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INTERSECTION OF DILATES OF SHIFT-INVARIANT SPACES

MARCIN BOWNIK

(Communicated by Michael T. Lacey)

Abstract. We prove that if the dimension function of a shift-invariant space
V is not constantly ∞, then the intersection of (negative) dilates of V must
be trivial. We also give an example of two refinable shift-invariant spaces
with identical spectral functions such that this intersection is either trivial or
non-trivial.

1. Introduction

A fundamental concept in the theory of wavelets is the notion of a multiresolu-
tion analysis (MRA) formulated by Mallat [14]. An MRA is a sequence of closed
subspaces {Vj}j∈Z of L2(R) satisfying

Vj ⊂ Vj+1 for j ∈ Z,(1.1)

f ∈ Vj ⇐⇒ f(2·) ∈ Vj+1 for j ∈ Z,(1.2) ⋂
j∈Z

Vj = {0},(1.3)

⋃
j∈Z

Vj = L2(R),(1.4)

∃ϕ ∈ V0 such that {ϕ(· − k)}k∈Z is an orthonormal basis of V0.(1.5)

The condition (1.5) on the existence of a scaling function ϕ is often relaxed by the
requirement that V0 be shift-invariant (SI), i.e.,

(1.6) TkV0 = V0 for all k ∈ Z,

where Tkf(x) = f(x − k). In this case, one obtains a concept of a generalized
multiresolution analysis (GMRA) developed by Baggett, Medina, and Merrill [3].

It is well known that every MRA gives rise to a wavelet; see [13, Proposi-
tion II.2.13]. Conversely, any mildly regular wavelet ψ is associated with an MRA
by a result of Auscher [1], i.e., that the spaces

(1.7) Vj = span{ψi,k : i < j, k ∈ Z}, where ψi,k(x) = 2i/2ψ(2ix − k),
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form an MRA. Moreover, a general orthonormal wavelet ψ is always associated
with a GMRA. Furthermore, the class of GMRAs giving rise to a wavelet was
characterized in [3] in terms of a consistency equation.

Once we consider a larger class of Parseval wavelets the situation becomes more
complex. Recall that ψ ∈ L2(R) is a Parseval wavelet if

||f ||2 =
∑

j,k∈Z

|〈f, ψj,k〉|2 for all f ∈ L2(R).

An unresolved problem of Baggett asks whether every Parseval wavelet is associated
with a GMRA. For the current state of this problem we refer to [8]. Here, we only
remark that the spaces (1.7) are known to satisfy all properties of a GMRA with
the hypothetical exception of (1.3). In fact, the intersection property (1.3) could
fail spectacularly for non-tight frame wavelets; see [10]. The goal of this paper is
to give a natural sufficient condition for (1.3) to hold.

Suppose that V is an SI space. We say that V is refinable if V ⊂ D(V ), i.e., if
(1.1) and (1.2) hold for Vj = Dj(V ). Here, D is the dyadic dilation operator given
by Df(x) =

√
2f(2x). If V is refinable, then the intersection property (1.3) can be

written as

(1.8)
0⋂

j=−∞
Dj(V ) = {0}.

It was proved in [13, Theorem II.1.6] that if V is singly generated, then (1.8) holds.
For a shift-invariant space singly generated by ϕ ∈ L2(R), its dimension function
is the characteristic function of the union of integer translates of the support of
ϕ̂. Since a general shift-invariant space V is an orthogonal sum of singly generated
spaces, one can extend the notion of dimension function using its additivity on such
sums. Rzeszotnik [15] proved that (1.8) holds if the dimension function dimV of V
is locally integrable. The main result of this paper shows that (1.8) holds if merely
dimV is not constantly ∞.

A similar result for a non-stationary sequence of PSI spaces {V (j)}j∈N (each
space has 1 generator) is due to de Boor, DeVore, and Ron [4]. Indeed, by [4,
Theorem 4.9] the intersection

⋂
j∈Z

Dj(V (j)) is at most 1-dimensional. In the case
when each space V (j) has L generators, the intersection has dimension ≤ L; see [7,
Theorem 3.5].

Despite that our work is motivated by the classical setting of dyadic dilations,
our main result holds for much more general sequences of dilations.

