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CENTER TYPE PERFORMANCE
OF DIFFERENTIABLE VECTOR FIELDS IN THE PLANE
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Dedicato a Lê Dũng Tráng per il suo sessantesimo compleanno

Abstract. Suppose that X is a planar vector field whose linearization outside
some compact set is nonsingular and has pure imaginary spectrum. Then by
adding to X a constant vector, one obtains center behavior at infinity: the
flow is conjugate to a rotation flow outside some compact set.

1. Introduction and statement of the results

In the qualitative theory of planar differential systems, there are many cases
where the local phase portrait at a singular point has been characterized (see for
instance [21, 5, 16, 2, 7, 8, 20]). On the other hand, we know that some global
phase portraits were described in [9, 6]. These theorems may be paraphrased as
follows: “the known singular point of Y is a global attractor as long as all the linear
parts of Y are asymptotically stable” (see also [17, 4]). This study has motivated
the present paper, which is closely related to the results concerning the behavior
of a system near infinity [13, 12, 10, 1]. Note that, in order to understand a global
phase portrait it is absolutely necessary to research its behavior in a neighborhood
of infinity.

For every σ > 0, let Dσ = {z ∈ R2 : ||z|| ≤ σ}. Thus, V = (R2 \ Dσ) ∪ {∞}
is the topological subspace of the Riemann sphere on the neighborhood of infinity
obtained from R2 \Dσ. We consider a differentiable vector field X : R2 \Dσ → R2

whose Jacobian determinant det(DX) is always different from zero, and we denote
by DXz the linearization of X at z ∈ R

2 \ Dσ. In this context, we obtain the
following result: “if the eigenvalues of DXz are purely imaginary, then by adding
to X some constant v ∈ R2 one obtains center behavior at infinity, that is: X + v
has a periodic trajectory Γ ⊂ R2 \ Dσ such that Γ is enclosing Dσ, and in the
unbounded component of (R2 \ Dσ) \ Γ, all the solutions of X + v are periodic
trajectories”. Notice that the vector field X : (V,∞) → (R2, 0) is differentiable in
V \ {∞}, but not necessarily continuous at ∞. In the case of global vector fields
Y : R2 → R2 with Y (0) = 0, such an eigenvalue condition implies the topological
equivalency of Y with the linear vector field (x, y) → (−y, x). Observe that as
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we study vector fields with nonzero eigenvalues, our assumptions imply that the
divergence of the vector field is zero.

The next subsection gives the most basic concepts and notation of the theory
of differential equations. This description is necessary because the system X is
supposed to be just differentiable (as in our previous papers [6, 10]); thus the
eigenvalues of DXp do not depend continuously on p. However, in Subsection 2.1,
we will see that the solutions of system X are unique as long as X satisfies our
eigenvalue condition. In the C1 case, the eigenvalue assumption is not necessarily
open in the C1-Whitney topology. Therefore, a C1-vector field whose linearization
is nonsingular and has pure imaginary spectrum might not have an approximation
by a smooth vector field which also satisfies such eigenvalue conditions.

1.1. Differentiable vector fields. Let U ⊂ R2 be an open subset, and suppose
that X : U → R2 is a differentiable vector field. We consider the following auto-
nomous differential equation:

(1.1) z′ = X(z).

Since each point on the domain can be an initial condition, such a point jointly with
the system (1.1) gives an initial value problem which may have many solutions
defined on their maximal interval of existence. Nevertheless, for each of those
trajectories—through the same point, kept fixed—all their local funnel sections are
compact connected sets (see [14]). Moreover, each trajectory has its two limit sets,
α and ω respectively, which are well defined in the sense that they only depend
on the solution. Notice that, for us, a trajectory is the curve determined by any
solution defined on its maximal interval of existence.

