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ARITHMETIC PROPERTIES
OF NON-HARMONIC WEAK MAASS FORMS

KATHRIN BRINGMANN AND DAVID PENNISTON

(Communicated by Ken Ono)

Abstract. We prove the existence of an infinite family of non-harmonic weak
Maass forms of varying weights and Laplace eigenvalues having algebraic co-
efficients, and show that the coefficients of these forms satisfy congruences of
Ramanujan type.

1. Introduction and statement of results

A partition of a positive integer n is a non-increasing sequence of positive integers
whose sum is n. Let p(n) denote the partition function, i.e., the number of partitions
of n, and set p(0) := 1. The generating function for p(n) is given by

(1.1) P (q) :=
∞∑

n=0

p(n)qn =
∞∏

n=1

1
1 − qn

= 1 +
∞∑

n=1

qn2

(1 − q)2(1 − q2)2 · · · (1 − qn)2
.

The arithmetic behavior of the partition function has been of great interest. For
example, we have the famous Ramanujan congruences

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11)

for every n ≥ 0. In a celebrated paper Ono [15] treated this type of congruence
systematically, proving that for any prime � ≥ 5 there exist infinitely many non-
nested arithmetic progressions An + B such that for every n ≥ 0,

p(An + B) ≡ 0 (mod �).

Now consider the function

f(q) := 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

which is one of the mock theta functions Ramanujan [16] defined in his last letter to
Hardy in 1920. While f(q) and P (q) have similar shapes, P (q) is (up to a power of
q) a modular form and f(q) is not. However, f(q) does constitute the “holomorphic
part” of a weak Maass form (see Section 2 for the definition of weak Maass form).
The behavior of many arithmetic functions (Hurwitz class numbers, Dyson’s ranks,
and coefficients of other mock theta functions, to name a few) is governed by the
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coefficients of weak Maass forms (see [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). For
example, Ono and the first author used weak Maass forms [7] to show that Dyson’s
rank generating functions satisfy congruences of Ramanujan type.

Weak Maass forms have expansions involving Whittaker functions, and as in the
theory of modular forms one is interested in forms whose expansions have algebraic
coefficients. The known examples of such forms are harmonic, i.e., have Laplace
eigenvalue zero. Here we show the existence of an infinite family of non-harmonic
weak Maass forms of varying weights and Laplace eigenvalues possessing algebraic
coefficients. In particular, suppose b ≥ 4 is even, let w be a nonnegative integer,
let χ be a nontrivial Dirichlet character of conductor b with χ(−1) = (−1)w+1, and
write z = x + iy with x, y ∈ R. In Section 3 we explicitly construct a function
fw+ 1

2 ,χ(z) that has the shape

(1.2) fw+ 1
2 ,χ(z) = fh

w+ 1
2 ,χ(z) + fnh

w+ 1
2 ,χ(z),

where

fh
w+ 1

2 ,χ(z) := ãw+ 1
2
(−n0) W̃

w+ 1
2

3
4

(−4πn0y) e−2πin0x

+
∑
n>0

aw+ 1
2
(n)Ww+ 1

2
3
4

(4πny) e2πinx,

fnh
w+ 1

2 ,χ(z) :=
∑
n>0

aw+ 1
2
(−dn2)W w+ 1

2
3
4

(
−4πdn2y

)
e−2πidn2x.

Here d and n0 are positive integers and the functions Ww+ 1
2

3
4

(y) and W̃ w+ 1
2

3
4

(y) are
certain modified Whittaker functions defined in Section 2. We prove the following
result.

Theorem 1.1. Suppose b ≥ 4 is even. Let w be a nonnegative integer and let χ
be a nontrivial Dirichlet character of conductor b which is even (resp. odd) if w
is odd (resp. even). Then the function fw+ 1

2 ,χ(z) is a weak Maass form of weight
w + 1

2 on Γ0(4b2) with Nebentypus χ and Laplace eigenvalue 1
4w(w − 1), and the

coefficients of fh
w+ 1

2 ,χ
(z) lie in the ring of integers OK of some number field K.

