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GENERALIZING A THEOREM OF P. HALL
ON FINITE-BY-NILPOTENT GROUPS

GUSTAVO A. FERNÁNDEZ-ALCOBER AND MARTA MORIGI

(Communicated by Jonathan I. Hall)

Abstract. Let γi(G) and Zi(G) denote the i-th terms of the lower and upper
central series of a group G, respectively. In 1956 P. Hall showed that if γi+1(G)
is finite, then the index |G : Z2i(G)| is finite. We prove that the same result
holds under the weaker hypothesis that |γi+1(G) : γi+1(G) ∩ Zi(G)| is finite.

1. Introduction

If G is an arbitrary group, a classical theorem of Schur shows that if the center
Z(G) has finite index in G, then the derived subgroup G′ is finite. More precisely,
if |G : Z(G)| = n, then |G′| ≤ f(n) for some function f (see [6, page 102] for an
explicit description of f). Schur’s theorem was later generalized by Baer (see [5,
4.5.1]) to other terms of the upper/lower central series; namely, he proved that if
|G : Zi(G)| is finite, then γi+1(G) is also finite. The converse does not hold in
general; however in [2], P. Hall obtained that if γi+1(G) is finite, then |G : Z2i(G)|
is finite, thus proving that finite-by-nilpotent groups are nilpotent-by-finite. Note
that both Baer’s and Hall’s results can be stated quantitatively. (See the remark
after Theorem 2.2 below and [6, page 118], respectively.) A stronger form of Hall’s
result is known for the case i = 1: it suffices to assume that |G′ : G′ ∩ Z(G)| is
finite in order to conclude the finiteness of |G : Z2(G)|. This result was obtained
(in quantitative form) by Isaacs in [3] when G is finite, and then independently by
Fernández-Alcober and Moretó [1, Theorem E], and by Podoski and Szegedy [4,
Theorem 1] when G is an arbitrary group. The goal of this paper is to prove the
following generalization of this last property to an arbitrary value of i.

Theorem A. Let G be a group such that n = |γi+1(G) : γi+1(G)∩Zi(G)| is finite.
Then |G : Z2i(G)| is finite and can be bounded by a function of n.

We have made no attempt at giving a sharp bound for |G : Z2i(G)| in terms of
n in Theorem A. In the case i = 1, a bound which is essentially best possible can
be found in [4].

Related to Theorem A, the following two questions arise naturally:
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(1) To what extent is Theorem A best possible? If the weaker condition that
|γi+1(G) : γi+1(G) ∩ Zi+1(G)| is finite holds, can we conclude that |G :
Z2i(G)| is finite?

(2) In the case that γi+1(G) is finite, if G is also finitely generated, then a
stronger result holds, namely |G : Zi(G)| is finite. Is this true also under
the hypothesis of Theorem A? Does it follow at least that |G : Zj(G)| is
finite for some j smaller than 2i?

The answer to both these questions is negative. To see this, for arbitrary c, consider
a finitely generated nilpotent group G of class c in which the upper and lower central
series coincide and such that |G : Zc−1(G)| is infinite. For example, one can take the
semidirect product G = B � A, where B = 〈b〉 is an infinite cyclic group, A is the
free abelian group on free generators a1, . . . , ac, and b acts on A by ab

i = aiai+1 for
1 ≤ i ≤ c−1 and ab

c = ac. Now if i ≥ 1 is any fixed integer, we get counterexamples
to the first and the second questions by choosing c = 2i+1 and c = 2i, respectively.

Finally, we observe that combining our result with Baer’s theorem it follows that
if |γi+1(G) : γi+1(G) ∩ Zi(G)| is finite, then γ2i+1(G) is also finite. Actually, one
of the key arguments in our proof of Theorem A is the following generalization of
this fact, which might be interesting in its own right.

