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ON NOETHERIAN AFFINE PRIME REGULAR HOPF
ALGEBRAS OF GELFAND-KIRILLOV DIMENSION 1
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(Communicated by Martin Lorenz)

ABSTRACT. Let k be an algebraically closed field. In 2007, D.-M. Lu, Q.-S.
Wu, and J. J. Zhang asked the following question: Besides the group algebras
kZ, kD and infinite dimensional prime Taft algebras, are there other noetherian
affine prime regular Hopf algebras of GK-dimension 1?7 In this paper, we
give a new one. Another problem posed by Lu, Wu, and Zhang can also be
resolved by this example. Assuming H is a noetherian affine prime regular

Hopf algebra of GK-dimension 1, we show that grH := @, - Jisq/qu"'l, as

a Hopf algebra, is isomorphic to an infinite dimensional prime Taft algebra.
This gives a characterization of infinite dimensional prime Taft algebras.

1. INTRODUCTION AND PRELIMINARIES

Although some of the results are valid under weaker hypotheses, we assume for
simplicity of the exposition that our ground field k is algebraically closed. All
modules are left modules.

A long time ago, we didn’t know how to define the left and right integrals of an
infinite dimensional Hopf algebra. The pioneering effort in this direction is [6]. In
this nice paper, by using homological properties, the authors define the integrals
for a large class of infinite dimensional Hopf algebras as follows. We say a Hopf
algebra H is AS-Gorenstein (where AS stands for Artin and Schelter) if

(AS1) g H has finite injective dimension, say d,

(AS2) dimgExt},(gk,n H) = 1, Extl; (gk,;r H) = 0 for all i # d, and

(AS3) the right H-module versions of the conditions (AS1, AS2) hold.

Moreover, we say a Hopf algebra H is AS-regular if it is AS-Gorenstein and
it has finite global dimension. AS-Gorensteinness seems strange at first glance,
but many noetherian Hopf algebras are AS-Gorenstein. For example, every noe-
therian affine PI Hopf algebra is AS-Gorenstein [I2]. For an AS-Gorenstein Hopf
algebra H of injective dimension d, the left homological integral [ " is defined to
be the 1-dimensional H-bimodule Ext% (yk,; H). If H is finite dimensional, the
left homological integral agrees with the classical left integral. The right homo-
logical integral can be defined similarly. By homological integrals, the authors of
[6] generalize the classical result of Larson and Sweedler about finite dimensional
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Hopf algebras; that is, a finite dimensional Hopf algebra has global dimension 0 if
and only if e( [ ") # 0, to some infinite dimensional case. They also use homological
integrals to study infinite dimensional Hopf algebras of low Gelfand-Kirillov dimen-
sions (denoted by GK-dimension for short), especially of GK-dimension 1, and ask
the following question (Question 8.4 of [6]):

(Q*) Besides the group algebras kZ, kD and infinite dimensional Taft algebras,
are there some other examples of noetherian affine prime regular Hopf algebra of
GK-dimension 17

Here D is the infinite dihedral group. Note that in the commutative case, a prime
ring is the same as an integral domain. Thus if H is a commutative affine prime
regular Hopf algebra of GK-dimension 1, then it is an affine integral regular com-
mutative Hopf algebra of Krull dimension 1 and the corresponding affine variety
is a connected algebraic group of dimension 1. Therefore, question (Q+) general-
izes the well-known facts about the classification of connected algebraic groups of
dimension 1 (see Theorem 20.5 in [3]).

One of the main aims of this paper is to give an answer to (Q+*). A new example
of a noetherian affine prime regular Hopf algebra of GK-dimension 1 is given in
Section 2. For a noetherian affine prime regular Hopf algebra H of GK-dimension
1, it should fit into a short exact sequence (see (E0.2.2) of [0]):

0—Hy— H— Hj; — 0,

where H. = H¢ia. The authors of [6] also ask the following question (Remark
7.2 (b) in [@]):

(Q+x) Can H be equipped with a Hopf structure making the above exact sequence
mto a “twisted” short exact sequence of Hopf algebras?

The new example constructed in Section 2 will give a negative answer to this
question.

Although this example makes the situation of noetherian affine prime regular
Hopf algebras of GK-dimension 1 more complicated, the graded versions of them
are the same. Indeed, denote the characteristic of k£ by char k and the integral order
(for definition, see the paragraph before Lemma 3.2) of H by io(H). Then we have
the following result.

