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INCOMPARABLE PRIME IDEALS
IN COMMUTATIVE RADICAL FRÉCHET ALGEBRAS

HUNG LE PHAM

(Communicated by Nigel J. Kalton)

Abstract. Let R be a commutative radical Fréchet algebra having a non-
nilpotent element a with a ∈ Ra. Then R contains a continuum of incompa-
rable prime ideals.

In [3], J. Esterle proved the following result; it is a main ingredient in his proof
that epimorphisms from C0(Ω) onto Banach algebras are continuous.

Theorem (Esterle). Let R be a commutative radical Banach algebra. Suppose that
there exists a non-nilpotent element a ∈ R with a ∈ Ra. Then the set of prime
ideals in R, ordered by inclusion, does not form a chain.

Thus, each algebra R as in the theorem contains at least two prime ideals which
are incomparable. In [1], Bouloussa extended the result to commutative radical
Fréchet algebras. In this paper, we shall extend this by producing a continuum
of pairwise incomparable prime ideals. This will be proved as a consequence of a
result on ideals in (not necessarily commutative) radical Fréchet algebras and the
existence of a continuum of “almost disjoint” subsets of N due to Sierpinski.

1. Preliminaries

More details of the following can be found, for example, in [2].
A Fréchet algebra is a topological algebra A whose topology is determined by a

sequence of algebra seminorms (pn) such that

d(a, b) =
∞∑

n=1

min {pn(a − b), 1}
2n

(a, b ∈ A)

is a complete metric.
Let A be an algebra. Denote by A# the conditional unitization of A: adjoining

an identity in the case where A is non-unital.
Let S be a subset of an algebra A. For n ∈ N, denote by Sn the linear span of

{a1 · · · an : ai ∈ S} (and A(n) the n-fold Cartesian product of A).
For clarity, we shall use boldface characters to denote tuples of elements; for

example, we set
x = (x1, . . . , xm) or y = (y1, . . . , yn) .
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2. A continuum of incomparable prime ideals

Lemma 1. Let R be a radical Fréchet algebra. Let m, n ∈ N, and let (k1, . . . , kn) ⊂
N. Let I be a left ideal in R satisfying that I(m) = R · I(m). Suppose that p is a
continuous algebra seminorm on R such that I2k−1 �⊂ ker p, where k = k1+ · · ·+kn.
Then, for each function φ : R → R

+, the set of all (x, y) ∈ I(m) × I(n) satisfying
m∑

i=1

φ(vxi) < p(vyk1
1 · · · ykn

n ),

for some v ∈ R#, is dense in I(m+n).

Proof. Denote by U the set under consideration. First, let (a, b) be arbitrary in
I(m+n) with a ∈ R · I(m) and p(bk1

1 · · · bkn
n ) �= 0. Let a′ = (a′

1, . . . , a
′
m) ∈ I(m) and

c ∈ R such that c ·a′ = a. Since p(bk1
1 · · · bkn

n ) �= 0, we see that (cf. [1, Lemme 1.1]),
for each r ∈ N, there exists λr ∈ C such that

0 < |λr| <
1
r

and that p((λr + c)−1bk1
1 · · · bkn

n ) >
m∑

i=1

φ(a′
i).

Set vr = λr + c ∈ R# and xr = vr · a′ ∈ I(m). Then
m∑

i=1

φ(v−1
r xr,i) =

m∑
i=1

φ(a′
i) < p(v−1

r bk1
1 · · · bkn

n ),

so that (xr, b) ∈ U (r ∈ N). We have lim xr = a, so (a, b) ∈ U .
The set {

b ∈ I(n) : p(bk1
1 · · · bkn

n ) �= 0
}

must be dense in I(n). For otherwise, there exist open subsets Bi of I (1 ≤ i ≤ n)
such that p(bk1

1 · · · bkn
n ) = 0 whenever (b1, . . . , bn) ∈

∏n
i=1 Bi. Then we see that

p(bk) = 0 whenever b ∈ I. It then follows from Nagata-Higman’s theorem (see, for
example, [2, Theorem 1.3.33]) that I2k−1 ⊂ ker p , contradicting the hypothesis.

Hence U is dense in I(m+n) as claimed. �

The following theorem extends [1, Theorem 1.2]; in the commutative case, it is
possible to extend the proof in [1] to yield the same result.

