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ABSTRACT. Let @ be the generalized Kronecker quiver with countably many
arrows and let k be a field. We prove that the category of representations of @
over k has no right almost split morphism whose domain is projective. More
precisely, we show that any indecomposable non-projective representation is
the image of an epimorphism whose domain has no non-zero projective direct
summand. This result does not hold for any finite subquiver of Q.

1. INTRODUCTION

This paper discusses the categories of representations of generalized Kronecker
quivers, which are defined as follows.

Definition 1.1. Let w be the set of natural numbers and let w’ C w. Define the
generalized Kronecker quiver K(w’) to be the quiver consisting of two vertices a
and b and arrows from a to b indexed by w’. The quiver K(w') will be drawn as
follows:

K('):

In case w’ = w, we denote the quiver K(w) by Q.

Let k be an arbitrary field and w’ C w as above. Recall that a representation
of K(w') is given by two vector spaces V, and V; associated to the vertices a and
b and by linear transformations from V, to V; associated to the arrows indexed by
w’. The category of representations of K(w’) over k, denoted by Rep kK (w'), is
equivalent to the module category of the path algebra kK (w’). This category is
hereditary, meaning that any subobject of a projective object is again projective
(see [Ben98], Theorem 4.1.4).

Following the convention of [ASS06], an object is called indecomposable if it
is non-zero and does not admit a decomposition as a direct sum of two non-zero

subobjects.
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In the last decade, several authors have considered the problem of extending
classical results concerning finite quivers to the setting of certain infinite quivers
(see e.g. the article [EE05] and its references). In [CDT97], Example 5.3, the path
algebra of ) was introduced as the direct limit of path algebras of finite gener-
alized Kronecker quivers (see [HU91], p. 182). In [D’E0Q], questions concerning
direct products of free and projective representations of infinite generalized Kro-
necker quivers have been considered. Generalized Kronecker quivers are examples
of rooted quivers, i.e. quivers which have no cycles and which do not contain A, as
a subquiver (see [EOT04] for a characterization). In [EE05], Enochs and Estrada
studied when the category of all representations of an infinite quiver admits pro-
jective covers. They showed that this is the case if and only if the quiver is rooted
and the base ring is left perfect (see [EE05], Theorem 3.3).

In the present paper, we prove that for every indecomposable non-projective
representation M of @ over k there is a non-split epimorphism M’ — M, where
M’ has no non-zero projective summand (see Theorem [51). As a consequence we
obtain that all preprojective objects in Rep kQ are projective (see Corollary B3)).
Moreover, Rep k@ does not afford any right almost split morphism whose domain
is projective (see Corollary [B.1]).

The proof of Theorem (.l relies on a careful analysis of a projective cover of M
and its kernel in case M is not finitely presented. If M is finitely presented, we
use that there is a finite subset w’ C w such that M is in the image of a faithful
embedding functor from Rep kK (w') into Rep kQ which preserves projective objects
(see LemmalL2]). In particular, this allows us to prove that M’ above can be chosen
to be finitely presented as well.

2. THE KRULL-REMAK-SCHMIDT PROPERTY

Let w’ C w. In the following we will use the picture

Va

(Bi)scwr @

Vi

to describe the representation of K (w’) which associates to a and b the vector spaces
V. and V;, and to the arrows in K (w’) the linear transformations 3; : V, — V}, for
iEeW.

There are only two indecomposable projective objects in the category Rep kK (w')
up to isomorphism. These are represented by the simple projective

P(b) = CQ

k

k
Pla) = (inel)cor @

@iEw/ k

and by

where incl; denotes the i-th inclusion.
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Lemma 2.1. Let M be a finitely generated object in Rep kQ. Then
M=M & & M,

where all M; are indecomposable. These M; are unique up to isomorphism and
permutation.

Proof. To show existence, notice that M can be decomposed as

0 U
M = @ D (@i)icw @
Vv’ Vv
with »°. . im(a;) = V. The vector space V' is finite dimensional because M is

finitely generated. Therefore the first direct summand of M is isomorphic to a
direct sum of finitely many copies of P(b). Hence we can assume without loss of
generality that V/ = 0. Then

FE .= EndRCp kQ(M) Q Endk(U)

is a finite dimensional algebra because U is finite dimensional. If E has no idem-
potent except 0 and 1, then M is indecomposable. If e € E' is an idempotent, the
object M = eM @ (1 — e)M is decomposable. Since the dimension at the upper
vertex decreases, this process can be continued and leads to a finite decomposition
of M.