Let γq denote a trajectory passing through a point q ∈ U ; thus γ+
q (resp. γ−

q ) is
the positive (resp. negative) semi-trajectory of X contained in γq and starting at q.
In this way γq = γ−

q ∪ γ+
q . As usual, a point p ∈ U in which X(p) = 0 is called a

singular point or a singularity of X. When a trajectory γq is defined on R and there
exist τ > 0 such that γq(t + τ ) = γq(t) for all t ∈ R, this γq is said to be a periodic
trajectory and such a q is called a periodic point. If X(p) = 0, this singular point
is said to be a center if it admits a punctured neighborhood A \ {p} covered with
periodic trajectories. The maximal punctured neighborhood of a center is called
its period annulus.

Given a differentiable vector field X : U → R2, we shall denote by Spc(X) =
{eigenvalues of DXz : z ∈ U}. Our first result is the following.

Theorem A. Let Y : R
2 → R

2 be a differentiable vector field. If Y (0) = 0 and
Spc(Y ) ⊂ {z ∈ C : �(z) = 0}\{0}, then for any p ∈ R2 there is a unique trajectory
starting at p and the origin is a center whose period annulus is R2 \ {0}.

Theorem A describes the global phase portrait of Y and complements [6, 9, 17].

1.2. Vector fields defined on a neighborhood of infinity. In this subsection
we present more vector fields with center behavior. To this end, we denote by D(Γ)
(resp. D(Γ)) the compact disc (resp. open disc) enclosed by a topological circle
Γ ⊂ R2.

Definition 1.1. We will say that the differentiable vector field X : R
2 \ Dσ → R

2

has a center type performance at infinity if enclosing the origin there exists a periodic
trajectory Γ ⊂ R2 \ Dσ such that for each p ∈ R2 \ D(Γ) : (1) all the solutions γp,
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passing through the point p, are periodic trajectories and (2) these trajectories also
surround the origin, that is, Dσ ⊂ D(Γ) ⊂ D(γp).

The vector fields of Theorem A have center type performance at infinity. We are
now ready to state our second result.

Theorem B. Let X : R2 \ Dσ → R2 be a differentiable vector field. If Spc(X) ⊂
{z ∈ C : �(z) = 0} \ {0}, then for any p ∈ R2 \ Dσ there exists a unique trajectory
starting at p. Moreover, there is a constant v ∈ R2 such that X + v has a center
type performance at infinity.

Theorem B complements [12] where the authors study the asymptotic stability
at infinity of C1-vector fields.

The present paper is organized as follows: Section 2 presents some preparatory
results about the behavior of the dynamics at infinity, Section 3 includes the proof of
Theorem A, and Section 4 is dedicated to proving Theorem B by using Theorem A.

2. Preliminary results

This section is devoted to some preliminary results which will be used in the
proof of the main theorems.

2.1. Uniqueness without the C1 condition. The next lemma shows that our
eigenvalue condition gives the uniqueness of the trajectories.

Lemma 2.1. If Y : R2 → R2 is a differentiable vector field and Spc(Y ) ⊂ {z ∈ C :
�(z) = 0} \ {0}, then there exists a unique trajectory of Y starting at p ∈ R

2.

Proof. The assumption over the eigenvalues implies that Spc(Y ) = Spc(−Y ). Since
any positive semi-trajectory of Y is a negative semi-trajectory of −Y , it is not
difficult to obtain the lemma after proving the next affirmation.

(a) For any p ∈ R2, there is a unique positive semi-trajectory starting at p.

Suppose by way of contradiction the existence of some p ∈ R2 which has at
least two positive semi-trajectories γ+

p ⊂ R2 and σ+
p ⊂ R2 of Y = (f, g). By using

the orthogonal vector field Y ∗ = (−g, f), as in [17], we can see that there are
q1 ∈ γ+

p \ {p}, q2 ∈ σ+
p \ {p} and a small compact oriented arc [q1, q2]∗ which

is tangent to Y ∗ at any point. Moreover, since Y ∗(p) �= 0 we can assume that
||Y ∗(z)|| > 0 for all z ∈ [q1, q2]∗.

We consider the closed region B whose boundary is the union of [p, q1] ⊂ γ+
p ,

[q1, q2]∗ and [p, q2] ⊂ σ+
p and apply the Green’s formula [18] to the map z 	→ Y (z).

