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SAGBI BASES FOR RINGS
OF INVARIANT LAURENT POLYNOMIALS

ALEXANDER DUNCAN AND ZINOVY REICHSTEIN

(Communicated by Martin Lorenz)

Abstract. Let k be a field, let Ln = k[x±1
1 , . . . , x±1

n ] be the Laurent polyno-
mial ring in n variables and let G be a finite group of k-algebra automorphisms
of Ln. We give a necessary and sufficient condition for the ring of invariants
LG

n to have a SAGBI basis. We show that if this condition is satisfied, then
LG

n has a SAGBI basis relative to any choice of coordinates in Ln and any
term order.

1. Introduction

Let k be a base field and let Pn = k[x1, . . . , xn] be the polynomial algebra in n
variables. Recall that the initial exponent in(f) of f ∈ Pn \ {0} is defined as the
lexicographically largest (a1, . . . , an) ∈ Nn such that xa1

1 . . . xan
n occurs in f with

a non-zero coefficient. Note that N = Z≥0. If R is a k-subalgebra of Pn, then we
define the semigroup of initial exponents of R as

(1) In(R) = {in(f) : 0 �= f ∈ R} .

A SAGBI basis for R is a finite collection of non-zero elements p1, . . . , pm ∈ R such
that in(p1), . . . , in(pm) generate In(R) as an additive semigroup. If p1, . . . , pm form
a SAGBI basis for R, then these elements generate R as a k-algebra. Moreover, an
explicit representation of an element f ∈ R as a polynomial in p1, . . . , pm can be
found quickly and efficiently by using the subduction algorithm as follows. Choose
a product pa1

1 · · · pam
m , where each ai ∈ N and in(f) = a1in(p1) + · · · + amin(pm).

By selecting λ ∈ k so as to cancel the leading term of f , we can ensure that
in(f − λpa1

1 · · · pam
m ) is strictly lexicographically smaller than in(f). We will write

in(f) � in(f1), where f1 = f − λpa1
1 · · · pam

m . If f1 �= 0, we can repeat this process
on f1 to get f2 and so on. As a result we obtain a sequence f = f0, f1, f2, . . ., such
that

(2) in(f0) � in(f1) � in(f2) � . . . .
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836 ALEXANDER DUNCAN AND ZINOVY REICHSTEIN

Any lexicographically decreasing sequence in Nn has to terminate. Hence, fi = 0
for some i ∈ N. In other words, the algorithm will terminate after i steps and will
yield a desired expression for f as a polynomial in p1, . . . , pm.

The reader will undoubtedly notice a strong resemblance between a SAGBI basis
for a subalgebra of Pn and a Gröbner basis for an ideal of Pn. In fact, the word
“SAGBI”, introduced by Robbiano and Sweedler in [9], is an acronym for “Subalge-
bra Analog to Gröbner Basis for Ideals”. Note, however, that unlike Gröbner bases,
SAGBI bases do not always exist. The question of finding necessary and sufficient
conditions for a subalgebra R ⊂ Pn to have a SAGBI basis is an important open
problem; see, e.g., [10].

One reason this problem is so difficult is that the answer depends on the choice of
the generators x1, . . . , xn for Pn, which is not intrinsic to the embedding R ↪→ Pn.
In other words, suppose g : Pn → Pn is a k-algebra automorphism and yi = g(xi)
for i = 1, . . . , n. We will refer to y1, . . . , yn as another choice of coordinates in
Pn. Writing a non-zero element f ∈ Pn as a polynomial in y1, . . . , yn, we obtain
a new initial exponent iny(f) and a new semigroup of initial exponents Iny(R) =
{iny(f) | 0 �= f ∈ R}. In this situation it may happen that In(R) is a finitely
generated semigroup and Iny(R) is not; see, e.g., [5]. Equivalently, g−1(R) may
have a SAGBI basis (relative to x1, . . . , xn) even if R does not.