To show uniqueness it suffices to check that Endgrep xg(M;) is local for all i. By
the first part of this proof, all Endreprq(M;) are finite dimensional. Their only
idempotents are 0 and 1, because otherwise M; would be decomposable. Hence
Endgep kg (M;) is local. O

3. PROJECTIVE ENLARGEMENT

Let w” C w’ C w be arbitrary subsets. There is a functor from Rep kK (w”) to
Rep kK (w') which can be defined as a left adjoint to the forgetful functor. This has
been done in a more general situation in [EOT04], but the more explicit description
given here will be needed to describe the images of these functors in Lemma
This lemma will be essential in the proof of the main result, Theorem [B.1] of this

paper.
Definition 3.1. Let the projective enlargement be the following covariant functor:

Py i RepkK(w”) — Rep kK (w').

U
For a representation (@) @ € Rep kK (w") define
v
U U
Py (@i)iewr @ = Bidiew @

v Ve( @ U)

jEw’\w”
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where 3; =
() T2
U NI AN X
For a morphism (f, g) (@) icwr <ﬂ Nicor in Rep kK (w”) define
V—\F Y
f

U

X
poairan= el ]

Ve( & U) Yol & X)

jEW\w” go( @ f jEW\w”
jewN\w!

The functor P, is called a projective enlargement because of the following
result.

Lemma 3.2. The functor P, is a faithful embedding of the category Rep kK (w')
into Rep kK (w'), mapping P(a) to P(a) and P(b) to P(b). If the representations
M, N € Rep kK (w") do not contain P(b) as a direct summand, then

P " I
HomRep kK (w) (M N) —) HomRep EK (w') (Pu.)”w’ (M), Pu.)”u.)’ (N))

is an tsomorphism.

Proof. Tt is straightforward to check the first part of the lemma. For the second
U

part one uses that a representation (ai)icu @ which does not have P(b) as a
Vv
direct summand satisfies
v

Z im(a;) = O
iEw’’
The next result is proved by checking the definition.
Lemma 3.3. The forgetful functor is right adjoint to projective enlargement.

Note that the dual construction of projective enlargement yields the left adjoint
functor of the forgetful functor.

4. FINITELY PRESENTED OBJECTS

For finite quivers one often considers finite dimensional representations. For the
quiver @ this does not seem to lead to a reasonable simplification as the important
objects P(a) and its dual, which is indecomposable injective, are of infinite dimen-
sion. Instead one can consider finitely presented objects which lie in the images of
the projective enlargement functors P, for finite subsets w’ C w (see Lemma 7).

Let rep k@ denote the full subcategory of finitely presented objects in Rep kQ.
This is an abelian category (see [CDT97], Example 5.3 and [Hov(1], Lemma 1.6).



GENERALIZED KRONECKER QUIVER 819

Lemma 4.1. Let M be an indecomposable object in rep kQ which is not isomorphic
to P(b). Then M is the cokernel of a monomorphism

Di-1 P(b) — By Pla)
for certain integers I > 0 and n > 1.
U
Proof. Consider an indecomposable object M = (ai)icw <ﬂ inrep kQ. Since M

v
is finitely presented and not isomorphic to P(b), it follows that n = dimy, U is finite
and at least 1. Because M is indecomposable, the vector space V' is covered by the
images for the maps o, i € w. Hence there is a surjective map g : @), P(a) — M.
It follows that the kernel of g is a direct sum of copies of P(b). Since M is finitely
presented, the number of copies of P(b) occurring must be finite. O

Lemma 4.2. Let M be an indecomposable object in rep kQ. Then there is a finite
subset W' C w and an object M’ € rep kK (w') with P,(M') = M.

Proof. This is obvious if M 2 P(b). Otherwise, by Lemma [Z1] M is isomorphic to
\%4

(incly)icw @
(®i€w V) /U

for finite dimensional vector spaces U and V where incl; stands for proincl; and pr
denotes the projection @, V — (@iEW V) /U. As a finite dimensional subspace,
U lies in a finite direct sum €9 V. Hence

v

(Dicr V) /U (@iEW\w, V)

This object is in the image of the functor P,,. (I

i€w’

=
It

5. PREPROJECTIVE OBJECTS
Theorem 5.1. Let M be an indecomposable non-projective representation of Q.

Then there is a non-split epimorphism M’ % M , where M’ has no projective
direct summand except for 0. If M is finitely presented, M’ can be chosen finitely
presented as well.