Theorem 1.1. Let H be a noetherian affine prime regular Hopf algebra of GK-
dimension 1 such that chark t io(H). Then gr H is an infinite dimensional prime
Taft algebra.

Here grH is defined as follows. Let H be a noetherian affine PI Hopf algebra and
J" be its right homological integral. For an H-module M, we denote l.anny (M)
the set of left annihilators of M. It is an ideal. For two H-modules M, N, M ®; N
is an H-module through the coproduct A. We define J;q := ﬂpl.annH((fr)@’),
which is a Hopf ideal (see Sections 4, 6 of [6]). From this, we can construct its
graded Hopf algebra grH := @, J5, /T3

This theorem improves Conjecture 2.1 in this paper and also gives a charac-
terization to infinite dimensional prime Taft algebras; that is, infinite dimensional
prime Taft algebras are graded noetherian affine prime regular Hopf algebras of
GK-dimension 1. We refer to [9] for basic definitions and properties about general
Hopf algebras and to [2, 6], [12] for some known results and for questions concerning
the homological properties and homological integrals of noetherian affine PI Hopf
algebras.
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2. EXAMPLE
For later use, we first introduce infinite dimensional Taft algebras.

Example 2.1 (Example 2.7 and Example 7.3 of [6]). Let n,m and ¢ be integers
and g be an n-th primitive root of unity. Let H be the k-algebra generated by x
and g with relations
g =1and zg = ¢"gzx.

The comultiplication A, counit €, and antipode S are given by

Alg)=g®g, Alr)=¢@z+r®l,

e(g)=1, e(x)=0,

S(g)=9g"" Sx)=—g 'x
This H is called an infinite dimensional Taft algebra. It is easy to see that H is
prime if and only if ¢ is also an n-th primitive root of unity. It is a noetherian
affine PI Hopf algebra of global dimension 1. The right homological integral of H is
isomorphic to H/(z,g—q™) as left H-modules. Thus, if H is prime, then io(H) =n
and H;, = H/(z) = k(g) = kZ,.

Next, we will construct our example. Consider the associative algebra A(n,q)
which is generated by x, ¢ and ¢g~! with the relations

g9 ' =g 'g=1, xg=qgz, 2" =1—g",

where ¢ € k is an n-th primitive root of unity. The comultiplication, counit and
antipode on A(n,q) are defined by

Alg)=9g®yg, Alx)=z1+gQu,
eg)=1 &) =0,
S(9)=97"  S)=-¢ 'z
For simplicity, we denote A(n,q) by A in this section.
Proposition 2.1. With operations defined as above, A is a Hopf algebra.
Proof. The proof is standard. We decompose it into several steps.

Step 1 (A is an algebra map). To show this, it is enough to show that

(1) Alg)Alg™) =A™ HA(g) =1@1,
2) A(#)A(g) = gA(9)A(x),
(3) Alz)"=101-g"®@g".
We only show (3) since the others are easy. For (3),
Alz)" = (®14+g®x)"
; ( P )qg HA

n—1
=1 q

= 1-¢"®1+g"0(1-9¢g")=101-g"®4".
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(n)'q
' T (n—i)l,
where i!, = 1, i, and iy = 1+ g+ -+ + ¢"~*. For the fourth equality we have
used the fact that

Here (?)q is the Gaussian binomial coefficient which is defined by (Ti‘)q =

<Z‘) —0 for 1<i<n-—1.
q

Step 2 (A is coassociative). By Step 1, it is enough to check this for generators
g,9~ ', z. That is, we need to show that

(id © A)A(y) = (A ®@id)A(y)

'and y = 2. But these are direct.

fory =g, y=9"
Step 3 (S is an algebra anti-homomorphism and e is an algebra morphism). To
show that S is an algebra anti-homomorphism, it is sufficient to verify the following
identities:

(4) S(9)S(g~") =5S(g")S(g) =1,
(5) S(9)S(x) = qS(x)S(g),
(6) S@)t=1—g"

We only show (6) since the others are easy. In fact,

n

S@)" = (~g7'a)-...-(~g 'x)
_ (71)nq7(1+--~+(n71))gfnxn
n —n=b _, n
(D" 7 g (1—g")
n(n—1)

= (D" 7 (g"-1).
Thus to show (6), we need to show that

n(n—1)

(%) (=" 7 =-L

If n is odd, (x) is clear. If n is even,

| =

(1) = (-3 =

w3

q

By (¢2)? = ¢" = 1 and ¢ is an n-th primitive root of unity, g2 = —1. Therefore,
(x) is always true.
To show ¢ is an algebra morphism, we need to show that

e(9)e(g™") =elg™Nelg) = 1, e()e(g) = ge(g)e(x), and e(z)" =0.
But these are easy.