The dependence on the choice of coordinates is lessened (but not entirely elim-
inated) if we replace the polynomial ring Pn = k[x1, . . . , xn] by the ring Ln =
k[x±1

1 , . . . , x±1
n ] of Laurent polynomials for the simple reason that the automor-

phism group Aut(Ln) is much “smaller” and better understood than Aut(Pn). Let
R be a k-subalgebra of Ln. The initial exponent in(f) is now an element of Zn,
and In(R) is a subsemigroup of Zn. The subduction algorithm is defined in the
same way as before. The only difference is that the lexicographically decreasing
sequence (2) in Z

n is no longer guaranteed to terminate. For this reason the def-
inition of a SAGBI basis is modified in this setting to require the termination of
the subduction algorithm; cf. [8]. That is, p1, . . . , pm ∈ R \ {0} are said to form
a SAGBI basis for a k-subalgebra R ⊂ Ln if in(p1), . . . , in(pm) generate In(R)
and the subduction algorithm terminates for all f ∈ R regardless of the particular
choice of product pa1

1 · · · pam
m used at each step.

Before proceeding to state our main result, we briefly recall that Aut(Ln) is
the semidirect product Gn

m � GLn(Z); see, e.g., [7, p. 65]. Here we identify an
element (t1, . . . , tn) ∈ G

n
m with the scaling automorphism of Ln, taking each xi to

tixi, and an element g ∈ GLn(Z) with the multiplicative automorphism taking each
xa = xa1

1 . . . xan
n to xg(a). We will denote by π the natural projection

(3) π : Aut(Ln) → GLn(Z) .

To define π explicitly, note that every g ∈ Aut(Ln) preserves the set of invertible
elements of Ln, which are of the form λxa for some λ ∈ k∗ and a ∈ Z

n. In particular,
g(xi) = λix

ai1
1 . . . xain

n for some λi ∈ k∗ and aij ∈ Z. For such g ∈ Aut(Ln),

(4) π(g) =

⎛
⎝

a11 a21 . . . an1

. . .
a1n a2n . . . ann

⎞
⎠ .

Our main result can now be stated as follows.

Theorem 1.1. Let k be a field, Ln = k[x±1
1 , . . . , x±1

n ] be the Laurent polynomial
ring in n variables and G be a finite subgroup of Aut(Ln). Then
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(1) In(LG
n ) is finitely generated,

(2) LG
n has a finite SAGBI basis,

(3) π(G) is generated by reflections.

Theorem 1.1 is a generalization of [8, Theorem 1.6], where G is assumed to
act on Ln multiplicatively, i.e., G ⊂ GLn(Z). Further results for multiplicative
actions can be found in [11]. A novel feature of Theorem 1.1 is that condition (3)
is independent of the choice of coordinates in Ln. Indeed, as we mentioned above,
a different choice of coordinates in Ln corresponds to replacing LG

n by g(LG
n ) for

some g ∈ Aut(Ln) or, equivalently, to replacing G by the conjugate subgroup
G′ = gGg−1 in Aut(Ln). Clearly, π(G′) is generated by reflections if and only if
π(G) is generated by reflections.

We also note that our proof of Theorem 1.1 below shows that Theorem 1.1
remains valid if the initial exponent in(f) is defined relative to any term order in
Ln, not necessarily the lexicographic order. Recall that a term order in Ln is a
linear order on Zn, compatible with the group structure; cf. [8, Definition 1.2]. In
view of these remarks, Theorem 1.1 can be restated as follows.

Theorem 1.2. Let G be a finite subgroup of Aut(Ln).
(a) If π(G) is generated by reflections, then LG

n has a SAGBI basis relative to
any choice of coordinates and term order in Ln.