The forms fw+ 1
2 ,χ(z) are examples of weak Maass forms which we call good (see

Section 2 for the definition). In particular, if we denote the incomplete gamma
function by

Γ(a, y) :=
∫ ∞

y

e−tta−1dt

and v := w + 1
2 ∈ { 1

2 , 3
2}, then it follows from our construction that

fh
v,χ(z) = ãv(−n0) q−n0 +

∑
n>0

av(n) qn,(1.3)

fnh
v,χ(z) =

∑
n>0

av(−dn2) Γ
(

1
2
, 4πdn2y

)
q−dn2

,(1.4)

where q := e2πiz. Note that

∂

∂z̄

(
fh

v,χ(z)
)

= 0,
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and moreover one can show that
∂

∂z̄

(
fnh

v,χ(z)
)
�= 0.

For this reason we call fh
v,χ(z) the “holomorphic part” of fv,χ(z) and fnh

v,χ(z) the
“nonholomorphic part” of fv,χ(z).

Remark. It follows from our construction of fv,χ(z) that there is some constant
multiple of fnh

v,χ(z) whose coefficients lie in the ring of integers of a number field K.

We also show that the coefficients of the fh
w+ 1

2 ,χ
(z) components of our non-

harmonic weak Maass forms satisfy congruences of Ramanujan type.

Theorem 1.2. Let fw+ 1
2 ,χ(z) be the weak Maass form of weight w + 1

2 and Neben-
typus χ constructed in the proof of Theorem 1.1, and decompose fw+ 1

2 ,χ(z) as in
(1.2). Suppose � � 6b is prime, p � �d is an odd prime and j ≥ 1. Then there exists
an integer m ≥ 1 such that for a positive proportion of the primes Q,

aw+ 1
2
(Q3�mn) ≡ 0 (mod �j)

for all n > 0 with (n, �Q) = 1 and
(

−Q3�mdn
p

)
= −1.

Two remarks.
1) From our construction of fw+ 1

2 ,χ(z) it follows trivially that

aw+ 1
2
(�n) ≡ 0 (mod �r)

for n > 0, where r :=
[

w
2

]
.

2) It seems likely that one can give distribution results on the coefficients of the
forms fh

w+ 1
2 ,χ

(z) modulo �j as in [13], and asymptotics for these coefficients as in
[2].

2. General facts on weak Maass forms

In this section we recall basic facts on weak Maass forms, which were first studied
in [10]. For d odd, define εd by

εd :=

{
1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4).

Suppose that k ∈ 1
2 + Z, and let

∆k := −4y2 ∂2

∂z∂z̄
+ 2iky

∂

∂z̄

be the weight k hyperbolic Laplacian, where ∂
∂z := 1

2

(
∂
∂x − i ∂

∂y

)
and ∂

∂z̄ :=
1
2

(
∂
∂x + i ∂

∂y

)
.

Definition. Let N be a positive integer, ψ a Dirichlet character modulo 4N and
g : H → C a smooth function. We call g(z) a weak Maass form of weight k and
Laplace eigenvalue λ on Γ0(4N) with Nebentypus ψ if it satisfies the following three
conditions:
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(1) For all A =
(

a b
c d

)
∈ Γ0(4N) and all z ∈ H, we have

g(Az) = ψ(d)
(

c

d

)2k

ε−2k
d (cz + d)k g(z).

(2) We have ∆kg = λg.
(3) The function g(z) has at most linear exponential growth at all cusps.

If λ = 0, we say that g(z) is harmonic.

Let us next recall the shape of the Fourier expansion of a weak Maass form. For
this let ν, µ ∈ C and let Wν,µ(y) be the standard W -Whittaker function. Then
Wν,µ(y) and W−ν,µ(−y) are linearly independent solutions of the differential equa-
tion

∂2u

∂y2
+

(
−1

4
+

ν

y
+

1
4 − µ2

y2

)
u = 0(2.1)

and can be distinguished by their asymptotic behavior, namely

|W±ν,µ(±y)| ∼ e∓
y
2 |y|±ν(2.2)

as |y| → ∞. For y ∈ R \ {0} define the functions

Wk
s (y) := |y|− k

2 Wsgn(y) k
2 ,s− 1

2
(|y|),

W̃k
s (y) := |y|− k

2 W−sgn(y) k
2 ,s− 1

2
(−|y|).