Step 4. We have (e ® id)A(z) = z = (id @ €)A(z), 2 S(Z") =¢e(z) = S(2')2" for
z€ A and A(z) = 2/ ® 2”. Here we omit the summation notation for simplicity.

Indeed, by Step 3, we need only to check these equalities for z = g, 2 = ¢~ and
z = x. But these are straightforward.
By Steps 1, 2, 3, 4, we know A is a Hopf algebra. (I

For this Hopf algebra, the following lemma is obvious.

Lemma 2.2. A is noetherian affine.
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For any algebra B, we use GK(B) to denote the GK-dimension of B.
Lemma 2.3. A is Pl and GK(A) = 1.
Proof. Clearly, A is a finite module over k(g) = kZ which is commutative of GK-
dimension 1. Thus 4 is PI, and by Proposition 8.2.9 (ii) in [§],
GK(A)=GK(kZ) = 1.
O

For an algebra B and a subset I C B, denote by (I) the ideal generated by the
set I. The global dimension of B is denoted by gl.dimB and for a B-module N,
the projective dimension of gV is denoted by p.dimpg V.

Lemma 2.4. gl.dimA = 1.

Proof. Denote by M the trivial A-module k. By [5], it is enough to show that
p.dima M = 1.

Clearly z is a regular element (i.e. x is not a zero divisor) of A. Since zM = 0,
M cannot be a submodule of a free A-module and this implies p.dim4 M # 0.

Let I = (z). Since z is a regular element of A, Az = A as A-modules. This
implies p.dim4(A/I) = 1. Thus for any free A/I-module F', we have p.dimaF = 1.
Note that A/I = kZ,, which is semisimple (chark { n since we assume that we
have an n-th primitive root of unity). Thus 4,;M is a direct summand of a free
A/I-module, and hence p.dimyq M = 1. O

Recall that Ji; =1, Lanng (([")®P) for any Hopf algebra H with homological
integral. The following conclusion is Lemma 6.9 in [6].

Lemma 2.5. Let H be a noetherian regular affine PI Hopf algebra and Py the
minimal prime ideal of H contained in Kere. If GK(H) =1, then Py =(),, JJ; -

Lemma 2.6. A is prime.

Proof. Here we freely use some of the notation in [0].
Note that x is a normal element with zh = 7(h)z for all h € A and where

T: g qg, v+ x. Since A’ = A/(x) = kZ,, f/g, =k =A/(x,g —1). By

Lemma 2.6 in [6],
/- S(//j) - S((/llr‘l)  Afag—a).

Thus l.ann f{: = (z,9 — q). By direct computation, we can find that
,
T = anna(( [ )%7) = (.97 = 1) = (@),
P
Clearly, N,, Jiy = 0 and thus by Lemma 2.5, Py = 0. Therefore, A = A/Py is
prime since Py is a prime ideal. (I

Now we can give the main conclusion of this section.

Theorem 2.7. (i) A is a noetherian affine prime reqular Hopf algebra of GK-
dimension 1.

(ii) As a Hopf algebra, A is not isomorphic to kZ, kD or any one of the infinite
dimensional Taft algebras.
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Proof. (i) is a direct consequence of Proposition 2.1, Lemma 2.2-2.4 and Lemma 2.6.

For (ii), consider the groups of all group-like elements of these Hopf algebras; we
can find that only kZ has the same group as A. But, clearly, kZ is not isomorphic
to A. O

Remark 2.8. (i) Theorem 2.7 gives us a new example of a noetherian affine prime
regular Hopf algebra of GK-dimension 1.

(ii) By the proof of Lemma 2.6, A;, := A/J;q = A/(x) = kZ,,. By direct compu-
tations, Ay := A4 is the subalgebra generated by z,¢" and g~™. By Theorem
7.1 in [6], Ay is a commutative domain of Krull dimension 1. We claim that we
cannot equip it with a comultiplication which makes it into a Hopf algebra. In-
deed, if we could, then the corresponding affine variety of A, would be a connected
algebraic group of dimension 1. Thus

A 2 k[X] or Ay = k[XF!]

since we have only two connected algebraic groups of dimension 1 (see Theorem 20.5
in [3]). But these are clearly impossible. This means that we cannot give a Hopf
structure on the algebra A.;, and thus we give a negative answer to (Q*%) given in
the introduction.