(b) If π(G) is not generated by reflections, then In(LG
n ) is not finitely generated

(and, in particular, LG
n does not have a SAGBI basis) for any choice of

coordinates and term order in Ln. �
The rest of this paper is structured as follows. Sections 4 and 5 will be devoted

to the proof of Theorem 1.1. The main new phenomenon we encounter, compared
to the proof of [8, Theorem 1.6], is that the semigroup In(LG

n ) is no longer saturated
in Zn. In order to deal with the resulting complications, we prove the Sandwich
Lemma 3.1 in Section 3. In Section 6 we use a similar argument (also based on
the Sandwich Lemma) to prove a generalized form of Göbel’s conjecture. (For
background material and references on Göbel’s original conjecture, see the first
paragraph of Section 6.) In the last section we work out an explicit example.

2. Notational conventions

The following symbols are used throughout this paper.

N the set of non-negative integers
Σn the symmetric group on n letters
k base field
Pn = k[x1, . . . , xn] polynomial ring in n variables
Ln = k[x±1

1 , . . . , x±1
n ] Laurent polynomial ring in n variables

π projection Aut(Ln) → GLn(Z); see (3) and (4)
G finite subgroup of Aut(Ln)
G = π(G)
� term order in Ln or Pn

in the initial exponent relative to �
In the semigroup of initial exponents relative to �

We will write bold letters a, b, etc., for elements of Rn. If a = (a1, . . . , an) ∈ Zn,
we will abbreviate xa1

1 . . . xan
n as xa.
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All semigroups in this paper will be contained in Zn and, in particular, will be
abelian. We will use the words “semigroup” and “monoid” interchangeably; that
is, all semigroups will be assumed to have an identity element. In particular, by
the “semigroup generated by a set S ⊂ Zn” we will mean

{a1s1 + · · · + arsr | r, a1, . . . , sr ∈ N and s1, . . . , sr ∈ S}.
With the exception of Theorem 1.2 above, the term order � will remain in the
background; our arguments will work for any term order. The reader will lose little
by assuming that � is the lexicographic order from now on.

3. The sandwich lemma

The purpose of this section is to prove the following lemma, which will play a key
role in the sequel. This lemma follows from standard results in semigroup theory;
see, e.g., [1, Corollary 2.10]. We prove it here for the sake of completeness.

Lemma 3.1 (Sandwich Lemma). Suppose A and B are subsemigroups of Zn such
that mA ⊂ B ⊂ A for some integer m ≥ 1. Then A is finitely generated if and only
if B is finitely generated.

Our proof will rely on the following classical result, which may be viewed as a
variant of the Hilbert Basis Theorem; see [3, Lemma A] or [2, Section 2.4].

Lemma 3.2 (Dickson’s Lemma). Suppose A ⊂ Nn has the property that for a ∈ A
and any n ∈ N

n we have a + n ∈ A. Then there exists a finite set S ⊂ N
n such

that A = {s + n | s ∈ S, n ∈ Nn}. �

Proof of the Sandwich Lemma. Since mA � A and mB ⊂ mA ⊂ B, it suffices to
prove only one direction. We will thus assume that A is finitely generated and aim
to prove that then B is finitely generated as well.

In fact, we may assume without loss of generality that A = Nn. Indeed, since A
is finitely generated there is a surjective semigroup homomorphism φ : Nn → A for
some n ≥ 1. Then A′ = N

n and B′ = φ−1(B) satisfy mA′ ⊂ B′ ⊂ A′. If we know
that the theorem holds for A′ and B′, then B′ is finitely generated and, hence, so
is B = φ(B′).

From now on we will assume that A = Nn. Set

R := {(r1, . . . , rn) ∈ N
n | 0 ≤ ri < m} .

Then every element Nn can be written as mq + r for some q ∈ Nn and r ∈ R.
Given r ∈ R, set

Qr := {q ∈ N
n | mq + r ∈ B} .

(Our notation is meant to be suggestive: we think of elements of R as “remainders”
and elements of Qr as “quotients”.) Since we are assuming that mNn ⊂ B, each
Qr satisfies the requirements of Lemma 3.2. Thus for every r ∈ R there is a finite
set Fr ⊂ Nn such that

Qr = {s + n | s ∈ Fr, n ∈ N
n} .

