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ABELIAN IDEALS
AND COHOMOLOGY OF SYMPLECTIC TYPE
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(Communicated by Gail R. Letzter)

Abstract. Let b be a Borel subalgebra of the symplectic Lie algebra sp(2n, C)
and let n be the corresponding maximal nilpotent subalgebra. We find a con-
nection between the abelian ideals of b and the cohomology of n with trivial
coefficients. Using this connection, we are able to enumerate the number of
abelian ideals of b with given dimension via the Poincaré polynomials of Weyl
groups of types An−1 and Cn.

1. Introduction

Let g be a finite-dimensional simple Lie algebra and let h ⊂ g be a Cartan
subalgebra. Suppose that b = n ⊕ h is a Borel subalgebra, where n = [b, b] is the
maximal nilpotent subalgebra of g. Note that n is also the nilradical of b under the
Killing form. Needless to say, the structure of the subalgebras b and n is important
for the study of g itself.

The study of abelian ideals in the Boral subalgebra b can be traced back to the
work by Schur [9] (1905). It has recently drawn considerable attention. Kostant [5]
(1998) mentioned Peterson’s 2r-theorem saying that the number of abelian ideals
in b is exactly 2r, where r = dim h is the rank of g. Moreover, Kostant found a
relation between abelian ideals of a Borel subalgebra and the discrete series rep-
resentations of the Lie group. Spherical orbits were described by Panyushev and
Röhrle [8] (2001) in terms of abelian ideals. Furthermore, Panyushev [7] (2003)
discovered a correspondence of maximal abelian ideals of a Borel subalgebra to
long positive roots. Suter [10] (2004) determined the maximal dimension among
abelian subalgebras of a finite-dimensional simple Lie algebra purely in terms of
certain invariants and gave a uniform explanation for Panyushev’s result. Kostant
[6] (2004) showed that the powers of the Euler product and the abelian ideals of a
Borel subalgebra are intimately related. Cellini and Papi [2] (2004) had a detailed
study of certain remarkable posets which form a natural partition of all abelian
ideals of a Borel subalgebra.

It is remarkable that the affine Weyl group Ŵ associated with g is used in the
proof of the 2r-theorem. On the other hand, Bott [1] gave a celebrated theorem
which shows that the Betti numbers bi of n (i.e. the dimension of Hi(n)) can be
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expressed by the Weyl group W associated with g. Later Kostant [4] generalized
his result to the nilradical of any parabolic subalgebras p of g. (n is the nilradical
of b.)

It seems that the Weyl group W (and its affine group Ŵ) can be a bridge for
connecting the cohomology of n to the abelian ideals of b. But no one has given
an explicit relationship between these two objects so far. In this paper, we shall
construct this relationship in the case of g = sp(2n, C).

In the following text, we let g = sp(2n, C) be the symplectic Lie algebra. Our
main theorem of this paper is as follows.

Main Theorem. Let I be the set of all abelian ideals of b and let Sn be the per-
mutation group on n elements. In terms of a certain map L : Sn×I → ∧n∗ defined
in (2.16), the cohomology group H(n) =

⊕
(σ,I)∈Sn×I C[L(σ, I)], where [L(σ, I)] is

the cohomology class defined by the harmonic cocycle L(σ, I).

An interesting application of this theorem is to compute the number of abelian
ideals of b with given dimension via the Poincaré polynomials of Weyl groups of
types A and C. That is,

Corollary. The number of abelian ideals of b with dimension i is equal to the
coefficient of ti in

∏n
r=1(1 + tr).

2. Proof of the main result

Let g = sp(2n, C) be the symplectic Lie algebra. Fix a Cartan subalgebra h of
g. Denote by W � (Z/2Z)n

� Sn its Weyl group, by Φ = {±2εi,±(εi ± εj) | 1 ≤
i �= j ≤ n} its root system with positive roots Φ+ = {2εi, εi ± εj | i < j} and
by π = {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn, 2εn} its simple roots. We have the Cartan
root space decomposition g = h ⊕ (

⊕
α∈Φ gα). Then b = h ⊕ (

⊕
α∈Φ+ gα) is the

associated Borel subalgebra and n = [b, b] =
⊕

α∈Φ+ gα is its nilradical.
Denote by I the set of all abelian ideals of b. As mentioned in [10], there is a

bijection as follows:

Υ := {Ψ ⊂ Φ+ | Ψ � Φ+ ⊂ Ψ, Ψ � Ψ = ∅} ↔ I
Ψ 
→ IΨ :=

⊕
α∈Ψ

gα,(2.1)

where Ψ � Φ+ := (Ψ + Φ+) ∩ Φ+ and Ψ � Ψ := (Ψ + Ψ) ∩ Φ+.
Denote Φ0

+ := {εi − εj | 1 ≤ i < j ≤ n}.

