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ON SEMILOCAL RINGS

HONGBO ZHANG

(Communicated by Birge Huisgen-Zimmermann)

Abstract. In this paper, semilocal rings are characterized in different ways;
in particular, it is proved that a ring R is semilocal if and only if every de-
scending chain of principal right ideals of R, a0R ⊇ a1R ⊇ a2R ⊇ · · · ⊇
anR ⊇ · · · with ai+1 = ai −aibiai eventually terminates. Then modules with
semilocal endomorphism rings are characterized by chain conditions.

1. Introduction

All rings in this paper are associative with identity; modules are unital right
R-modules.

A finite set A1, · · · , An of proper submodules of M is said to be coindependent
if for each i, 1 ≤ i ≤ n, Ai +

⋂
j �=i Aj = M , and a family of submodules of M is said

to be coindependent if each of its finite subfamilies is coindependent. The module
M is said to have finite hollow dimension (or finite dual Goldie dimension) if
every coindependent family of submodules of M is finite. It can be shown that,
in this case, there is a maximal coindependent family of submodules of M . If this
set is finite, then its cardinality (denoted by h.dim(M) or codim(M)) is uniquely
determined and is called the hollow dimension of M (or dual Goldie dimension of
M). A module M with hollow dimension 1 is said to be hollow, and a cyclic hollow
module is said to be local.

A ring R with Jacobson radical J(R) is said to be semilocal if R/J(R) is a
semisimple ring. Semilocal rings are characterized as those rings with finite hollow
dimension (see [2], Proposition 2.43). For a semilocal ring R,

h.dim(R) = composition length of the right R-module R/J(R).

It is well known that semilocal rings have stable range one, and so any modules
M with semilocal endomorphism rings can cancel from the direct sum; i.e. M⊕B ∼=
M ⊕ C implies B ∼= C. Facchini, Herbera, Levy and Vámos [3] proved that if M
has a semilocal endomorphism ring, then M has the “n-th root property”; i.e.,
Mn ∼= Nn implies M ∼= N .

In 1993, Camps and Dicks [1] obtained a number of new characterizations of
semilocal rings. Facchini stated two of their many characterizations in [2], Theo-
rem 4.2 as follows.
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Theorem 1 (Camps and Dicks). The following conditions are equivalent for a ring
R.

(a) R is semilocal.
(b) There exists an integer n ≥ 0 and a function d : R → {0, 1, · · · , n} such

that
(i) for every a, b ∈ R, d(a − aba) = d(a) + d(1 − ab);
(ii) if a ∈ R and d(a) = 0, then a ∈ U(R).

(c) There exists a partial order ≤ on the set R such that
(iii) (R,≤) is an Artinian partial order set;
(iv) if a, b ∈ R and 1 − ab /∈ U(R), then a − aba < a.

In this paper, inspired by Camps and Dicks’s Theorem 1, a new notion “hol-
low length” is introduced (Definition 2). Then some properties of hollow length
are presented in Proposition 6, Corollary 7 and Proposition 8. We give different
characterizations of semilocal rings in Theorem 9 and Corollary 10. Modules with
a semilocal endomorphism ring are characterized in Theorem 11. Theorem 3 (1),
(2) of [4] and Theorem 5 of [1] are extended in Corollaries 12 and 13.

Refer to [2], [5] and [6] for details concerning hollow dimension and semilocal
rings.

Throughout the paper, J(R) will denote the Jacobson radical of a ring R. R
and a denote respectively R/J(R) and a + J(R). Denote by dim(M) the Goldie
dimension of M and by U(R) the group of units in the ring R. r.U(R) (resp.
l.U(R)) denotes the set of right (resp. left) invertible elements of R.

2. Main results

Definition 2. Let R be a ring, a ∈ R. A right hollow chain of a is a strictly
descending chain

a0R � a1R � a2R � a3R � · · · ,

with a0 = a and for all n ≥ 0, an+1 = an − anbnan for some bn ∈ R.
Set r = sup{n ∈ Z |a0R � a1R � a2R � · · · � an−1R � anR is a hollow chain

of a0 = a}. r is called the right hollow length of a, denoted as r.h.length(a) = r.

Remark. “Left hollow chain” and “left hollow length” can be defined similarly. For
simplicity, “right hollow chain” and “right hollow length” are called in this paper
respectively “hollow chain” and “hollow length”, and “r.h.length(a)” is written as
“h.length(a)”.