We claim that
(
⋃
r∈R

⋃
s∈Fr

ms + r) ∪ {mei | i = 1, . . . , n}
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is a (finite) set of generators for B. Here

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) ;

note that mei ∈ mNn ⊂ B.
To prove the claim, recall that every b ∈ B can be written as b = mq + r for

some r ∈ R and some q ∈ Qr. Writing q as s + n for some s ∈ Fr and some
n ∈ Nn, we see that b = (ms + r) + mn. Since mn is an N-linear combination of
me1, . . . , men, the claim follows. �

4. Finite generation of the semigroup of initial exponents

In this section we will prove that conditions (1) and (3) of Theorem 1.1 are
equivalent.

Let G = π(G) ⊂ GLn(Z). For a ∈ Zn let Sa be the subgroup of G given by
Sa = G ∩ π−1(StabG(a)). In other words, for every s ∈ Sa there exists a non-zero
scalar ηa(s) ∈ k such that s · xa = ηa(s)xa. It is easy to see that ηa is, in fact, a
multiplicative character Sa → k∗.

For a given set D of distinct representatives for the left cosets of Sa, we define

ΩD(a) :=
∑
d∈D

d(xa).

Recall that the support supp(f) ⊂ Z
n of f ∈ Ln is defined as the set of exponents

a such that xa occurs in f with a non-zero coefficient. For S ⊂ Ln we define Supp(S)
to be the union of supp(f), as f ranges over S.

Lemma 4.1. For any a ∈ Z
n, the following are equivalent:

(a) a ∈ Supp(LG
n ),

(b) ηa is the trivial character of Sa,
(c) ΩD(a) is independent of the choice of D,
(d) ΩD(a) ∈ LG

n for any D,
(e) ΩD(a) ∈ LG

n for some D.

If the equivalent conditions of Lemma 4.1 hold, then in view of (c) we will write
Ω(a) in place of ΩD(a).

Proof. (a) ⇒ (b): If s · xa �= xa for some s ∈ Sa, then no f ∈ Ln containing a in
its support can be invariant under the action of s.

(b) ⇒ (c): Suppose s ·xa = xa for any s ∈ Sa. Then replacing d ∈ D by another
representative d′ = ds in the same left coset of Sa does not change d(a).

(c) ⇒ (d): Let h ∈ G. It is easy to see that if d1, . . . , dr are representatives of
distinct left cosets of Sa in G, then so are hd1, . . . , hdr. Hence, h(ΩD(a)) = ΩD(a).

(d) ⇒ (e): Obvious.
(e) ⇒ (a): If ΩD(a) ∈ LG

n , then clearly a ∈ Supp(ΩD(a)) ⊂ Supp(LG
n ). �

If H is a subgroup of GLn(Z), then following [8, Definition 2.5] we set

A(H)� := {a ∈ Z
n | a � h(a) ∀h ∈ H}.

It is easy to see that A(H)� = In(LH
n ); see [8, Lemma 2.6].

Corollary 4.2. In(LG
n ) = A(G)� ∩ {a ∈ Z

n | ηa = 1}.
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Proof. The inclusion In(LG
n ) ⊂ A(G)� is clear from the definition. On the other

hand, by Lemma 4.1

In(LG
n ) ⊂ Supp(LG

n ) ⊂ {a ∈ Z
n | ηa = 1} .

This shows that In(LG
n ) ⊂ A(G)� ∩ {a ∈ Zn | ηa = 1}.

To prove the opposite inclusion, note that by Lemma 4.1, if ηa = 1, then Ω(a) ∈
LG

n . If moreover a ∈ A(G)�, then a = in(Ω(a)) ∈ In(LG
n ). �

We are now ready to show that conditions (1) and (3) of Theorem 1.1 are equiv-
alent. Let a ∈ Z

n. Clearly Sra = Sa and ηra = ηr
a for any non-zero integer r. This

implies that ηra = 1 for any r divisible by the order of Sa. Taking r = |G| we see that
ηra = 1 for every a ∈ Z

n. Thus by Corollary 4.2, |G| · A(G)� ⊂ In(LG
n ) ⊂ A(G)�.