Lemma 2.1. Equation Ψ ∩ Φ0
+ = ∅ holds for any Ψ ∈ Υ.

Proof. Suppose that there is an εi − εj ∈ Ψ. Since 2εj ∈ Φ+ and (εi − εj) + 2εj =
εi + εj ∈ Φ+, we have εi + εj ∈ Ψ. But (εi − εj) + (εi + εj) = 2εi ∈ Φ+, a
contradiction. �

Define a partial ordering on

Φ1
+ := Φ+ \ Φ0

+ = {εi + εj | 1 ≤ i ≤ j ≤ n}

by

(2.2) εi1 + εj1 ≺ εi2 + εj2 ⇔ i1 ≥ i2, j1 ≥ j2,
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where i1 ≤ j1, i2 ≤ j2. In fact, this partial ordering is just the one induced from
the partial ordering on the positive roots. A subset Ψ ⊂ Φ1

+ is called an increasing
subset if for any x, y ∈ Φ1

+, the conditions x ∈ Ψ and x ≺ y imply y ∈ Ψ.
The following lemma is obvious.

Lemma 2.2. The set Υ is the set of all increasing subsets of Φ1
+.

We shall show that these increasing subsets also appear in the cohomology of n

with trivial coefficients.
Choose a nonzero element eα in gα for each α ∈ Φ+. Hence {eα | α ∈ Φ+} is a

basis of n. Define a linear function fα ∈ n∗ by fα(eβ) = δα,β . Then {fα | α ∈ Φ+}
is a basis of n∗.

Recall the following theorem:

Theorem 2.3 (Bott-Kostant; cf. [1, 4]). The cohomology group

(2.3) H(n) =
⊕

w∈W
C[

∧
α∈Φw

fα],

where Φw = w(−Φ+) ∩ Φ+, and [
∧

α∈Φw
fα] is the cohomology class defined by the

(harmonic) cocycle
∧

α∈Φw
fα.

We see in Theorem 2.3 that Φw plays an important role in cohomology. So we
shall get some more information about Φw.

Recall that for type Cn, the Weyl group W is isomorphic to (Z/2Z)n � Sn.
Precisely, W can be realized by the composite of all permutations of {1, 2, . . . , n}
and 〈ri | i = 1, 2, . . . , n〉, where ri(j) = −δi,ji + (1 − δi,j)j (j = 1, 2, . . . , n).
In this paper, we always use (i1, i2, . . . , in) to denote the permutation j 
→ ij
(j = 1, 2, . . . , n).

Each element in W can be expressed in the form

(2.4) w = rj1rj2 · · · rjk
(i1, i2, . . . , in) (0 ≤ k ≤ n),

where (i1, i2, . . . , in)(j1) < (i1, i2, . . . , in)(j2) < · · · < (i1, i2, . . . , in)(jk). We call it
the standard form of w.

The following two lemmas are well-known and follow from Kostant’s classic paper
[4]. Since we only consider the special case of type C, we include the proofs in this
case for completeness.

Lemma 2.4. The set Φσ = {εi − εj | 1 ≤ i < j ≤ n, σ−1(i) > σ−1(j)} for any
σ ∈ Sn ⊂ W. Hence if Φσ1 = Φσ2(σ1, σ2 ∈ Sn), then σ1 = σ2.

Proof. It is obvious by a direct calculation. �

Lemma 2.5. For any w ∈ W, there is a unique element ηw ∈ Sn such that
Φw ∩ Φ0

+ = Φηw
. Precisely, if w = rj1rj2 · · · rjk

(i1, i2, . . . , in) is in the standard
form, then

(2.5) ηw = (i1, . . . , ĵ1, . . . , ĵ2, . . . , . . . , ĵk, . . . , in, jk, jk−1, . . . , j1),

where (i1, . . . , j1, . . . , j2, . . . , . . . , jk, . . . , in) = (i1, i2, . . . , in) and the sign ̂ indi-
cates that the argument below it must be omitted.

Proof. The uniqueness of ηw follows from Lemma 2.4.
Denote σ = (i1, . . . , ĵ1, . . . , ĵ2, . . . , . . . , ĵk, . . . , in, jk, jk−1, . . . , j1). We have to

show Φw ∩ Φ0
+ = Φσ. In fact, for any εi − εj ∈ Φw ∩ Φ0

+, we have w−1(εi − εj) =
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εw−1(i) − εw−1(j) ∈ −Φ+. What we need to do is to check σ−1(i) > σ−1(j). There
are four cases as follows.