Theorem B. Let G be a group such that |γs(G) : γs(G)∩Zt(G)| is finite for some
s, t. Then |γs+j(G) : γs+j(G) ∩ Zt−j(G)| is finite for every j such that 0 ≤ j ≤ t.
In particular, γs+t(G) is finite.

2. The results

The notation we use is standard. Moreover, following the book [5], if A and B
are subgroups of a group G and n is a natural number, we define recursively:

[A, 0B] = A, [A, nB] = [A, n−1B, B].

Throughout the paper, we will repeatedly use the following well-known result
(see for instance 5.1.10 in [5]).

Three Subgroup Lemma. Let H, K, L be subgroups of a group G. If two of
the commutator subgroups [H, K, L], [K, L, H], [L, H, K] are contained in a normal
subgroup of G, then so is the third.

Another result which will be used often in our proofs is stated for convenience
in the following lemma, whose proof is elementary. Most of the time, we will apply
it modulo a normal subgroup.

Lemma 2.1. Let H, K be subgroups of a group G. If [H, K] is finite and H is
finitely generated, then the centralizer CK(H) has finite index in K. More precisely,
if [H, K] has order n and H is m-generated, then |K : CK(H)| ≤ nm.

We will also need the following result of Baer. The quantitative version stated
below follows easily from the proof of 14.5.2 in [5].

Theorem 2.2. Let M ≤ H and N ≤ K be normal subgroups of a group G such
that |H : M | = h and |K : N | = k are finite and [H, N ] = 1 = [K, M ]. Then [H, K]
is finite and its order is at most hkf(hk)2, where f is the function arising in the
quantitative form of Schur’s theorem.
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As a consequence of this result, one can easily obtain Baer’s theorem stating
that γi+1(G) is finite if |G : Zi(G)| is. (See [5, 14.5.1].) It follows that the order
of γi+1(G) can be bounded by a function of |G : Zi(G)|, as mentioned in the
introduction.

The key step in the proof of our main theorem is in the following proposition.

Proposition 2.3. Let G be a group and let s ≥ 1 be an integer such that |γs(G) :
γs(G) ∩ Z(G)| is finite. Then CG (γs(G)) has finite index in G and γs+1(G) is
finite.

Proof. Let Z = γs(G) ∩ Z(G). As γs(G)/Z is finite, there exists a finitely gener-
ated subgroup U of G such that γs(G) = γs(U)Z. By applying P. Hall’s theorem
to the quotient group G/Z(G), we obtain that |G : Z2s−1(G)| is finite. By the the-
orem of Baer mentioned in the introduction, it follows that γ2s(G) is finite. Since
γk(U)/γk+1(U) is finitely generated for every k = 1, . . . , 2s − 1, we conclude that
all terms of the lower central series of U are finitely generated.

We are going to prove that, for every j = 1, . . . , s, there exists a subgroup
Hj of finite index in γj(G) such that [Hj , γs−j+1(U)] = 1. Then [H1, γs(G)] =
[H1, γs(U)Z] = [H1, γs(U)] = 1, which proves that |G : CG(γs(G))| is finite.

We prove the existence of Hj by reverse induction on j. For j = s, we take
Hs = Z. Suppose now that we already have Hj+1 of finite index in γj+1(G)
such that [Hj+1, γs−j(U)] = 1, and let us see how to construct the subgroup
Hj . Let Kj = Cγj(G)(γs−j(U)Z/Z). Since γs−j(U)Z/Z is finitely generated and
[γj(G), γs−j(U)]Z/Z ≤ γs(G)/Z is finite, it follows from Lemma 2.1 that Kj has
finite index in γj(G). Also

(1) [Kj , γs−j(U), U ] ≤ [Z, U ] = 1.