A computation shows that Wk
s (y) e

ix
2 and W̃k

s (y) e
ix
2 are eigenfunctions of ∆k with

eigenvalue s(1 − s) + k2−2k
4 . Moreover, if s �= 1

2 , then ys− k
2 and y1−s− k

2 are two
linearly independent solutions of

− y2 ∂2u

∂y2
− ky

∂u

∂y
=

(
s(1 − s) +

k2 − 2k

4

)
u.(2.3)

Using the translation invariance and properties (2) and (3) of a weak Maass form
one can show that each weak Maass form g(z) of weight k and Laplace eigenvalue
λ has an expansion of the form

g(z) =
m0∑

n=−n0
n�=0

ã(n)W̃k
s (4πny)e2πinx +

∑
n∈Z\{0}

a(n)Wk
s (4πny)e2πinx

+ a(0) ys−k
2 + ã(0) y1−s− k

2 ,

(2.4)

where s is a solution of

(2.5) s(1 − s) +
k2 − 2k

4
= λ.

Note that by (2.2), the first sum in (2.4) is responsible for the possible exponential
growth of g(z). We call a weak Maass form g(z) good if (1) ã(n) = 0 for n ≥ 0,
and (2) there exists a positive integer d such that a(n) �= 0 implies that n > 0 or
n = −dm2 for some nonzero integer m.

For functions g : H → C define the operator Rk by

Rk(g) :=
1

2πi

∂g

∂z
− k

4πy
g.(2.6)

One can check (see [10] for the case of harmonic weak Maass forms) that this
operator maps a weak Maass form of weight k and Laplace eigenvalue λ to a weak
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Maass form of weight k + 2 and Laplace eigenvalue λ + k with the same level and
Nebentypus. We will refer to Rk as the raising operator.

3. Proof of Theorems 1.1 and 1.2

We recall the following relations for Whittaker functions, which we will make use
of in the proof of Theorem 1.1 (these follow, respectively, from 13.1.33 and 13.4.17,
from 13.4.30, and from 13.4.31 and 13.4.33 of [1]).

Wk,m(y) = y
1
2 Wk− 1

2 ,m− 1
2
(y) +

(
1
2
− k + m

)
Wk−1,m(y),(3.1)

Wk,m(y) = y
1
2 Wk− 1

2 ,m+ 1
2
(y) +

(
1
2
− k − m

)
Wk−1,m(y),(3.2)

y
∂

∂y
(Wk,m(y)) =

(
k − y

2

)
Wk,m(y) −

[
m2 −

(
k − 1

2

)2
]

Wk−1,m(y).(3.3)

Here and in the following, for all occurring square roots we take a branch of the
logarithm with a cut which does not intersect the real axis.

Proof of Theorem 1.1. Assume that for each v ∈ { 1
2 , 3

2} we have a weight v har-
monic weak Maass form fv,χ(z) on Γ0(4b2) with Nebentypus χ such that the Fourier
coefficients of fh

v,χ(z) lie in OK (we delay the construction of the forms fv,χ(z) to
the end). Suppose that w is even, and write w = 2r (the case where w is odd
can be handled in a similar way). Beginning with f 1

2 ,χ(z), our proof proceeds by
successively applying raising operators (2.6), yielding after � steps (0 < � ≤ r)
a weight 2� + 1

2 weak Maass form f2�+ 1
2 ,χ(z) on Γ0(4b2) with Nebentypus χ and

Laplace eigenvalue �(2�−1)
2 . Computing the effect of the raising operators on Fourier

expansions, we find that fh
2�+ 1

2 ,χ
(z) has coefficients in OK as well.

Define the functions f2�+ 1
2 ,χ(z) inductively by

f2(�+1)+ 1
2 ,χ(z) := R2�+ 1

2

(
f2�+ 1

2 ,χ(z)
)

for 0 ≤ � < r, and define the coefficients a2�+ 1
2
(n) and ã2�+ 1

2
(n) (for ease of notation

we suppress the character χ) for 0 ≤ � ≤ r (see (2.4)) by

f2�+ 1
2 ,χ(z) =:

∑
n∈Z\{0}

a2�+ 1
2
(n)W2�+ 1

2
3
4

(4πny) e2πinx

+
m0∑

n=−n0
n�=0

ã2�+ 1
2
(n) W̃ 2�+ 1

2
3
4

(4πny) e2πinx + a2�+ 1
2
(0)(4πy)

1
2−� + ã2�+ 1

2
(0)(4πy)−�

(note that we have chosen the s = 3
4 solution of (2.5)). We now compute the action

of R2�+ 1
2

on the terms of this expansion. We show this computation only for the

terms involving the functions W2�+ 1
2

3
4

(y), as the others can be dealt with in a similar
way.