Theorem 1.1. Suppose V ⊂ L2(Rn) is an SI space such that dimV is not identi-
cally ∞ a.e. Let {Aj}j∈N be a sequence of invertible n × n matrices such that

(1.9) ||Aj || → 0 as j → ∞.

Then,

(1.10)
∞⋂

j=1

Dj(V ) = {0}, where Djf(x) = f(Ajx).

The paper is organized as follows. In the next section we state necessary results
about the spectral function of SI spaces and give the proof of Theorem 1.1. In the
last section we give examples of two SI spaces illustrating subtleties when dealing
with the intersection property (1.8).
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2. Preliminaries and the proof of the main result

We start by recalling some rudimentary facts about SI spaces.

Definition 2.1. We say that a closed subspace V ⊂ L2(Rn) is shift-invariant (SI)
if TkV ⊂ V for all k ∈ Z

n. Suppose that A ⊂ L2(Rn) is countable. The SI space
generated by A is

S(A) = span{Tkϕ : ϕ ∈ A, k ∈ Z
n}.

In the case when A consists of a single function ϕ ∈ L2(Rn), we say that S(A) =
S(ϕ) is a principal shift-invariant (PSI) space.

We will need the following fact about PSI spaces; see [5].

Lemma 2.1. Suppose V = S(ϕ) is a PSI space. Then, f ∈ V if and only if
f ∈ L2(Rn) and

f̂(ξ) = mf (ξ)ϕ̂(ξ) for a.e. ξ ∈ R
n,

for some Z
n-periodic measurable function mf . Here, the Fourier transform is de-

fined by

f̂(ξ) =
∫

Rn

f(x)e−2πi〈x,ξ〉 dx.

The dimension function of an SI space V = S(A) is a mapping dimV : R
n →

N ∪ {0,∞} defined as

dimV (ξ) = dimJ(ξ), where J(ξ) = span{T ϕ(ξ) : ϕ ∈ A}.
Here, T is a fiberization map given by

T f(ξ) = (f̂(ξ + k))k∈Zn .

The operator T is an isometric isomorphism between L2(Rn) and the vector-
valued space L2(Tn, �2(Zn)), where T

n is identified with its fundamental domain
In = [−1/2, 1/2)n. The fact that the definition of dimV is independent of the choice
of generators A follows from the characterization of SI spaces in terms of range func-
tions, see [4, 6], which can be traced back to the work of Helson [12]. Alternatively,
dimV can be defined as the multiplicity function of the projection-valued measure
coming from the representation of Z

n on V via translations by Stone’s Theorem
[2, 3].

More interestingly for us, the dimension function can also be expressed in terms
of the spectral function introduced by Rzeszotnik and the author [9]. The same
object was unknowingly rediscovered by Gu and Han under the name “modular
function” in [11]. While there exist several equivalent ways of defining the spectral
function of an SI space V , the following result may also serve as a definition; see
[9, Proposition 2.2].

Theorem 2.1. Let S be the set of all SI subspaces of L2(Rn). Then, the spectral
function σV of V ∈ S is determined as the unique mapping

σ : S → L∞(Rn),

such that:
1. σ is additive with respect to the orthogonal sums, i.e.,

V =
⊕
i∈N

Vi for some Vi ∈ S =⇒ σV =
∑
i∈N

σVi
;
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2. if V = S(ϕ) is a principal SI space, then

σV (ξ) =

{
|ϕ̂(ξ)|2(

∑
k∈Zn |ϕ̂(ξ + k)|2)−1 for ξ ∈ supp ϕ̂,

0 otherwise.

Since every SI space V can be decomposed into an orthogonal sum of at most
countable PSI spaces [6], Theorem 2.1 provides a convenient way for computing
σV . Moreover, the result of this computation is independent of the choice of such
a decomposition. Finally, we list some of the properties of the spectral function.

1. For any SI space V , its spectral function σV (ξ) takes values in [0, 1] for a.e.
ξ.

2. The dimension function of V can be computed by

(2.1) dimV (ξ) =
∑

k∈Zn

σV (ξ + k) for a.e. ξ ∈ R
n.

3. If V and W are two SI spaces such that V ⊂ W , then σV ≤ σW .
4. If

V = Ľ2(E) = {f ∈ L2(Rn) : supp f̂ ⊂ E},
for some measurable set E ⊂ R

n, then σV = 1E . Conversely, if σV = 1E ,
then V = Ľ2(E).