Let now Dj+1 = Cγj+1(G)(γs−j(U)). Since [Hj+1, γs−j(U)] = 1, we have Hj+1 ≤
Dj+1 and consequently |γj+1(G) : Dj+1| is finite. Consider Tj = γj(G)U . We claim
that Dj+1 is normal in Tj . On the one hand, clearly U normalizes Dj+1. On the
other hand, we have [γj(G), γs−j(U), Dj+1] ≤ [γs(G), Dj+1] = [γs(U)Z, Dj+1] = 1
and [γs−j(U), Dj+1, γj(G)] = 1 by the definition of Dj+1. By the Three Subgroup
Lemma, [Dj+1, γj(G), γs−j(U)] = 1 and consequently also γj(G) normalizes Dj+1.

Now we work in the quotient group Tj/Dj+1. Since [γj(G), U ]Dj+1/Dj+1 ≤
γj+1(G)/Dj+1 is finite and U is finitely generated, it follows that the centralizer Lj

of UDj+1/Dj+1 in γj(G) has finite index in γj(G). Observe that

(2) [Lj , U, γs−j(U)] ≤ [Dj+1, γs−j(U)] = 1.

Finally, let Hj = Kj ∩ Lj . Then |γj(G) : Hj | is finite. Moreover, using (1) and
(2) and the Three Subgroup Lemma we obtain that [γs−j(U), U, Hj ] = 1, that is,
[γs−j+1(U), Hj ] = 1, as desired.

Now in order to prove that γs+1(G) is finite we apply Theorem 2.2 with M =
CG(γs(G)), H = G, N = γs(G)∩Z(G) and K = γs(G). It follows that [G, γs(G)] =
γs+1(G) is finite. �

Let us remark that if N is a normal subgroup of a group G and |N : N ∩ Z(G)|
is finite, it does not follow that |G : CG(N)| or [N, G] is finite. For example, let p
be a prime and let H and N be two elementary abelian p-groups with countable
bases {xi}i≥1 and {yj}j≥0, respectively. We define an action of H on N so that
xi centralizes all yj with j ≥ 1 and yxi

0 = y0yi. Then in the semidirect product
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G = H � N we have |N : N ∩ Z(G)| = p, but both |G : CG(N)| and [N, G] are
infinite.

Corollary 2.4. Let G be a group such that |γs(G) : γs(G)∩Zt(G)| is finite for some
s, t. Then |γs+j(G) : γs+j(G) ∩ Zt−j(G)| is finite for every j such that 0 ≤ j ≤ t.
In particular, γs+t(G) is finite.

Proof. By induction on t it suffices to prove that |γs+1(G) : γs+1(G) ∩ Zt−1(G)| is
finite. This follows immediately by applying Proposition 2.3 to the quotient group
G/Zt−1(G). �

The last part of the proof of Theorem A is inspired from Hall’s ideas. The
main role will be played by a subgroup C with the two properties that C has finite
index in G and [C, s−1G, C] ≤ Z2i−s(G) for every s ≥ 1, with the convention that
Zj(G) = 1 for j ≤ 0. The following technical lemma will ensure that C has the
second property.

Lemma 2.5. Let G be a group and let Cj be the centralizer in G of γi+j(G)/γi+j(G)
∩ Zi−j(G) for j = 1, . . . , i. Put C =

⋂i
j=1 Cj; then [C, s−1G, C] ≤ Z2i−s(G) for

every s ≥ 1.

Proof. Observe that C is normal in G and so is [C, kG] for every k. We first prove
by induction on k that

(3) [[C, kG], γ�(G)] ≤ Z2i−k−�(G) for all k ≥ 0 and for all � ≥ i + 1.

By definition of C, we have [C, γ�(G)] ≤ Z2i−�(G) for all � ≥ i + 1 and this set-
tles the case k = 0. Assume now that the statement is true for k. We have
[γ�(G), [C, kG], G] ≤ [Z2i−k−�(G), G] ≤ Z2i−k−�−1(G). Also, [G, γ�(G), [C, kG]] =
[γ�+1(G), [C, kG]] ≤ Z2i−k−�−1(G). So by the Three Subgroup Lemma, it follows
that

[[C, k+1G], γ�(G)] = [[C, kG], G, γ�(G)] ≤ Z2i−k−�−1(G),
which proves the statement for k + 1.