Case 1: i, j �∈ {j1, j2, . . . , jk}. Then w−1(εi − εj) = εσ−1
0 (i) − εσ−1

0 (j), where
σ0 = (i1, i2, . . . , in). Hence σ−1

0 (i) > σ−1
0 (j). So σ−1(i) > σ−1(j) by the definition

of σ.
Case 2: i ∈ {j1, j2, . . . , jk}, j �∈ {j1, j2, . . . , jk}. Then w−1(εi − εj) = −εσ−1

0 (i) −
εσ−1

0 (j), which is always in −Φ+. We also do have σ−1(i) > σ−1(j) by the definition
of σ.

Case 3: i �∈ {j1, j2, . . . , jk}, j ∈ {j1, j2, . . . , jk}. Then w−1(εi − εj) = εσ−1
0 (i) +

εσ−1
0 (j), which is always in Φ+. There should be no such i, j with σ−1(i) > σ−1(j).

It is the case by the definition of σ.
Case 4: i, j ∈ {j1, j2, . . . , jk}. Then w−1(εi − εj) = εσ−1

0 (j) − εσ−1
0 (i). Hence

σ−1
0 (j) > σ−1

0 (i). So σ−1(i) > σ−1(j) by the definition of σ. �

By this lemma, we can define a map

(2.6) η : W → Sn, w 
→ ηw.

Denote

(2.7) σl := (n, n − 1, . . . , 1) ∈ Sn,

which is the longest element in Sn. It is clear that σl = σ−1
l and

(2.8) x ≺ y ⇔ σl(y) ≺ σl(x) (x, y ∈ Φ1
+).

Lemma 2.6. We have σlη
−1
w (Φw ∩ Φ1

+) ∈ Υ.

Proof. Write w = rj1rj2 · · · rjk
σ0 in the standard form with σ0 = (i1, i2, . . . , in).

Take any εi + εj ∈ Φw ∩ Φ1
+. Then w−1(εi + εj) = εw−1(i) + εw−1(j) ∈ −Φ+. There

are three cases as follows:
Case 1: i, j �∈ {j1, j2, . . . , jk}. Then w−1(εi+εj) = εσ−1

0 (i)+εσ−1
0 (j), which cannot

be in −Φ+.
Case 2: Either i or j, but not both, is in {j1, j2, . . . , jk}. Without loss of

generality, we assume i �∈ {j1, j2, . . . , jk} and j ∈ {j1, j2, . . . , jk}. Note that
w−1(εi + εj) = εσ−1

0 (i) − εσ−1
0 (j), which is in −Φ+ if and only if σ−1

0 (i) > σ−1
0 (j).

Case 3: i, j ∈ {j1, j2, . . . , jk}. In this case, we have w−1(εi + εj) = −εσ−1
0 (i) −

εσ−1
0 (j), which is always in −Φ+.
All the above three cases imply that for any i and j with σ0(i) < σ0(j), εi + εj ∈

Φw ∩Φ1
+ if and only if i ∈ {j1, j2, . . . , jk}. So we have that for any t ∈ {1, 2, . . . , k},

if εjt
+ εj ∈ Φw ∩ Φ1

+, then (1) εjt
+ εj′ ∈ Φw ∩ Φ1

+ for all j′ with σ0(j′) > σ0(j);
and (2) εjt′ + εj ∈ Φw ∩ Φ1

+ for all t′ < t. Hence by (2.5), we obtain that if
η−1

w (x) ∈ Φw ∩ Φ1
+, then η−1

w (y) ∈ Φw ∩ Φ1
+ for any y ∈ Φ1

+ with η−1
w (y) ≺ η−1

w (x).
Thus σlη

−1
w (Φw ∩ Φ1

+) ∈ Υ by (2.8). �

Remark 2.7. In fact, the proof of Lemma 2.6 also yields the explicit expression of
σlη

−1
w (Φw ∩ Φ1

+). That is, for any w = rj1rj2 · · · rjk
σ0 ∈ W (σ0 ∈ Sn),

(2.9) σlη
−1
w (Φw ∩ Φ1

+) = {εi + εj | 1 ≤ i ≤ k, i ≤ j ≤ n + 1 − σ−1
0 (i)}.

Therefore, we can define a map

(2.10) ξ : W → Υ, w 
→ σlη
−1
w (Φw ∩ Φ1

+).
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Lemma 2.8. There exists a one-to-one correspondence

(2.11) W ↔ Sn × Υ, w 
→ (η(w), ξ(w)).

Proof. Expressions (2.5) and (2.9) imply that w 
→ (η(w), ξ(w)) is injective.
Take any (σ, Ψ) ∈ Sn × Υ and consider σσlΨ ⊂ Φ1

+. We are going to determine
an element w ∈ W such that (η(w), ξ(w)) = (σ, Ψ).

