with the help of (3.14), that

$$oldsymbol{f} - \sum_{k=1}^3 \langle oldsymbol{f}, oldsymbol{h}^{(k)}
angle oldsymbol{l}_k \in \mathsf{R}(oldsymbol{A})$$

and (3.13) follows.

Remark 3.1. The assumption, in Theorem 3.1, that $\Omega_0 \neq \emptyset$ is crucial. In fact, if $\Omega = \mathbb{R}^3$, then ind $(\mathbf{A}) = 0$ [3, Theorem IV.2.2], and so, by the same argument used

in the proof of Theorem 3.1, we can show that ind (N) = 0. This is consistent with the results of [8] that prove (local) well-posedness of problem (1.1) in the space $D_{0,\sigma}^{1,3/2}(\mathbb{R}^3) \cap D_{0,\sigma}^{1,2}(\mathbb{R}^3)$.

References

- N. Aronszajn and E. Gagliardo, Interpolation Spaces and Interpolation Methods, Ann. Mat. Pura Appl., 68, 1965, 51–117. MR0226361 (37:1951)
- W. Borchers and T. Miyakawa, On Stability of Exterior Stationary Navier-Stokes Flows, Acta Math., 174, 1995, 311–382. MR1351321 (96j:35186)
- 3. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems. Springer Tracts in Natural Philosophy, vol. 38. Springer-Verlag, New York, 1998 (Revised Edition). MR1284205 (95i:35216a)
- G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems. Springer Tracts in Natural Philosophy, vol. 39. Springer-Verlag, New York, 1998 (Revised Edition). MR1284206 (95i:35216b)
- G. P. Galdi and M. Padula, Existence of Steady Incompressible Flows Past an Obstacle, Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics, RIMS Kokyuroku, Kyoto, vol. 745, 1991, 87–101.
- G. P. Galdi and C.G. Simader, New Estimates for the Steady-State Stokes Problem in Exterior Domains with Applications to the Navier-Stokes Problem, Differential Integral Equations, 7, 1994, 847–861. MR1270107 (95c:35192)
- H. Kozono and M. Yamazaki, Exterior Problem for the Stationary Navier-Stokes Equations in the Lorentz Space, Math. Ann., 310, 1998, 279–305. MR1602012 (98m:35159)
- 8. H. Kozono and H. Sohr, On Stationary Navier-Stokes Equations in Unbounded Domains, Ricerche Mat., 42, 1993, 69–86. MR1283806 (95d:35128)
- H. Kozono, H. Sohr, and M. Yamazaki, Representation Formula, Net Force and Energy Relation to the Stationary Navier-Stokes Equations in 3-Dimensional Exterior Domains, Kyushu J. Math., 51, 1997, 239–260. MR1437320 (98g:35163)
- J. Leray, Étude de Diverses Équations Intégrales non Linéaires et de Quelques Problèmes que Pose l'Hydrodynamique, J. Math. Pures Appl., 12, 1933, 1–82.
- T. Miyakawa, On Uniqueness of Steady Navier-Stokes Flows in an Exterior Domain, Adv. Math. Sci. Appl., 5, 1995, 411–420. MR1360998 (97f:35164)
- S. Smale, An Infinite Dimensional Version of Sard's Theorem, Amer. J. Math., 87, 1965, 861–866. MR0185604 (32:3067)
- 13. H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2001. MR1928881 (2004b:35265)
- E. Zeidler, Applied Functional Analysis: Main Principles and Their Applications, Applied Math. Sci., vol. 109, Springer-Verlag, 1995. MR1347692 (96i:00006)

DEPARTMENT OF MECHANICAL ENGINEERING AND MATERIALS SCIENCE, UNIVERSITY OF PITTS-BURGH, PITTSBURGH, PENNSYLVANIA 15261

E-mail address: galdi@engr.pitt.edu