We are now ready to give the proof of our main result.

Proof of Theorem 1.1. On the contrary, suppose there exists 0 = ψ ∈ L2(Rn) ∈
Dj(V ) for all j ∈ N. Hence, each of the functions ψj = (Dj)−1ψ belongs to V .
Note that

ψ̂j(ξ) = | detBj |ψ̂(Bjξ), where Bj = (Aj)T .

By Theorem 2.1 the spectral function of S(ψj) equals

(2.2) σj(ξ) := σS(ψj)(ξ) =
|ψ̂(Bjξ)|2∑

k∈Zn |ψ̂(Bj(ξ + k))|2
for ξ ∈ supp ψ̂j .

Since S(ψj) ⊂ V , the monotonicity of the spectral function implies that

(2.3) σV (ξ) ≥ σj(ξ) for all j ∈ N.

For a fixed N > 0, define the functions

Lj(ξ) =
∑

k∈Zn, |k|>N

|ψ̂(Bj(ξ + k))|2, Rj(ξ) =
∑

k∈Zn

|ψ̂(Bj(ξ + k))|2.

Let In = [−1/2, 1/2)n be the fundamental domain of T
n = R

n/Z
n. We need to

prove the following two lemmas.

Lemma 2.2. With the notation as above we have

(2.4) lim
j→∞

| detBj |Rj = c in the L1(In) norm, where c = ||ψ||2.

Proof. Suppose that g is a continuous function on R
n with compact support. Since

g is uniformly continuous, then a standard argument using the Riemann integral
shows that

(2.5) | detBj |
∑

k∈Zn

|g(Bj(ξ + k))|2 → ||g||22 uniformly on In as j → ∞.
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This implies that (2.4) holds for g in place of ψ̂. For a general ψ ∈ L2(Rn) and
ε > 0 find a continuous compactly supported g such that |||g|2 − |ψ̂|2||1 < ε. Then,
(2.6)

| detBj |
∫

In

∣∣∣∣Rj(ξ) −
∑

k∈Zn

|g(Bj(ξ + k))|2
∣∣∣∣dξ

≤
∑

k∈Zn

| detBj |
∫

In

∣∣∣∣|ψ̂(Bj(ξ + k))|2 − |g(Bj(ξ + k))|2
∣∣∣∣dξ = |||g|2 − |ψ̂|2||1 < ε.

Combining (2.5) and (2.6) yields (2.4). �

Lemma 2.3. With the notation as above we have

(2.7) lim sup
j→∞

Lj(ξ)/Rj(ξ) = 1 for a.e. ξ ∈ In.

Here, we interpret expressions of the form 0/0 as 0.

Proof. Fix 0 < δ < 1 and define the sets

Ej = {ξ ∈ In : Lj(ξ) ≤ δRj(ξ)}.
Then, by the Lebesgue Dominated Convergence Theorem and (1.9),

| detBj |
∫

In

Lj(ξ)dξ ≥ | detBj |
∫

B(0,N+
√

n)c

|ψ̂(Bjξ)|2dξ

=
∫

Bj(B(0,N+
√

n)c)

|ψ̂(ξ)|2dξ → ||ψ||2 = | detBj |
∫

In

Rj(ξ)dξ as j → ∞.

In the first inequality above we have used a simple periodization argument and the
fact that

B(0, N +
√

n) ⊂
∑

|k|≤N

(k + In).

Hence,
(2.8)

(1 − δ)| detBj |
∫

Ej

Rj(ξ)dξ ≤ | detBj |
∫

Ej

(Rj(ξ) − Lj(ξ))dξ

≤ | detBj |
∫

In

(Rj(ξ) − Lj(ξ))dξ → 0 as j → ∞.

By (2.4),

(2.9)
∣∣∣∣| detBj |

∫
Ej

Rj(ξ)dξ−c|Ej |
∣∣∣∣ ≤ | detBj |

∫
In

|Rj(ξ)−c|dξ → 0 as j → ∞,

where c = ||ψ||2. Combining (2.8) and (2.9) yields

(2.10) |Ej | → 0 as j → ∞.