Theorem 2. Let R be a radical Fréchet algebra. Suppose that there exists a non-
nilpotent element a ∈ R such that a ∈ Ra. Then there exists a sequence (an) in R
such that Ran = Ra (n ∈ N) and such that, for each Fréchet algebra A containing
R as a topological subalgebra,

ak1
j1

· · · akn
jn

/∈ ai1A + ... + aim
A

for every finite sequences i = (i1, . . . , im), j = (j1, . . . , jn), and k = (k1, . . . , kn) in
N such that i and j are disjoint.

Proof. Set I = Ra. We see that 0 �= am ∈ Im and

I(m) = R · I(m) (m ∈ N).

For each k ∈ N, fix a continuous algebra seminorm qk of R such that

I2k−1 �⊂ ker qk.
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Without loss of generality, we can assume that (qk) is an increasing sequence of
seminorms defining the topology of R. Denote by Ω the product space IN; its
topology is defined by a complete metric.

Let d be any complete metric defining the topology of R. For each n ∈ N, set
Vn = {x ∈ I : d(a, vx) < 1/n for some v ∈ R}. Then Vn is an open subset of I.
We see that a ∈ Vn, and Vn is closed under multiplication on the left by elements
in R# \ R. Hence, Vn is dense in Ra = I.

For each m, n ∈ N, set

Vn,m = {(xr) ∈ Ω : xr ∈ Vn (1 ≤ r ≤ m)} .

From the previous paragraph, we see that Vn,m is an open dense subset of Ω.
For each s = (l, i, j, k) in N×Nm ×Nn ×Nn, with i and j being disjoint, let Us

be the set of all (xr) ∈ Ω with the property that

l2
m∑

t=1

ql(vxit
) < qk(vxk1

j1
. . . xkn

jn
)

for some v ∈ R#, where k = k1 + . . . + kn. By Lemma 1, this is a dense (open)
subset of Ω.

By the Baire category theorem, there exists (ar) belonging to all Us and Vn,m

above. Since (ar) ∈ Vn,m (n, m ∈ N), it follows that a ∈ Rar, and so Ra = Rar

(r ∈ N).
Let A be a Fréchet algebra containing R as a topological subalgebra. Let m, n ∈

N, and let i = (i1, . . . , im), j = (j1, . . . , jn), and k = (k1, . . . , kn) be finite sequences
in N such that i and j are disjoint. It remains to prove that

ak1
j1

· · · akn
jn

/∈ ai1A + ... + aim
A.

Indeed, assume toward a contradiction that ak1
j1

· · · akn
jn

= ai1c1 + ... + aim
cm for

some cr ∈ A. Set k = k1 + . . .+kn. The previous paragraph shows that there exists
an element vl ∈ R# such that

m∑
t=1

ql(vlait
) <

1
l

and qk(vla
k1
j1

. . . akn
jn

) > l (l ∈ N).

We then see that liml→∞ vlait
= 0, so liml→∞ vl

∑m
t=1 ait

ct = 0, but (vla
k1
j1

. . . akn
jn

:
l ∈ N) can never converge in R (and hence can never converge to 0 in A), a
contradiction. �

We now present the construction due to Sierpinski of a family {Eα : α ∈ c} of
infinite subsets of N satisfying the following properties (cf. [6]):

(i) N =
⋃

α∈c
Eα, and

(ii) Eα ∩ Eβ is finite for each α �= β ∈ c.
The set N is isomorphic to

C =
∞⋃

n=1

{f : {1, . . . , n} → {1, 2}} .

For each f : N → {1, 2}, define

Cf = {the restrictions of f to {1, . . . , n} : (n ∈ N)} .
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We see that C =
⋃

f :N→{1,2} Cf and that Cf ∩ Cg is finite for each f �= g. We can
then map back from C to N.

Corollary 3. Let R be a commutative radical Fréchet algebra. Suppose that there
exists a non-nilpotent element a ∈ R such that a ∈ Ra. Then there exists a family
of prime ideals (Pα : α ∈ c) in R such that Pα �⊂ Pβ (α �= β ∈ c).

Proof. Let (an) be a sequence in R as specified in the theorem. We then see that,
for each E ⊂ N, there exists a prime ideal QE in R such that ai ∈ QE (i ∈ E) but
aj /∈ QE (j /∈ E). Set Pα = QEα

(α ∈ c), where (Eα : α ∈ c) is the Sierpinski
family of subsets of N constructed in the previous paragraph. Then (Pα) is the
desired collection of prime ideals in R. �
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