Thus (by using the unitary outer normal vector and the arc length element ds, in
the line integral) we obtain that∫

[q1,q2]∗
||Y ||ds =

∫
B

Trace(DY )dx ∧ dy.

Since the eigenvalue condition shows Trace(DY ) = 0, both integrals are zero. This
contradiction proves (a) and concludes the proof. �

Remark 2.2. This lemma remains true if we consider a differentiable vector field
X : R

2 \ Dσ → R
2 for which Spc(X) ⊂ {z ∈ C : �(z) = 0} \ {0}.
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2.2. Pseudo-hyperbolic sector at infinity. In this subsection we describe, in a
proposition, some qualitative properties at infinity of the vector field Y = (f, g). To
this end, we take Y ∗ = (−g, f) and consider the region S = S(p1, p2; q1, q2, {σi})
whose boundary ∂S is made up of two unbounded semi-trajectories [q1,∞) and
(∞, q2] of Y, a compact arc of trajectories [p1, p2] of Y, two arcs of trajectory
[p1, q1]∗, [p2, q2]∗ of Y ∗, and a set at most countable (which may be empty) of
pairwise disjoint trajectories σ1, σ2, . . . , σi, . . . that start and end at infinity.

We call such a region a pseudo-hyperbolic sector of Y if the following conditions
are satisfied:

(1) for each z ∈ [p1, q1)∗, there exists an arc of trajectory [z, π(z)) ⊂ S of Y
starting at z ∈ [p1, q1)∗ and ending at π(z) ∈ [p2, q2]∗, and

(2) the closure
⋃

z∈[p1,q1)∗

[z, π(z)] is all of S.

This concept of pseudo-hyperbolic sector at infinity has previously been used in our
paper [10] (see also [1, 15]).

Proposition 2.3. Let Y : R2 → R2 be a differentiable vector field whose Jacobian
determinant is always different from zero. Suppose that:

i) There are constants s1 > 0 and c > 0 for which ||z|| > s1 implies that
||Y (z)|| ≥ c.

ii) There is s2 > 0 such that for all z with ||z|| > s2, the eigenvalues of DYz

are purely imaginary.

Then Y has no pseudo-hyperbolic sector at infinity.

Proof. Suppose by way of contradiction the existence of a pseudo-hyperbolic sector
of Y . We can change the boundary of the sector and assume that

(a) the pseudo-hyperbolic sector S = S(p1, p2; q1, q2, {σi}) is a subset of R2\Ds,
where s > max{s1, s2}, that is, S ⊂ R2 \ Ds.

Therefore, for any z ∈ S we have ||Y (z)|| ≥ c, and the forward Poincaré map
T : [p1, q1)∗ → [p2, q2]∗ is well-defined (subsection 2.1).

(b.1) We claim that, for each q ∈ [q1,∞) there are p ∈ [p1, p2] and an arc of
trajectory [p, q]∗ ⊂ S of Y ∗ starting from p and ending at q.

In order to prove (b.1) we select a sequence zn ∈ [p1, q1]∗ such that zn → q1

and assume that there are arcs of trajectories [zn, π(zn)] ⊂ S whose union satisfies⋃
zn∈[p1,q1)∗

[zn, π(zn)] = S. From this we define An as the compact set bounded
by the union of the arcs [p1, zn]∗ ⊂ [p1, q1]∗, [zn, π(zn)], [p2, π(zn)]∗ ⊂ [p2, q2]∗ and
[p1, p2].

We consider γ−
q , a negative semi-trajectory of Y ∗ starting at q ∈ [q1,∞). Thus,

for some arc [zn, π(zn)] with n large enough, γ−
q intersects the interior of An. Since

Y ∗ is free of singularities in the simply connected set An ⊂ S we obtain (b.1)
from the Poincaré–Bendixson Theory [14, p. 156], which claims that there is no
semi-trajectory of Y ∗ contained in the compact An. (Notice that, the oriented arc
[zn, π(zn)] is transverse to γ−

q .) Therefore, (b.1) is true.