Since
Rj(ξ) ≥ Lj(ξ) > δRj(ξ) ≥ 0 for ξ ∈ In \ Ej ,

we have that
Lj(ξ)/Rj(ξ) > δ for ξ ∈ In \ Ej .

Hence, (2.10) yields

lim sup
j→∞

Lj(ξ)/Rj(ξ) ≥ δ for a.e. ξ ∈ In.
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Since 0 < δ < 1 is arbitrary, this proves (2.7) and completes the proof of the
lemma. �

We are now ready to finish the proof of Theorem 1.1. Lemma 2.3 and (2.2) imply
that for any N > 0,

(2.11) lim sup
j→∞

∑
k∈Zn, |k|>N

σj(ξ + k) = 1 for a.e. ξ ∈ In.

Using (2.11) we shall construct inductively two strictly increasing sequences {ji}
and {Ni} of integers such that the sets

(2.12) Si =
{

ξ ∈ In :
∑

k∈Zn, Ni−1<|k|≤Ni

σji
(ξ + k) ≥ 1/2

}

satisfy

(2.13) |In \ Si| < 2−i for all i ∈ N.

Indeed, let N0 = 0. By (2.11) choose j1 large enough so that

|S′
1| > 1/2, where S′

1 =
{

ξ ∈ In :
∑

k∈Zn, N0<|k|
σj1(ξ + k) ≥ 3/4

}
.

Then, choose N1 large enough so that the set S1 given by (2.12) also satisfies
|S1| > 1/2. Assuming that we have defined j1 < . . . < jr and N1 < . . . < Nr for
some r ∈ N, choose jr+1 so that

|S′
r+1| > 1 − 2−r−1, where S′

r+1 =
{

ξ ∈ In :
∑

k∈Zn, Nr<|k|
σjr+1(ξ + k) ≥ 3/4

}
.

Then, choose Nr+1 large enough so that (2.13) holds for the set Sr+1 given by
(2.12). This proves (2.13).

Finally, using (2.1) and (2.3) we have

dimV (ξ) =
∑

k∈Zn

σV (ξ +k) ≥
∞∑

i=1

∑
k∈Zn

Ni−1<|k|≤Ni

σji
(ξ +k) ≥

∞∑
i=r

1
2

= ∞ for a.e. ξ ∈ S̃r,

where

S̃r =
∞⋂

i=r

Si for r ∈ N.

By (2.13), |In \ S̃r| ≤ 2−r+1 → 0 as r → ∞. Hence,

dimV (ξ) = ∞ for a.e. ξ ∈ In,

which completes the proof of Theorem 1.1. �

Remark 2.1. We remark that Theorem 1.1 is the optimal result of this type for
general SI spaces. More precisely, if the only information provided to us about an
SI space V is its dimension function dimV , then one could not do better. That is,
there are many examples of SI spaces with dimV ≡ ∞ where (1.10) fails. The most
trivial example is V = L2(Rn).

On the other hand, one can provide examples of SI spaces with dimV ≡ ∞ such
that (1.10) holds. An example of this kind for Aj of the form Aj = A−j , where
A is an integer expansive matrix, follows from the characterization of dimension
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functions of GMRAs due to Rzeszotnik and the author [9]. Indeed, by [9, Theo-
rem 3.6] there exists a GMRA {Dj(V )}j∈Z such that dimV ≡ ∞. Consequently,⋂

j∈Z
Dj(V ) = {0}.

More delicate examples of SI spaces which either fail or fulfill the intersection
property (1.8) are shown in the next section.

3. Examples

In this section we give an example of two refinable SI spaces V and V ′ sharing
the same spectral functions, but which behave differently under dilations. Despite
their close relationship, the space V fails the intersection property, whereas the
other space V ′ satisfies this property. A seemingly innocuous change in phases
of generators, which is not detected by the spectral function, can lead to totally
different outcomes. This further illustrates how delicate the intersection property
(1.8) is. In light of Theorem 1.1 both spaces V and V ′ have dimension functions
constantly equal to ∞.

For simplicity, we restrict our attention to one dimension. Let D be the dyadic
dilation operator given by Df(x) =

√
2f(2x).

Example 3.1. Consider the set of generators A = {ϕi : i = 0, 1, . . .} by

ϕ̂i =

{
1[0,1] i = 0,

1[2i−1,2i], i = 1, 2, . . . .