Assume {j | 2εj ∈ σσlΨ} = {ji, j2, . . . , jk} with σ−1(j1) > σ−1(j2) > · · · >
σ−1(jk). In other words, jt = σσl(t) (t = 1, 2, . . . , k). Hence σ must be of the form
σ = (i1, i2, . . . , in−k, jk, jk−1, . . . , j1), where {i1, i2, . . . , in−k} is a permutation of
{1, 2, . . . , n}\{ji, j2, . . . , jk}. Assume mt = max{m | εt + εm ∈ Ψ} (t = 1, 2, . . . , k).
It is clear that m1 ≥ m2 ≥ · · · ≥ mk.

Take

w = (i1, . . . , in−m1 , j1, in−m1+1, . . . , in−mk
, jk, in−mk+1, . . . , in−k)

with

(. . . , in−mt
, jt, in−mt+1, . . . , in−ms

, js, in−ms+1, . . .)
:= (. . . , in−mt

, jt, jt+1, . . . , js, in−ms+1, . . .)

if mt−1 < mt = mt+1 = · · · = ms < ms+1. Then we can check easily that
(η(w), ξ(w)) = (σ, Ψ). So w 
→ (η(w), ξ(w)) is also surjective. �

Remark 2.9. By (2.1) and (2.11), we can obtain |I| = |Υ| = |(Z/2Z)n
�Sn|

|Sn| = 2n

immediately. This is Peterson’s 2r-theorem for type C.

Each σ ∈ Sn ⊂ W induces a linear transform on n∗ by

(2.12) σ(fεi±εj
) = fεσ(i)±εσ(j) .

Moreover, this map can extend to
∧

n∗ by

(2.13) σ(f1 ∧ f2 ∧ · · · ∧ fk) = σ(f1) ∧ σ(f2) ∧ · · · ∧ σ(fk).

By Lemma 2.4, (2.7), (2.10), (2.12) and the fact that σ−1
l = σl, we have

(2.14) C

∧
α∈Φw

fα = C(
∧

α∈Φηw

fα) ∧ ηwσl(
∧

α∈ξw

fα).

Combining (2.1) and (2.14), we get

(2.15) C

∧
α∈Φw

fα = C(
∧

α∈Φηw

fα) ∧ ηwσl(∧maxI∗ξw
),

where I∗ξw
⊂ n∗ is the set of all linear functions on Iξw

and ∧maxI∗ξw
is the unique

element (up to nonzero scalar multiples) in ∧dim Iξw I∗ξw
⊂ n∗.

Define

(2.16) L : Sn × I → ∧n
∗, (σ, I) 
→ (

∧
α∈Φσ

fα) ∧ σσl(∧maxI∗).

Then we can obtain the following main theorem by (2.1), (2.3), (2.11), (2.14) and
(2.16).

Theorem 2.10. The cohomology group

(2.17) H(n) =
⊕

(σ,I)∈Sn×I
C[L(σ, I)],

where [L(σ, I)] is the cohomology class defined by the (harmonic) cocycle L(σ, I).
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The definition of L also implies that

(2.18) deg[L(σ, I)] = |Φσ| + dim I.

Therefore

(2.19) dimHi(n) =
∑

j+k=i

(|S(j)
n | + |I(k)|)

with

(2.20) S(j)
n := {σ ∈ Sn | |Φσ| = j}

and

(2.21) I(k) := {I ∈ I | dim I = k}.
On the other hand, Theorem 2.3 implies

(2.22) dimHi(n) = |((Z/2Z)n
� Sn)(i)|,

where

(2.23) ((Z/2Z)n
� Sn)(i) = {w ∈ (Z/2Z)n

� Sn | |Φw| = i}.

The generating functions of |((Z/2Z)n
� Sn)(i)| and |S(i)

n | are just the so-called
Poincaré polynomials of the Weyl groups of types Cn and An−1, respectively. These
two polynomials can be found in [3]. We list them below:

∞∑
i=0

|((Z/2Z)n
� Sn)(i)|ti =

∏n
i=1(1 − t2i)
(1 − t)n

,(2.24)

∞∑
i=0

|S(i)
n |ti =

∏n
i=1(1 − ti)
(1 − t)n

.(2.25)

Thanks to (2.19) and (2.22), we get

(2.26)
∞∑

i=0

|I(i)|ti =

∏n
i=1(1−t2i)

(1−t)n∏n
i=1(1−ti)

(1−t)n

=
n∏

i=1

(1 + ti).

That is,

Corollary 2.11. The number of abelian ideals of b with dimension i is equal to
the coefficient of ti in

∏n
r=1(1 + tr).
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