(b.2) We claim that there exists a constant K > 0, such that the arc length
�([p, q]∗) of any [p, q]∗ is bounded by K. That is, for each [p, q]∗ as in (b.1)
we have that �([p, q]∗) < K.
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Figure 1. Pseudo-hyperbolic sector at infinity

In order to prove (b.2) we denote by Rq the compact subset of S enclosed by the
union of the arcs [p1, q1]∗ ⊂ ∂S, [q1, q] ⊂ [q1,∞), [p, q]∗ as in (b.1), and [p1, p] ⊂
[p1, p2] (see Figure 1). By using the Green’s formula [18] in Rq and the arc length
element ds, we obtain that

(2.1)

∣∣∣∣∣
∫

[p,q]∗
||Y (s)||ds

∣∣∣∣∣ =

∣∣∣∣∣
∫

[p1,q1]∗
||Y (s)||ds

∣∣∣∣∣ .

On the other hand, assumption (i) implies that c.�([p, q]∗) ≤
∣∣∣∫[p,q]∗ ||Y (s)||ds

∣∣∣ .

Thus, if we define d = max{||Y (z)|| : z ∈ [p1, q1]∗} the equality of (2.1) shows that

c.�([p, q]∗) ≤
∣∣∣∣∣
∫

[p1,q1]∗
||Y (s)||ds

∣∣∣∣∣ ≤ d�([p1, q1]∗).

As c > 0, statement (b.2) holds.
From (b.1) and (b.2) we obtain that the arc [q1,∞) is bounded, because the

distance from any point q ∈ [q1,∞) to the compact arc [p1, p2] is smaller than K.
This contradiction gives the proposition. �

Corollary 2.4. For every Y which satisfies the conditions of Proposition 2.3, both
vector fields −Y and Y have no pseudo-hyperbolic sector at infinity.

Proof. We refer the reader to Proposition 2.3. �

3. Centers with global period annulus

In this section we present the proof of Theorem A. Thus, we will need the next
lemma, which can be deduced from Theorem 2.1 of [11].

Lemma 3.1. If Y is as in Theorem A, the map associated to Y is globally injective.

An important consequence of this lemma is that the injective vector fields of
Theorem A are free of singularities in a neighborhood of infinity.
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Proposition 3.2. Take Y : R2 → R2 to be a local homeomorphism with Y (0) = 0.
If there exists a constant σ > 0 for which the restriction Y |

R2\Dσ
is differentiable

and Spc(Y |
R2\Dσ

) ⊂ {z ∈ C : �(z) = 0} \ {0}, then, for any pair of trajectories
γp and σp of Y both contained in R2 \ Dσ and passing through the same point
p ∈ R

2 \ Dσ, we obtain that γp = σp. Moreover, Y has a center type performance
at infinity.

Proof. The uniqueness of the trajectories contained in R
2\Dσ follows directly from

Remark 2.2. Therefore we only consider the second affirmation.
By Lemma 3.1, the associated map Y : R2 → R2 is injective and Y (0) = 0.

Therefore, we can apply Corollary 2.4 and obtain that:

(a) The injective vector fields −Y and Y have no pseudo-hyperbolic sector at
infinity.

From this we can prove the next

Assertion: There exists an unbounded sequence of periodic trajectories.

Proof of the assertion. Suppose that Y has no unbounded sequence of periodic tra-
jectories. Thus,

(b.1) there is s > σ such that Y has neither singularities nor periodic trajectories
in R2 \ Ds.

We can apply the results of [14, pp. 166-174] to the (fixed point free) flow induced
by Y |

R2\Ds
and obtain that for any circle C ⊂ R

2 \Ds surrounding the origin with
a finite number of tangencies, the Brouwer degree deg(Y |C) satisfies

deg(Y |C) =
2 − ne(Y, C) + ni(Y, C)

2
,

where ne(Y, C) (resp. ni(Y, C)) is the number of tangent points of C with Y that
are “external” to D(C) (resp. “internal” to D(C)).

(b.2) We claim that if Cs ⊂ R
2 \ Ds minimizes ni(Y, Cs), then every internal

tangency in Cs gives a pseudo-hyperbolic sector at infinity.