Let V = S(A) be the corresponding SI space. We claim that V is a refinable space
and that its spectral function is given by

(3.1) σV = 1[0,1] +
∞∑

i=1

21−i1[2i−1,2i].

To see that V is refinable note that ϕi+1 =
√

2D(ϕi) for i = 1, 2, . . .. Moreover,
ϕ0, ϕ1 ∈ D(S(ϕ0)) = D(Ľ2([0, 1])) = Ľ2([0, 2]). Hence, A ⊂ D(V ). Since D(V ) is
SI, we have V = S(A) ⊂ D(V ). To see (3.1) we observe that

(3.2) S(ϕi) ⊥ S(ϕj) for i = j.

Moreover, for any i = 1, 2, . . .,

(3.3) σS(ϕi)(ξ) =
|ϕ̂i(ξ)|2∑

k∈Z
|ϕ̂i(ξ + k)|2 = 21−i for ξ ∈ supp ϕ̂i = [2i−1, 2i],

and σS(ϕi)(ξ) = 0 for ξ ∈ supp ϕ̂i. Thus, the countable additivity property of the
spectral function

(3.4) σV =
∞∑

i=0

σS(ϕi)

implies (3.1). Despite that the spectral function σV vanishes at infinity, the inter-
section property fails, i.e.,

∞⋂
j=0

D−j(V ) = {0}.

Namely, the generators ϕi, i = 1, 2, . . ., lie in this intersection. Indeed, ϕi =
2−j/2D−j(ϕi+j) for j = 0, 1, . . . and i = 1, 2, . . . .



570 MARCIN BOWNIK

Next, we will modify this example to produce another refinable SI space V ′ which
has the same spectral function as V , but the intersection property holds, i.e.,

(3.5)
∞⋂

j=0

D−j(V ′) = {0}.

Example 3.2. Define the function Π : R → {−1, 1} by

Π(ξ) =
∞∏

j=−1

p(2−jξ), where p(ξ) =

{
1 if �ξ� is even,

−1 otherwise.

One can show that the function Π(ξ), ξ > 0, can also be described as follows: if the
number of 1’s in the binary expansion of �2ξ� is even, then Π(ξ) = 1. Otherwise,
Π(ξ) = −1.

Consider the set of generators A′ = {φi : i = 0, 1, . . .} defined by

φ̂i(ξ) = Π(ξ)ϕ̂i(ξ).

Let V ′ = S(A′) be the corresponding SI space. Clearly, the spectral functions of the
spaces S(ϕi) and S(φi) are the same. Since the supports of the φ̂i’s are mutually
disjoint, the spaces S(φi) are mutually orthogonal. Hence, (3.3) and (3.4) yield

(3.6) σV ′ = σV = 1[0,1] +
∞∑

i=1

2−i+11[2i−1,2i].

To see that V ′ is refinable note that for i = 1, 2, . . . ,

(3.7) φ̂i+1(ξ) = Π(ξ)ϕ̂i+1(ξ) = p(2ξ)Π(ξ/2)ϕ̂i(ξ/2) = p(2ξ)φ̂i(ξ/2).

Since ξ �→ p(2ξ) is Z-periodic, φi+1 ∈ S(Dφi) by Lemma 2.1. Likewise, Dφi ∈
S(φi+1), which implies that S(φi+1) = S(Dφi). Since TkD = DT2k, we have

(3.8) S(φi+1) = S(Dφi) ⊂ D(S(φi)) for i = 1, 2, . . . .

Moreover, S(φ0),S(φ1) ⊂ Ľ2([0, 2]) = D(Ľ2([0, 1])) = D(S(φ0)). Hence, V ′ ⊂
D(V ′).

Finally, to establish the intersection property (3.5) we first observe that

(3.9) V ′ = S(φ0) ⊕
( ∞⊕

j=1

S(φi)
)

=
( −1⊕

j=−∞
Dj(S(φ1))

)
⊕

( ∞⊕
j=1

S(φj)
)

.