Suppose 0 ≤ � < r. For the n = 0 case we simply observe that

R2�+ 1
2

(
(4πy)

1
2−�

)
= −(� + 1)(4πy)−

1
2−�
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and

R2�+ 1
2

(
(4πy)−�)

)
= −

(
� +

1
2

)
(4πy)−1−�.

Next suppose n < 0. We claim that

(3.4) R2�+ 1
2

(
W2�+ 1

2
3
4

(4πny) e2πinx
)

= n

(
�2 +

3�

2
+

1
2

)
W2�+ 5

2
3
4

(4πny) e2πinx.

To see this, recall that for y > 0,

W2�+ 1
2

3
4

(−y) = y−�− 1
4 W−�− 1

4 , 1
4
(y).

Using (3.3) we find that

∂

∂y

(
W−�− 1

4 , 1
4
(y)

)
=

1
y

(
−� − 1

4
− y

2

)
W−�− 1

4 , 1
4
(y)

+
1
y

(
�2 +

3�

2
+

1
2

)
W−�− 5

4 , 1
4
(y),

and therefore

∂

∂y

(
W2�+ 1

2
3
4

(−y)
)

=
(
−2� − 1

2

)
y−�− 5

4 W−�− 1
4 , 1

4
(y)

− 1
2
y−�− 1

4 W−�− 1
4 , 1

4
(y) +

(
�2 +

3�

2
+

1
2

)
y−�− 5

4 W−�− 5
4 , 1

4
(y).

It follows that

∂

∂z

(
W2�+ 1

2
3
4

(−y) e−
ix
2

)
= i

(
� +

1
4

)
y−�− 5

4 W−�− 1
4 , 1

4
(y) e−

ix
2

− i

2

(
�2 +

3�

2
+

1
2

)
y−�− 5

4 W−�− 5
4 , 1

4
(y) e−

ix
2 ,

and hence

R2�+ 1
2

(
W2�+ 1

2
3
4

(4πny) e2πinx
)

= n

(
�2 +

3�

2
+

1
2

)
· (4π|n|y)−�− 5

4 W−�− 5
4 , 1

4
(4π|n|y) e2πinx,

which is (3.4).
Now suppose n > 0. Here the claim is that

R2�+ 1
2

(
W2�+ 1

2
3
4

(4πny) e2πinx
)

= nW2�+ 5
2

3
4

(4πny) e2πinx.(3.5)

To see this, begin by noting that for y > 0,

W2�+ 1
2

3
4

(y) = y−�− 1
4 W�+ 1

4 , 1
4
(y).

Using (3.3) we obtain

∂

∂y

(
W�+ 1

4 , 1
4
(y)

)
=

1
y

(
� +

1
4
− y

2

)
W�+ 1

4 , 1
4
(y) +

1
y

(
�2 − �

2

)
W�− 3

4 , 1
4
(y),

and thus
∂

∂y

(
W2�+ 1

2
3
4

(y)
)

= −1
2
y−�− 1

4 W�+ 1
4 , 1

4
(y) +

(
�2 − �

2

)
y−�− 5

4 W�− 3
4 , 1

4
(y).
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Hence we find that
∂

∂z

(
W2�+ 1

2
3
4

(y) e
ix
2

)
=

i

2
y−�− 1

4 W�+ 1
4 , 1

4
(y) e

ix
2 − i

2

(
�2 − �

2

)
y−�− 5

4 W�− 3
4 , 1

4
(y) e

ix
2 ,

which gives

R2�+ 1
2

(
W2�+ 1

2
3
4

(4πny) e2πinx
)

= n(4πny)−�− 1
4 W�+ 1

4 , 1
4
(4πny) e2πinx

− n

(
�2 − �

2

)
(4πny)−�− 5

4 W�− 3
4 , 1

4
(4πny) e2πinx

− n

(
2� +

1
2

)
(4πny)−�− 5

4 W�+ 1
4 , 1

4
(4πny) e2πinx.

(3.6)

Now, equations (3.1) and (3.2) yield

W�+ 5
4 , 1

4
(y) = y

1
2 W�+ 3

4 , 3
4
(y) + (−� − 1)W�+ 1

4 , 1
4
(y),

W�+ 3
4 , 3

4
(y) = y

1
2 W�+ 1

4 , 1
4
(y) +

(
1
2
− �

)
W�− 1

4 , 3
4
(y),

y
1
2 W�− 1

4 , 3
4
(y) = W�+ 1

4 , 1
4
(y) + � W�− 3

4 , 1
4
(y).