Note that Theorem [E.1] does not hold for any finite subquiver of @, which can
be seen by the Auslander-Reiten theory.

In the proof of Theorem Bl we will make use of the Tits form associated to
a finite subquiver of Q). For a positive integer m, let K,, be a subquiver with m
arrows. Then the Tits form associated to K,, is the quadratic form gr,, : Q2 — Q
defined by

w2 2
UKy |, )T U + v° — muv.
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Let ( :}L ) be the dimension vector of a non-zero object M in Rep kK ,,. Then by

Lemma 2.2 of [Rin76], there is the following connection between the Tits form and
the dimensions of Hom and Ext':

K, ( 1; ) = dim Endgep rx,, (M) — dim Exthep ., (M, M).

Therefore, if the Tits form does not take a positive value on the dimension vector of
M, it follows that Extﬁep kK, (M, M) does not vanish, since dimy, Endgep xx,, (M) >
1.

Proof of Theorem 5.1l Let
U

M= (ai)ico @

v

be an indecomposable non-projective representation of Q. In particular U # 0.
Denote a projective cover of M by P(M) — M. The object P(M) is isomorphic
to a direct sum of dimy U copies of P(a). The kernel of the projective cover is
isomorphic to a direct sum of copies of P(b). Let Q(M) denote this kernel.

The object M is finitely presented if and only if Q(M) is finite dimensional
over k. The “only if” part of this claim was shown in Lemma Il To prove the
other direction suppose that dimy Q(M) =1 < co. Hence M is the cokernel of a
monomorphism EBizl P(b) — €, P(a) for some index set I. The image of this
map is a finite dimensional subspace of @; P(a) and therefore has to lie in a finite
direct subsum @, P(a). Since M does not contain a direct summand isomorphic
to P(a), the sets I and I’ have to be equal. As I’ is finite this proves that M is
finitely presented.

Suppose first that (M) is infinite dimensional over k. One can choose a family
of one dimensional submodules (Q;(M));e s, such that @, ; (M) = Q(M). Then
for each ¢ there is an induced map p; such that the following diagram commutes:

0 —— (M) P(M) P(M)/Qi(M) ——0
0—— QM) P(M) M 0

The rows of this diagram are exact. Let P; be the intersection of all submodules X
of P(M) such that X is isomorphic to a direct sum of copies of P(a) and contains
the image of Q;(M) in P(M). This makes P; the smallest submodule with these
two properties. Moreover, P; is not only a submodule but also a direct summand
of P(M) because both representations are isomorphic to a direct sum of copies of
P(a). This yields a commutative diagram with exact rows for each i:

0 — (M) P, Pi/Qi(M) ——0

[ ]
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All these diagrams induce a new commutative diagram with exact rows:

0—— @iEJ Qi(M) —— @z‘eJPi — @ieJ P /(M) ——0

| K

0 Q(JM) P(M) M 0

Define M" = @, ; Pi/Q(M). There is no direct summand of M’ isomorphic to
P(b). Assume that P is a direct summand of M’ isomorphic to P(a), i.e.

M = @Pi/ﬂi(M) =Po M.
ieJ

Let v be a non-zero element of the one dimensional vector space at the upper
vertex of the representation P. There is a finite subset J' C J for which v €
@,y Pi/Q(M). This gives an induced map:

@ieJ' P; /(M) SN P

for which v € im(h). Thus h is an epimorphism and must split. This means
that P is a direct summand of P, ;, P;/Q(M). Since @, 5, P;/%(M) is finitely
presented, it has a unique decomposition by Lemma 2.Jl Hence there exists ¢ € J’
such that P;/Q;(M) has a direct summand isomorphic to P(a), which contradicts
the minimality of P;. This means that the assumption was wrong and M’ has no
projective direct summand except 0.