For every internal tangency q ∈ Cs we consider the forward Poincaré map T :
[p, q)s ⊂ Cs → Cs induced by Y (if T : (q, r]s ⊂ Cs → Cs, we obtain a pseudo-
hyperbolic sector of −Y ) where [p, q)s ⊂ Cs is the maximal connected domain of
definition of T on which this first return map is continuous.

If the arc of trajectory (p,∞) ⊂ γ+
p intersects Cs, we can apply Lemma 24 and

Lemma 25 of [10], so we can deform Cs in a new circle C1 ⊂ R2 \ Ds such that
the number of internal tangencies of C1 with Y is (strictly) smaller than that of
Cs. This is a contradiction. Therefore (p,∞) ⊂ γ+

p is disjoint from Cs. By using
this and our selection of [p, q)s ⊂ Cs, it is not difficult to check that there is a
pseudo-hyperbolic sector of Y whose boundary intersects γ+

p ⊃ (p,∞). Thus, (b.2)
holds.

(b.3) We claim that there exists a circle Cs such that Cs is transverse to Y and
Ds ⊂ D(Cs),

Take a circle Cs as in (b.2). By using (a) we have that deg(Y |Cs
) = 1 and

ni(Y, Cc) = 0. Therefore, we obtain (b.3) from the last formula of the Brouwer
degree.
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We take the circle of (b.3) and consider the compact disk D(Cs). Now we apply
the Green’s formula of [18] to the map z 	→ Y (z). Thus∫

D(Cs)

Trace(DY )dx ∧ dy =
∮

Cs

〈Y (s), η(s)〉ds,

where η(s) is the unitary outer normal vector to Cs and 〈Y (s), η(s)〉 is the inner
product of Y (s) with η(s). Since Cs is transverse to Y we obtain

0 �=
∮

Cs

〈Y (s), η(s)〉ds =
∫

D(Cs)

Trace(DY )dx ∧ dy.

But, the eigenvalue assumption shows that
∫

D(Cs)
Trace(DY )dx ∧ dy = 0. This

contradiction gives the assertion. �

In order to conclude this proof we consider the sequence of the assertion. Since
Y (0) = 0 and Y is injective, we obtain that:

(c) There exists an unbounded set of periodic trajectories {Γ, Γ1, Γ2, . . . , Γn, . . . }
such that Dσ is a proper subset of D(Γ) and

D(Γ) ⊂ D(Γ1) ⊂ D(Γ2) ⊂ · · · ⊂ D(Γn) ⊂ · · · .

Moreover, we can assume that R2 \ D(Γ) has no singular points of Y.

(d) We claim that the elements of R2 \ D(Γ) are periodic points.
For each p ∈ R2 \ D(Γ) there exists a compact annulus An = D(Γn) \ D(Γ)

containing p. Hence, the trajectory starting at p and its two limit sets are contained
in An, that is, γp ⊂ An and α(γ−

p )∪ω(γ+
p ) ⊂ An. Therefore, the Poincaré–Bendixon

Theorem implies that both limit sets α(γ−
p ) and ω(γ+

p ) are periodic trajectories of
Y = (f, g) surrounding D(Γ).

To proceed we can assume that ω(γ+
p ) is clockwise oriented because, in the other

case, the construction is similar.
By using the trajectory γ∗

q of Y ∗ = (−g, f) for some q ∈ ω(γ+
p ), it is not difficult

to see that there are two arcs of trajectories [p1, p2] ⊂ γ+
p and [p1, p2]∗ ⊂ γ∗

q (or
[p2, p1]∗ ⊂ γ∗

q when γ+
p surrounds the disk bounded by ω(γ+

p )). These two arcs
bound a compact set B ⊂ An where we can apply the Green’s formula to the map
z 	→ Y (z). This formula implies that

(3.1)

∣∣∣∣∣
∫

[p1,p2]∗
||Y (s)||ds

∣∣∣∣∣ = 0.

As [p1, p2]∗ is free of singularities, we have that p1 = p2. Therefore, γp is periodic.
This implies (d). We conclude this proof from Definition 1.1. �

Corollary 3.3. Let Y : R2 → R2 be a globally injective local homeomorphism
with Y (0) = 0. Suppose that there is σ > 0 such that Y |

R2\Dσ
is differentiable and

Trace(DY |
R2\Dσ

) = 0. Then, the trajectories of Y |
R2\Dσ

are unique and Y has a
center type performance at infinity.