Equivalently,

|G| · In(LG
n ) ⊂ In(LG

n ) ⊂ In(LG
n ) .

By [8, Theorem 1.6], In(LG
n ) is finitely generated if and only if G is generated by

reflections. Lemma 3.1 now tells us that the same is true of In(LG
n ). In other words,

conditions (1) and (3) of Theorem 1.1 are equivalent.

5. Termination of the subduction algorithm

In this section we will finish the proof of Theorem 1.1. We have shown that
conditions (1) and (3) are equivalent. Moreover, by definition, (2) ⇒ (1). Thus it
remains to show that (3) ⇒ (2). This implication is a consequence of the following
proposition.

Proposition 5.1. Let G be a finite subgroup of Aut(Ln). Assume that π(G) ⊂
GLn(Z) is generated by reflections. If a1, . . . ,am generate the semigroup In(LG

n ),
then p1 = Ω(a1), . . . , pm = Ω(am) form a SAGBI basis in LG

n .

The proof of this proposition is essentially the same as the proof of [8, Proposition
5.8]; for the sake of completeness we outline the argument below.

Proof. Suppose we apply the subduction algorithm to express f ∈ LG
n as a polyno-

mial in p1, . . . , pm. The algorithm produces a sequence of elements f0 = f, f1, f2, . . .
in LG

n with initial terms

(5) in(f0) � in(f1) � in(f2) � . . . .

We need to show that this sequence will terminate, regardless of the choice of f or
the choices we made in carrying out the subduction algorithm. We will argue by
contradiction: assume that the above sequence does not terminate for some f ∈ LG

n .
Let us embed G ⊂ GLn(Z) into GLn(R) in the natural way, lifting the G-action

from Zn to Rn. An easy exercise in linear algebra shows that Rn is the direct sum
of two G-invariant subspaces,

(Rn)G = {v ∈ R
n | g(v) = v ∀g ∈ G}

and
(Rn)0 = {v ∈ R

n |
∑

g∈G

g(v) = 0},
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and that (Rn)0 is the orthogonal complement of (Rn)G relative to any G-invariant
scalar product on Rn. We also have G-invariant linear maps π1 : Rn → (Rn)G and
π2 : R

n → (Rn)0 given by

π1(v) =
∑

g∈G

g(v) and π2(v) = |G|v − π1(v) ,

which are simply the orthogonal projections of |G|v onto (Rn)G and (Rn)0 respec-
tively. Note that both π1 and π2 are defined over the integers (i.e., carry Zn into
itself); this is the reason we did not divide by |G| in the formulas.

Arguing as in the proof of [8, Proposition 5.8], we see that the sequence

π1(in(f0)), π1(in(f1)), π1(in(f2)), . . .

assumes only finitely many values.1 Thus, we can choose an infinite subsequence
w1 � w2 � w3 � of the sequence (5) such that π1(wi) = c is the same for every
i ≥ 1. The argument in the proof of [8, Proposition 5.8] then shows that

π2(w1) � π2(w2) � . . .

is an infinite strictly decreasing sequence in A�(G) ∩ (Rn)0. On the other hand,
by [8, Lemma 5.3(a) and Proposition 5.5] this sequence has to terminate. This
contradiction shows that the sequence (5) always terminates. This completes the
proof of Proposition 5.1 and thus of Theorem 1.1. �

6. The generalized Göbel’s conjecture

We now return to the setting we introduced at the beginning of Section 1, where
we asked which k-subalgebras R of the polynomial algebra Pn = k[x1, . . . , xn] have
a SAGBI basis. Suppose G ⊂ Σn acts on Pn by permuting the variables. Here,
Σn denotes the permutation group on n letters. Göbel [4, p. 65] conjectured that
R = PG

n has a SAGBI basis if and only if G is conjugate to Σn1 ×· · ·×Σnk
for some

partition (n1, . . . , nr) of n. This conjecture was proved independently by Kuroda
[6], Thiéry–Thomassé [12] and the second author [8].