Using these relations, we find that

W�+ 5
4 , 1

4
(y) = −

(
2� +

1
2

)
W�+ 1

4 , 1
4
(y) + yW�+ 1

4 , 1
4
(y) −

(
�2 − �

2

)
W�− 3

4 , 1
4
(y),

and combining this with (3.6) gives (3.5).
Putting these results together with the analogous results for the terms involving

the functions W̃ 2�+ 1
2

3
4

(y) gives, by linearity,

R2�+ 1
2

(
f2�+ 1

2 ,χ(z)
)

=
−1∑

n=−∞
n

(
�2 +

3�

2
+

1
2

)
a2�+ 1

2
(n)W2�+ 5

2
3
4

(4πny) e2πinx

+
∞∑

n=1

n a2�+ 1
2
(n)W2�+ 5

2
3
4

(4πny) e2πinx

− a2�+ 1
2
(0)(� + 1)(4πy)−

1
2−� − ã2�+ 1

2
(0)

(
� +

1
2

)
(4πy)−1−�

−
−1∑

n=−n0

n ã2�+ 1
2
(n) W̃ 2�+ 5

2
3
4

(4πny) e2πinx

−
m0∑
n=1

n

(
�2 +

3�

2
+

1
2

)
ã2�+ 1

2
(n) W̃ 2�+ 5

2
3
4

(4πny) e2πinx.

From this we conclude that if r > 0, then

(3.7) fw+ 1
2 ,χ(z) = (−1)rr! a 1

2
(0)(4πy)

1
2−r + τr ã 1

2
(0)(4πy)−r

+
−1∑

n=−∞
nr ρr a 1

2
(n)W2r+ 1

2
3
4

(4πny) e2πinx +
∞∑

n=1

nr a 1
2
(n)W2r+ 1

2
3
4

(4πny) e2πinx

+
−1∑

n=−n0

(−n)r ã 1
2
(n) W̃ 2r+ 1

2
3
4

(4πny)e2πinx+
m0∑
n=1

(−n)r ρr ã 1
2
(n) W̃ 2r+ 1

2
3
4

(4πny) e2πinx
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where

τr :=
(
−1

4

)r (2r)!
r!

and ρr :=
(2r)!
4r

.

We finish by proving the existence of the forms fv,χ(z). For 1 ≤ a ≤ b − 1
coprime to b let

Θ 1
2 ,a,b(z) :=

∑
n≡a (mod b)

qn2
.

In [5] the authors construct a harmonic weak Maass form f 3
2 ,a,b(z) of weight 3

2 on
Γ(4b2) which is the sum of a holomorphic function with algebraic coefficients and
a constant multiple of ∫ i∞

−z̄

Θ 1
2 ,a,b(τ )

(−i(τ + z))3/2
dτ.(3.8)

By work of Shimura [17] the function

Θ 1
2 ,χ(z) :=

∑
n∈Z

χ(n) qn2

is a weight 1
2 modular form on Γ0(4b2) with Nebentypus χ. Then

f 3
2 ,χ(z) :=

b−1∑
a=1

χ(a)f 3
2 ,a,b(z)

satisfies the hypotheses of Theorem 1.1, and one can check that the holomorphic
and nonholomorphic parts of f 3

2 ,χ(z) have expansions of the form (1.3) and (1.4),
respectively (see Proposition 4.1 of [7] for the computation of an expansion of a
function like (3.8)). The function fh

3
2 ,χ

(z) is given as a linear combination of basic
hypergeometric functions (see [5]).

The case where v = 1
2 can be dealt with in a similar way (see [4]). Here the

corresponding theta function is

Θ 3
2 ,χ(z) :=

∑
n∈Z

χ(n) n qn2
. �

Proof of Theorem 1.2. Assume that w = 2r is even (the odd case can be dealt with
in an analogous way). As we have seen above, the coefficients of fh

1
2 ,χ

(z) lie in OK

for some number field K and fnh
1
2 ,χ

(z) has the form (1.4). Then our result holds for
the harmonic weak Maass form f 1

2 ,χ(z) by Theorem 1.1 of [13]. By (3.7), for r > 0
we have that a2r+ 1

2
(n) = nra 1

2
(n) for all n > 0, and therefore our result holds for

the form fw+ 1
2 ,χ(z) in general. �
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