Lemma 3. Let R be a ring, a, x ∈ R. The following conditions are equivalent:
(1) aR = (a − axa)R.
(2) a ∈ (1 − ax)R.
(3) 1 − ax ∈ r.U(R).
(4) aR = (a − axa)R.

Proof. (1) ⇒ (2) and (1) ⇒ (4) are trivial.
(2) ⇒ (3) Set a = (1− ax)t. Then 1 = (1− ax) + ax = (1− ax) + (1− ax)tx =

(1 − ax)(1 + tx), so 1 − ax ∈ r.U(R).
(3) ⇒ (1) Set (1 − ax)v = 1. Then v = 1 + axv, and so a = [(1 − ax)v]a =

(1 − ax)(1 + axv)a = (a − axa)(1 + xva) ∈ (a − axa)R.
(4) ⇒ (3) aR = (a − axa)R shows that there exists t ∈ R such that a −

(a − axa)t ∈ J(R), so (1 − ax)(1 + atx) = 1 − [a − (a − axa)t]x ∈ U(R), and so
1 − ax ∈ r.U(R). �
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Remark 4. Let M be a module and End(M) its endomorphism ring. For all f, g ∈
End(M), (f − fgf)(M) = f(M) implies that 1− fg is surjective. In fact, f(M) =
(f −fgf)(M) shows f(M) = (1−fg)f(M) ⊆ (1−fg)(M). Thus ∀x ∈ M , fg(x) =
(1− fg)(y) for some y ∈ M , so x = (1− fg)(x)+ fg(x) = (1− fg)(x)+ (1− fg)(y)
= (1 − fg)(x + y) ∈ (1 − fg)(M); i.e., 1 − fg is surjective.

Now we present some properties of hollow length.

Lemma 5. Let R be a ring, a ∈ R.
(1) h.length(a) = 0 if and only if a ∈ J(R).
(2) If h.length(a) = 1, then aR is a simple R-module.

Proof. (1) h.length(a) = 0 if and only if for all x ∈ R, aR = (a−axa)R. Lemma 3
shows that this means 1 − ax ∈ r.U(R) for all x ∈ R, i.e., a ∈ J(R).

(2) Suppose that h.length(a) = 1. We need to prove that for all x ∈ R, if 0 
=
axR, then axR = aR. In fact, 0 
= axR gives ax /∈ J(R), so there exists y ∈ R such
that 1− axy /∈ r.U(R). Lemma 3 shows aR � (a− axya)R. Since h.length(a) = 1,
we have h.length(a− axya) = 0, so a− axya ∈ J(R), i.e., a− axya = 0 ∈ R. Thus
axR = aR, as desired. �
Remark. Essentially, the proof of Lemma 5(2) has its origin in Camps and Dicks’s
proof of Theorem 1.

We can characterize hollow length as follows.

Proposition 6. Let R be a ring, a ∈ R and let n ≥ 0 be an integer. The following
conditions are equivalent:

(1) h.length(a) = n.
(2) aR is a semisimple R-module with dim(aR) = n.

Proof. For n = 0, this is Lemma 5(1). We now prove the equivalence for n ≥ 1.
(1) ⇒ (2) We use induction on n. The case n = 1 is Lemma 5(2). Let n > 1

and suppose that our implication holds for all x ∈ R with h.length(x) ≤ n− 1. Let
aR � a1R � · · · � an−1R � anR be a hollow chain of a, where a1 = a − aba and
ai+1 = ai − aibiai for all i ≥ 1. Then h.length(ai) = n − i for all i ∈ {0, 1, · · · , n}.

Since h.length(an) = 0, Lemma 5(1) gives an ∈ J(R). Therefore an = an−1

−an−1bn−1an−1 = 0, i.e., an−1 = an−1bn−1an−1. Thus an−1bn−1 is idempotent and
R = (1 − an−1bn−1)R ⊕an−1bn−1R, and so aR = (1 − an−1bn−1)aR⊕an−1bn−1aR.
Noting that an−1 ∈ aR, we have an−1 = an−1bn−1an−1 ∈ an−1bn−1aR, so an−1R =
an−1bn−1aR. Therefore we have

(∗) aR = (1 − an−1bn−1)aR ⊕ an−1R.