(iii) We can generalize the example constructed above slightly. Let ¢, n be natural
numbers satisfying (t,n) = 1. When the characteristic of k is p, we also ask that
ptt. Define the Hopf algebra A(tn,q) as follows.

As an associative algebra, A(tn,q) is generated by x,g and g~
relations

I subject to the

99 =9 lg=1, xg=qgr, 2" =1-g",
where ¢ € k is an n-th primitive root of unity. The comultiplication, counit and
antipode on A are defined by

Alg)=g®g, Alx)=z01+g¢' @z,
e(g) =1, e(z) =0,
S(g) =91, S(z) = —g~tx.

Similarly, we can show that A(tn,q) is also a noetherian affine prime regular
Hopf algebra of GK-dimension 1.

The condition p { ¢ is necessary when chark = p. Indeed, we can show that
A(nt, q) is not regular if p|¢t. To see this, we can assume that A(nt,q) is regular.
By Lemma 5.3 in [6], the global dimension of A(nt,q) must be 1. This implies that
the submodule A(nt,q)z + A(nt,q)(g — 1) is projective. We denote this module
by N. Thus we know that N/(z)N is a projective A(nt,q)/(z) = kZ,;-module.
It is easy to see that the image of x in N/(xz)N is non-zero, and we denote this
image by z too. By (qg — 1)x = x(g — 1) € ()N, x generates a 1-dimensional
kZn+-submodule of N/(z)N. By a direct computation, we can also see that this
1-dimensional submodule is a direct summand of N/(z)N. This means that we
have a projective kZ,;-module of dimension 1. This is absurd.

Conjecture 2.1. For a noetherian affine prime regular Hopf algebra H of GK-
dimension 1, H is isomorphic to one of the following Hopf algebras:

kZ, kD, infinite dimenisonal Taft algebras, A(tn,q).



ON NOETHERIAN AFFINE PRIME REGULAR HOPF ALGEBRAS 783

3. PROOF OF THEOREM 1.1

Of course, Theorem 1.1 improves Conjecture 2.1. To prove this theorem, we
need to recall the definition and some properties of the biproduct (or bosonization,
in Majid’s terminology).

Let H, Hy be Hopf algebras and 7 : H — Hy and « : Hy — H Hopf ho-
momorphisms. Assume that 7t = idp,, so that 7 is surjective and ¢ is injective.
Define

Ry :=H®" ={h e H|(id®T)A(h) = h® 1}.
By a result of Radford (see Theorem 3 of [10]),
H = Ry x Hy as Hopf algebras,

“ ”

where “x” was called the biproduct in [I0] and bosonization in [7]. Knowledge
about the biproduct or bosonization can be found in [I], [7], [10]. We list some
facts, for which we will not give any proof, from [I], [7], [10]:

(Fact i): Ry is a braided Hopf algebra in gg YD, the category of Yetter-Drinfeld
modules over Hy (see [1]). The action - of Hy on Ry is the restriction of the adjoint
action and the coaction is (7 ® id)A ;

(Fact ii): Ry = {hwnS(h")|h € H} and the comultiplication in Ry is given by
Ag, (r)=7"wmSr")@r" for r € Ry;

(Fact iii): As a linear space, Ry x Hy = Ry ® Hp. Its multiplication and
comultiplication are the usual smash product and smash coproduct respectively.
That is, if we denote the comultiplication of Ry by Ag, and write Ag, (r) =
rM @ r® | then for r,s € Ry and h, f € Ho,

(rxh)(sx f)y=r(h"-s)xh"f,
A(r x h) =rD x (r@) )W @ (1)) x b

Now let H be a noetherian affine PI Hopf algebra and grH = @, Ji;,/ qu+1.
The following lemma implies that grH is a Hopf algebra too.

Lemma 3.1. Let H be a Hopf algebra and I < H be an ideal of H. Then gr H :=
H/I®I/I?®--- is a Hopf algebra if and only if I is a Hopf ideal.

Proof. The same conclusion has been proved in [4] when H is finite dimensional
and I is taken to be the Jacobson radical of H (see Lemma 5.1 in []). It is
straightforward to see that the proof given in [4] can be applied to our case directly.