Proof. There are constants s1 > 0 and c > 0 for which ||z|| > s1 implies that
||Y (z)|| ≥ c. So, Corollary 2.4 shows that the injective vector fields −Y and Y have
no pseudo-hyperbolic sector at infinity. Therefore, we obtain this corollary from a
slight change in the proof of Proposition 3.2. �
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Before continuing, let us recall that the Local Inverse Function Theorem is also
true for differentiable maps whose Jacobian determinant is always different from
zero; see [3, 19] and its references.

3.1. Proof of Theorem A. By Proposition 3.2, it suffices to prove that all the
elements in D(Γ) \ {0} are periodic points, where Γ is the periodic trajectory given
by Definition 1.1.

(a) We claim that for each p ∈ D(Γ) \ {0}, at least one of its limit sets is a
periodic trajectory.

Suppose, by contradiction, the existence of some p ∈ D(Γ) \ {0} for which (a)
is false. Since the compact set D(Γ) contains the trajectory at every one of its
points, Lemma 3.1 and the Poincaré–Bendixson Theorem imply that ω(γ+

p ) =
α(γ−

p ) = 0. Let Y = (f, g), consider the orthogonal vector field Y ∗ = (−g, f) and a
trajectory of Y ∗ starting at p, say γ∗

p . We take the semi-trajectory of γ∗
p which goes

into the compact set bounded by γp ∪ {0}. To proceed we can suppose that this
semi-trajectory is the positive one, that is, (γ∗

p)+. Thus the Poincaré–Bendixson
Theory [14, p. 151] implies that ω((γ∗

p)+) = {0}. Hence, γ−
p ∪ (γ+

p )∗ ∪ {0} bounds
a compact set where we can apply the Green’s formula to the map z 	→ Y (z). This
formula implies that ∣∣∣∣∣

∫
(γ∗

p )+
||Y (s)||ds

∣∣∣∣∣ = 0.

This contradiction proves (a).
In order to conclude the proof we consider p ∈ D(Γ) \ {0}. From (a), ω(γp) or

α(γp) is periodic. Since D(Γ) \ {0} is free of singular points of Y we can proceed
as in the proof of (3.1) and obtain that p is periodic. Therefore, Theorem A holds.

Corollary 3.4. Let Y : R
2 → R

2 be a differentiable vector field with det(DY ) �= 0.
Suppose that Y is globally injective, Y (0) = 0 and Trace(DY ) = 0. Then the origin
is a center whose period annulus is R2 \ {0}.

Proof. We refer the reader to Corollary 3.3 and the proof of Theorem A. �

4. Center type performance at infinity

This section is devoted to extending the result of the previous section to a vector
field defined on a neighborhood of infinity which can be a proper subset of the
plane. To this end, we shall need the following result contained in [11].

Theorem 4.1. Let X : R
2 \ Dσ → R

2 be a differentiable vector field. If for some
ε > 0, Spc(X) ∩ (−ε, +∞) = ∅, then there exists s ≥ σ such that X|

R2\Ds
can be

extended to a globally injective local homeomorphism X̃ : R2 → R2.

As an application of this theorem and the results of Section 3 we obtain the next
theorem.

Theorem B. Let X : R
2 \ Dσ → R

2 be a differentiable vector field. If Spc(X) ⊂
{z ∈ C : �(z) = 0} \ {0}, then for any p ∈ R2 \ Dσ there exists a unique trajectory
starting at p. Moreover, there is a constant v ∈ R

2 such that X + v has a center
type performance at infinity.
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Proof. Let X̃ : R2 → R2 be the topological embedding given in Theorem 4.1. Set
v = −X̃(0) and consider the global injective map X̃ + v which sends the origin
into itself. Therefore, Y := X̃ + v satisfies Proposition 3.2. Since Y = X + v in a
neighborhood of infinity, we conclude the proof. �
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