Now, in the spirit of Theorem 1.1, we replace Σn with N = Gn
m � Σn, where

Σn acts on Gn
m by permuting the factors. Note that N is naturally embedded into

the group Aut(Ln) = G
n
m � GLn(Z). Moreover, every element of N ⊂ Aut(Ln)

preserves the polynomial ring Pn and restricts to an automorphism of Pn. That is,
Gn

m acts by rescaling and Σn by permuting the variables x1, . . . , xn. We will denote
the natural projection N → N/(Gn

m) = Σn by π, as before.

Theorem 6.1 (Generalized Göbel’s conjecture). Suppose G is a finite subgroup of
G

n
m � Σn, acting naturally on Pn = k[x1, . . . , xn]. Then PG

n has a finite SAGBI
basis if and only if π(G) � Σn1 × · · · × Σnk

for some partition (n1, . . . , nr) of n.

Proof. Recall from the introduction that we only need to show that In(PG
n ) is

finitely generated; termination of the subduction algorithm is automatic in Pn.
We will use the notations of Section 4, except that we always take a in Nn,

rather than in all of Z
n. In particular, we will denote π(G) by G and view it

1We would like to use this opportunity to correct a misprint in the proof of [8, Proposition 5.8]:
in the sentence after the formula p(v) =

∑
g∈G g(v) the roles of the variables α and α1 should be

interchanged.
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as a subgroup of Σn. Note that if ηa = 1 for some a ∈ Nn, then, by definition,
Ω(a) ∈ PG

n . Arguing exactly as in Section 4 we show that

In(PG
n ) = A(G)� ∩ {a ∈ N

n | ηa = 1}
and thus

|G| · (A(G)� ∩ N
n) ⊂ In(PG

n ) ⊂ A(G)� ∩ N
n .

We know that In(PG
n ) = A(G)� ∩ Nn is a finitely generated semigroup if and only

if G � Σn1 × · · · ×Σnk
for some partition (n1, . . . , nr) of n (this is Göbel’s original

conjecture). The desired conclusion now follows from the Sandwich Lemma 3.1. �

7. An example

Consider the cyclic subgroup G = 〈h〉 of N = G
n
m � Σn ⊂ Aut(Ln), where

h :

x1 �→ λ1x2

x2 �→ λ2x3

. . .
xn �→ λnx1

for some λ1, . . . , λn ∈ k. To ensure that h has finite order, we will assume that the
product λ1λ2 · · ·λn is a root of unity, say a primitive dth root of unity. We will
denote this product by ζ.

Since π(h) is the n-cycle (1 2 . . . n) in Σn, Theorem 1.1 tells us that LG
n has a

SAGBI basis if and only if n = 2. Similarly, Theorem 6.1 tells us that PG
n has a

SAGBI basis if and only if n = 2.
We will now set n = 2 and find explicit SAGBI bases for these rings, relative to

the lexicographic term order where x1 � x2. To reduce the number of subscripts,
we will write x and y instead of x1 and x2, respectively. We begin by computing
the groups Sa and the characters ηa : Sa → k∗. If a = (s, s) for some integer s,
then Sa is the whole group G. Moreover, h · xsys = ζsxsys, so η(s,s)(h) = ζs. The
character η(s,s) is trivial if and only if s is divisible by d.

Now let a = (s, t), where s > t. Here Sa is the subgroup 〈h2〉 of G of index 2.
Since h2 · xsyt = ζs+txsyt, the character ηa : Sa → k∗ is given by η(s,t)(h2) = ζs+t.
This character is trivial if and only if s + t is divisible by d. Using Corollary 4.2,
we conclude that

In(LG
2 ) = A(G)� ∩ {a ∈ Z

n | ηa = 1}
= {(s, s) | s ∈ dZ} ∪ {(s, t) | s > t and s + t ∈ dZ} ⊂ Z

2 .