O

Let ¢ : H/Jig = @505/ 55 " be the inclusion and let 7 : @50 5 /I3 —
H/Jiq be the projection with kernel @, J;]/quﬂ. Clearly, 7 is a Hopf algebra
retraction of «. Denote H;, := H/J;y and Rgpy = HHia = {h € grH|(id ®
m)A(h) = h® 1}. Then by the discussions above,

gI‘H = Rng X Hiq-

Let [ " be the right homological integral of H. The integral order of H, denoted
by io(H), is defined to be the minimal positive integer n (or oo if no such n) such
that ([")®" = k as left H-modules, where k denotes the trivial H-module. The
following lemma is the combination of Lemma 4.4 and Lemma 5.3 in [6].
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Lemma 3.2. Let H be a noetherian regular affine PI Hopf algebra. Then
(a) io(H) is finite, say n, and
(b) if char k tio(H), then H;q = kG where G is the cyclic group of order n.

Proof of Theorem 1.1. Let H be a noetherian affine prime regular Hopf algebra
of GK-dimension 1 (it is PI automatically [11]). Then grH = Rg.py x H;q. By
Lemma 3.2, its integral order is finite, n say, and H;; = kG where G = (g|¢g" = 1).
By Lemma 7.6 (b) and the proof of Proposition 7.7 (e) in [6], we know that Re g =
(grH) s = (grH)F = k[z].

By (Fact i), k[z] is a braided Hopf algebra in ¥&YD. Thus k[z] is a coalgebra.
Note that (Fact ii) implies that k[z] is indeed a graded, braided Hopf algebra in
zg\)}D since grH is graded. In particular, the comultiplication of k[z] is graded,
which implies Agp,)(2) = 2 ® 14+ 1® 2. By the definition of coaction (see (Fact i)),
we know kz is a kG-comodule. Therefore, p(z) := z(_1) ® x(9) = 9" ® « for some .
By (Fact iii), Agegr(z x 1) = 2 x (@) @ (@) gy x 1 = (z x 1) ® (1 x 1) +
(1 x ¢') ® (@ x 1). This means that Agp(z) =2 ® 1+ ¢' ® z if we write s X h by
sh for simplicity.

By (Fact i), we know kz is a kG-module and g - = grg~!. This implies
grg~! = qa for some n-th root of unity ¢ € k. Since grH is prime (Proposition 7.7
(d) in [6]), ¢ is a primitive n-th root of unity.

Take an infinite dimensional Taft algebra Ty ; which is generated by y and h with
relations A"™ = 1 and hy = qyh. Its comultiplication is defined to be A(h) =h® h
and A(y) =y ® 1+ h! ® y. Define the map f : T,; — grH by h — g and y — z.
Then clearly f is a surjective Hopf morphism. Since f is injective in the first term
of the coalgebra filtration, f is injective (see Lemma 5.3.3 in [9]). Thus grH is
isomorphic to an infinite dimensional Taft algebra. ]

Remark 3.3. By Theorem 1.1, the class of infinite dimensional prime Taft algebras
is just the class of graded (with respect to the integral quotient ideal J;4) noetherian
affine prime regular Hopf algebras of GK-dimension 1.

Example 3.1. Let D = (g, z|g?> = 1,gxg~! = 27!) be the infinite dihedral group.
In this example, we show that grkDD is indeed an infinite dimensional Taft algebra.
Similarly, we can check Theorem 1.1 for A(n,q). By Example 4.6 in [6], the group
algebra kDD is a noetherian affine prime regular Hopf algebra of GK-dimension 1
and J;; = (x —1). Thus grkD = kD/(z — 1) & (z — 1)/(z — 1) @ ---. Clearly,
in grkD, = — 1 is a non-zero vector which belongs to the part Jiq/qu. Similarly,
since Jiy = (x7! — 1), 7! — 1 is a non-zero vector which also belongs to the part
Jig/Jpy Byx =142 —1=-24x4+2"" = (1 —2")(x— 1), which belongs to
Jiyx =1+t =1=0in Jiy/J7,. Thus, in grkD, (z — 1) + (=" = 1) = 0, which
implies 7! = —x + 2. By the relation gz = !¢ in kD, we have gz = —xg + 2g
in grkD.
Denote z — 1 by y. Then

gy=g9@x—1)=gr—g=-wg+29—g=—-1g+g9g=—(v—-1)g=—yg
and A(y) =Az—1)=(x—-1)®@2x+1® (z—1). But z = 1(mod(xz — 1)). Thus,
in grkD,
Aly) =y®1+1®y.
By the discussions above, grkD 2 k[y] x kZ is an infinite dimensional Taft algebra.
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