Indeed, the above decomposition follows immediately from S(φ0) = Ľ2([0, 1]) and
S(φ1) = Ľ2([1, 2]). By (3.8), the dilation operators D−l, l ∈ N, shift the components
of (3.9) by l terms, i.e.,

D−l(Dj(S(φ1))) = Dj−l(S(φ1)) for −∞ < j ≤ −1,

D−l(S(φj)) ⊂ Dj−l(S(φ1)) for 1 ≤ j ≤ l,

D−l(S(φj)) ⊂ S(φj−l) for l + 1 ≤ j < ∞.

Therefore,
∞⋂

i=0

D−i(V ′) =
⊕

j∈Z\{0}
Zj ,
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where
(3.10)

Zj =

{
Dj(S(φ1)) ∩ Dj−1(S(φ2)) ∩ Dj−2(S(φ3)) ∩ . . . for −∞ < j ≤ −1,

S(φj) ∩ D−1(S(φj+1)) ∩ D−2(S(φj+2)) ∩ . . . for 1 ≤ j < ∞.

To complete the proof we must show that Zj = {0} for all j ∈ Z \ {0}. A quick
inspection of (3.10) shows that this is equivalent to

(3.11)
∞⋂

i=0

D−i(S(φj+i)) = {0} for 1 ≤ j < ∞.

Fix some 1 ≤ j < ∞. By Lemma 2.1 any f ∈ S(φj) can be written as

(3.12) f̂(ξ) = m0(ξ)φ̂j(ξ), for a.e. ξ,

for some measurable Z-periodic m0. The fact that |φ̂j | = 1[2j−1,2j ] implies that m0

is square-integrable over its period. Likewise, any f ∈ D−i(S(φj+i)) can be written
as

f̂(ξ) = mi(2iξ)φ̂j+i(2iξ), for a.e. ξ,

for some mi ∈ L2(R/Z). By (3.7),

φ̂j+i(2iξ) = p(2i+1ξ)φ̂j+i−1(2i−1ξ) = . . . = p(2i+1ξ)p(2iξ) · . . . · p(22ξ)φ̂j(ξ).

Combining the above yields

m0(ξ) = mi(2iξ)p(2i+1ξ)p(2iξ) · . . . · p(22ξ) for a.e. ξ.

Let K be any dyadic interval of length 2−i, that is, K = [k2−i, (k+1)2−i] for some
k ∈ Z. Since ξ �→ p(2i+1ξ)mi(2iξ) is 2−i

Z-periodic and s(ξ) = p(2iξ) · . . . · p(22ξ) is
constant on dyadic intervals of length 2−i, we have∫

K

m0(ξ)dξ =
∫

K

p(2i+1ξ)mi(2iξ)s(ξ)dξ = ci

∫
K

s(ξ)dξ,

where ci =
∫ 2−i

0

p(2i+1ξ)mi(2iξ)dξ.

Since the function s takes only values ±1, we have that

1
|K|

∫
K

m0(ξ)dξ = ±ci for all dyadic intervals with |K| = 2−i.

While the function s is constant on dyadic intervals of length 2−i, it takes two op-
posite values ±1 on any dyadic interval K ′ of length 2−i+1 due to the factor p(2iξ).
Hence,

∫
K′ m0(ξ)dξ = 0 for all dyadic intervals K ′ of length 2−i+1. Consequently,

if a function f belongs to the intersection (3.11), then the corresponding multiplier
m0 from (3.12) satisfies∫

K

m0(ξ)dξ = 0 for all dyadic intervals K.

By the Lebesgue Differentiation Theorem, m0(ξ) = 0 for a.e. ξ, and hence f = 0,
which proves (3.11).



572 MARCIN BOWNIK

Finally, we note that the spaces V and V ′ satisfy⋃
j∈Z

Dj(V ) =
⋃
j∈Z

Dj(V ′) = Ľ2(0,∞).

Hence, if we add an extra generator ϕ−1, where ϕ̂−1 = 1[−1,0], then the SI spaces
V0 = V ⊕ S(ϕ−1) and V ′

0 = V ′ ⊕ S(ϕ−1) will also satisfy the density property
(1.4). Consequently, the sequence V ′

j = Dj(V ′
0), j ∈ Z, forms a GMRA, whereas

Vj = Dj(V0), j ∈ Z, is not a GMRA due to the failure of the intersection property
(1.3). This is despite the fact that the core spaces V0 and V ′

0 share the same spectral
function.
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