To finish the proof in case Q(M) is infinite dimensional, it remains to check that
[ is a non-split epimorphism. Since both €, ; P; and P(M) are isomorphic to a
direct sum of copies of P(a), it follows that the image of ¢ is a direct summand
of P(M), i.e. P(M) = im(g) & P’ for some object P’. Because Q(M) C im(g),
this means that P’ is a direct summand of M. This implies P’ = 0 and thus g
is an epimorphism. Hence f has to be an epimorphism. Assume f splits. The
kernel of f is the kernel of g, thus projective. Since M’ does not contain a proper
projective direct summand, it follows that ker(g) = ker(f) = 0. Thus f is an
isomorphism. Since |J| = dimy, Q(M) is infinite, M is decomposable, contradicting
the assumption. Hence f does not split.

Now we consider the case when dimy(Q(M)) =1 < co. Since M is indecompos-
able and finitely presented, it follows by Lemma [£1] that there is an exact sequence:

0—>@P(b)—>éP(a)—>M—>o

where n,l > 1 as M is not projective. By Lemma [.2] this sequence is in the image
of the projective enlargement functor P, for a finite subset w’ C w. Let m be the
cardinality of w’ and denote K(w') by K, as in the paragraph preceding the proof
of Theorem .1l Since the quiver () is infinite, one may assume that

2 12
>n+

nl
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Let L be an object in RepkK,, = RepkK(w’) such that P, (L) = M. The
dimension vector dim(L) of L satisfies

dim(L) = dim (EE P(a)) — dim(Q(L)) = ( o > - < ) > _ ( o ) .

Applying the Tits form of K, to dim(L) yields:
n _ .2 N2 2
qu<nm—l>_n + (nm —1)* —m(n®m — nl)
=n?+n*m? — 2nml + 12 — n*m? + nml
n? + 2

=n?>—mml+12<n®-n

[+1?=0.

By the paragraph directly preceding the proof of Theorem (.1l this implies that
Ext;, x,, (L, L) # 0. Hence there is a non-split exact sequence in Rep kKp,:

0 L r L 0.

In particular, L’ is finitely presented, since it is a finite dimensional representation
of the finite quiver K,,. Applying P, to this sequence yields a non-split exact
sequence:

0 M M’fM 0.

The module M’ is finitely presented because any finite presentation of L’ is mapped
to a finite presentation of M’ under P, by Lemma The object M’ has no
projective direct summand except 0 because there is no non-zero morphism from
M into a projective module in the hereditary category Rep kK (w). [

Let C denote a subcategory of Rep kQ. Recall that an object P € C is called
splitting projective in C' if each surjective morphism X — P with X in AddC
is a splittable surjection. The following definition is motivated by a definition of
Auslander and Smalg in [AS80] who considered Artin algebras and finitely generated
modules.

Definition 5.2. Let Py denote the class of splitting projective objects in C. For
m > 1 let P, be the class of splitting projective objects in the full subcategory
of C consisting of those objects in C' with no direct summand in Py U -+ U Py,_1.

Then we define C' N Add (UmZO Pm) to be the class of preprojective objects in C.

Corollary 5.3. In Rep kQ and rep k@ all preprojective objects as defined above
are projective.

Proof. Tt suffices to show that P; = (). This follows from Theorem [E.11 O
In [ASS06], Chapter IV.1, a right almost split morphism is defined as follows:

Definition 5.4. A morphism Af’ % M is right almost split if
(1) it is not a split epimorphism and
(2) any morphism X —— M which is not a split epimorphism can be fac-
tored through f.

Corollary 5.5. Neither Rep kQ nor rep k@ afford a right almost split morphism
P —— M with projective P.
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Proof. Suppose

P—f>M

is a right almost split morphism with P being projective. If M is indecomposable,
there is a non-split morphism Jf/ — M where M’ has no projective direct
summand by Theorem [5.Il Thus this morphism factors through f. Hence there is
a non-zero morphism A7/ —— P and M’ must have a projective direct summand.

This means that M is decomposable, i.e. M = M; @& My with M; # 0. Let incly
denote the inclusion of M; into M. Then incl; factors through f:

M,y

g 7
// incly
X f
P——M

for some g. Since incl; is a monomorphism, ¢ is a monomorphism as well. Then
M, is projective as a subobject of a projective object in a hereditary category.
Analogously My and hence M is projective. Hence the morphism f splits, which is
a contradiction. (]

Corollaries (3] and do not hold in the category of representations of any
finite subquiver of ). This can be seen by the Auslander-Reiten theory for Artin
algebras.
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