Similarly,

In(PG
2 ) = A(G)� ∩ {a ∈ N

n | ηa = 1}
= {(s, s) | s ∈ dN} ∪ {(s, t) | s > t and s + t ∈ dN} ⊂ N

2 .

Lemma 7.1. (a) If d = 2r + 1 is odd, then the semigroup In(LG
2 ) is generated by

a1 = (d, d), a2 = (−d,−d) and aodd
3 = (r + 1, r).

Moreover, Ω(a1) = xdyd, Ω(a2) = x−dy−d, and Ω(aodd
3 ) = xr+1yr + ζrλ1x

ryr+1

form a SAGBI basis of In(LG
2 ).

(b) If d = 2r is even, then the semigroup In(LG
2 ) is generated by

a1 = (d, d), a2 = (−d,−d), aeven
3 = (r + 1, r − 1) and aeven

4 = (d + 1, d − 1).
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Moreover, Ω(a1) = xdyd, Ω(a2) = x−dy−d, Ω(aeven
3 ) = xr+1yr−1 − λ1λ

−1
2 xr−1yr+1

and Ω(aeven
4 ) = xd+1yd−1 + λ1λ

−1
2 xd−1yd+1 form a SAGBI basis of In(LG

2 ).

Proof. In view of Proposition 5.1, we only need to prove that the given set of initial
exponents generates In(LG

2 ) in parts (a) and (b). That is, we want to show that any
given (s, t) ∈ In(LG

2 ) can be expressed as a N-linear combination of our generators.
Choose k ∈ Z so that s + t = kd.

(a) If d = 2r + 1 is odd, then

(s, t) = ((r + 1)k − s)(d, d) + (s − t)(r + 1, r).

(b) Suppose d = 2r is even. We may assume without loss of generality that
s > t; otherwise (s, t) = (s, s) is a non-negative integer multiple of a1 or a2. Since
s + t is divisible by d, it is even, and hence so is s − t. Let m = (s − t)/2. Now

(s, t) =
k − m

2
(d, d) + m(r + 1, r − 1)

if k − m is even, and

(s, t) =
k − m − 1

2
(d, d) + (m − 1)(r + 1, r − 1) + (d + 1, d − 1)

if k − m is odd. �

We now turn to the problem of constructing a SAGBI basis for PG
2 .

Lemma 7.2. (a) The semigroup In(PG
2 ) is generated by

bi = (d − i, i) and cj = (2d − j, j) ,

as i ranges from 0 to [
d − 1

2
] and j ranges from 1 to d.

(b) The elements Ω(bi) = xd−iyi + ζiλd−2i
1 xiyd−i and Ω(cj) = x2d−jyj +

ζjλ2d−2j
1 xjy2d−j form a SAGBI basis for In(PG

n ) as i ranges from 0 to [
d − 1

2
]

and j ranges from 1 to d.

Proof. By the definition of a SAGBI basis in a subalgebra of Pn, (b) is an immediate
consequence of (a). Thus we only need to show that every (s, t) ∈ In(PG

2 ) lies in
Λ, where Λ is the semigroup generated by all bi and cj . If s = t this is obvious,
since in this case (s, t) = (s, s) is a non-negative integer multiple of cd = (d, d).
We may thus assume that s > t. After subtracting a suitable non-negative integer
multiple of cd, we may assume that 0 ≤ t ≤ d − 1. Moreover, after subtracting
a suitable multiple of b0 = (d, 0), we may assume that 0 < s − t ≤ d. Thus
s + t = (s − t) + 2t ≤ 3d − 2, i.e., s + t = d or 2d. In other words, (s, t) = bt or ct.
In particular, (s, t) ∈ Λ, as claimed. �

The set of generators given in Lemma 7.2 is not minimal. In fact, if d = 2r is
even, we only need b0, . . . ,br−1, cd−1 and cd, and if d is odd, only b0, . . . ,br and
cd. We leave a proof of these assertions as an exercise for the reader.
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