Now, in order to prove the lemma, we need to show that [C, s−1G, C, 2i−sG] =
1 for every s = 1, . . . , 2i. We use the formula in the proof of 14.5.4 of [5],
which says that if M, N are normal subgroups of a group G, then [[M, N ], nG] ≤∏n

�=0

[
[M, n−�G], [N, �G]

]
. Applying this with M = [C, s−1G], N = C, we have

[C, s−1G, C, 2i−sG] ≤
2i−s∏

�=0

[
[C, 2i−�−1G], [C, �G]

]
.

If 0 ≤ � ≤ i − 1, then 2i − � ≥ i + 1, and since [C, 2i−�−1G] ≤ γ2i−�(G), we have
[[C, 2i−�−1G], [C, �G]

]
= 1 by (3). If � ≥ i, then we can argue similarly, since

[C, �G] ≤ γ�+1(G). �
Theorem 2.6. Let G be a group such that |γi+1(G) : γi+1(G) ∩ Zi(G)| is finite.
Then |G : Z2i(G)| is also finite.

Proof. Let Cj be the centralizer in G of γi+j(G)/(γi+j(G)∩Zi−j(G)) for j = 1, . . . , i.
Since |γi+j(G) : γi+j(G) ∩ Zi−j+1(G)| is finite by Corollary 2.4, we can apply
Proposition 2.3 to the quotient group G/Zi−j(G), and it follows that |G : Cj | is
finite. Let C =

⋂i
j=1 Cj , which also has finite index in G.

For every s = 1, . . . , i + 1, put Ks = [C, s−1G], which is contained in γs(G). We
prove by reverse induction on s that Ks ∩ Z2i−s+1(G) has finite index in Ks. For
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s = i+1 the statement is true, as |Ki+1 : Ki+1∩Zi(G)| ≤ |γi+1(G) : γi+1(G)∩Zi(G)|
is finite by hypothesis. Now assume that Z = Ks+1 ∩ Z2i−s(G) has finite in-
dex in Ks+1. As C has finite index in G, we have G = 〈g1, . . . , gm, C〉 for some
g1, . . . , gm ∈ G. Let U = 〈g1, . . . , gm〉 and let Hs be the centralizer of UZ/Z
in Ks. Since [Ks, U ]Z/Z ≤ Ks+1/Z is finite and U is finitely generated, the
subgroup Hs has finite index in Ks. Moreover, [Hs, U ] ≤ Z ≤ Z2i−s(G) and
[Hs, C] ≤ [Ks, C] ≤ [C, s−1G, C] ≤ Z2i−s(G), where the last inclusion follows from
Lemma 2.5. Hence [Hs, G] = [Hs, UC] ≤ Z2i−s(G) and Hs ≤ Z2i−s+1(G), which
completes the induction.

In particular, for s = 1 we obtain that |C : C ∩ Z2i(G)| is finite. Consequently
|G : Z2i(G)| ≤ |G : C ∩ Z2i(G)| = |G : C| |C : C ∩ Z2i(G)| is finite, and we are
done. �

In order to conclude the proof of Theorem A, it only remains to check that
the index |G : Z2i(G)| can be actually bounded in terms of n = |γi+1(G) :
γi+1(G) ∩ Zi(G)|. This depends on the fact that, in the proofs of Proposition
2.3 and Theorem 2.6, every time that we deduce the finiteness of the order or index
of a subgroup, we are using one of the following results in a situation where all the
invariants involved are bounded in terms of n:

(1) Lemma 2.1,
(2) Lemma 2.2,
(3) Baer’s theorem mentioned in the introduction,
(4) Hall’s theorem mentioned in the introduction.

For each of these, we have already indicated that there is a quantitative version,
and hence Theorem A is now completely proved.
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