Note that h.length(an−1) = 1. Lemma 5(2) shows that an−1R is a simple R-
module.

Since an−1R � anR = (an−1 − an−1bn−1an−1)R, we know from Lemma 3 that
(1 − an−1bn−1) /∈ r.U(R), and so Lemma 3 gives aR � (a − an−1bn−1a)R. Thus
we have h.length(a − an−1bn−1a) < h.length(a) = n. By induction we know
(a − an−1bn−1a)R is a semisimple module with dim((a − an−1bn−1a)R) ≤ n − 1.
Therefore equation (∗) yields that aR is a semisimple module with dim(aR) ≤ n.

Now we prove dim(aR) ≥ n. Noting that a1R ⊆ aR and aR is semisimple, we
have aR = a1R ⊕ D for some D ⊆ aR. Since h.length(a1) = n − 1, by induction,
a1R is a semisimple module with dim(a1R) = n − 1. If we can prove D 
= 0, then
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we have dim(aR) = dim(a1R) + dim(D) ≥ n. In fact, if D = 0, then aR = a1R.
Lemma 3 gives aR = a1R, a contradiction.

(2) ⇒ (1) Suppose that aR is a semisimple module with dim(aR) = n.
First assume that h.length(a) = ∞. Then there is a finite descending chain

a0R � a1R � a2R � a3R � · · · � amR

with a0 = a, ai+1 = ai − aibiai (0 ≤ i ≤ m − 1) and m > n. By Lemma 3, there is
a finite descending chain

aR � a1R � a2R � a3R � · · · � amR.

Thus dim(aR) ≥ m > n, a contradiction.
Suppose h.length(a) = m < ∞. Then by (i) ⇒ (ii), we know that aR is a

semisimple module with dim(aR) = m. Therefore m = n. �

Corollary 7. Let R be a ring. If a, b ∈ R and aR ⊆ bR, then h.length(a) ≤
h.length(b). In particular, for all a ∈ R, h.length(a) ≤ h.length(1R).

Proof. Suppose that h.length(b) = n < ∞. By Proposition 6, bR is a semisimple
R-module with dim(bR) = n, so aR is a semisimple R-module with dim(aR) ≤ n.
Therefore h.length(a) = dim(aR) ≤ n = h.length(b). �

Proposition 8. Let R be a semilocal ring, a, b ∈ R. Then
(1) h.length(a) = h.dim(R) − h.dim(R/aR).
(2) h.length(a) + h.length(1 − ab) − h.length(a − aba) = h.dim(R).
(3) h.length(a) = h.length(a − aba) + 1 if and only if aR/(a − aba)R is local.

Proof. (1) Since (aR+J(R))/aR is small in R/aR, applying [2], Proposition 2.42
(d) to the exact sequence

(aR + J(R))/aR ↪→ R/aR � (R/aR)/(aR + J(R)/aR) ∼= R/(aR + J(R)),

we have

h.dim(R/aR) = h.dim(R/(aR + J(R))) = h.dim(R/aR)

= h.dim(R) − h.dim(aR) = h.dim(R) − h.dim(aR).

By Proposition 6, we get h.dim(R/aR) = h.dim(R) − h.length(a).
(2) This result comes directly from (1) and the fact that h.dim(R/(a−aba)R) =

h.dim(R/aR ⊕ R/(1 − ab)R) = h.dim(R/aR) + h.dim(R/(1 − ab)R).
(3) By (2), h.length(a) = h.length(a − aba) + 1 if and only if h.length(1 −

ab) = h.dim(R) − 1, i.e., h.dim(R) − h.dim(R/(1 − ab)R) = h.dim(R) − 1; this
means that h.dim(R/(1 − ab)R) = 1. By [2], Proposition 2.42 (b), this means
that R/(1 − ab)R is hollow. Since R/(1 − ab)R is cyclic, [5, 1.1.5 (b)] shows that
R/(1 − ab)R = (aR + (1 − ab)R)/(1 − ab)R ∼= aR/(a − aba)R is local. �

We now give our characterizations of semilocal rings.

Theorem 9. The following conditions are equivalent for a ring R and an integer
n ≥ 0:

(1) R is a semilocal ring and dim(R/J(R)) = n.
(2) h.length(1R) = n.
(3) There exists a descending chain of principal right ideals of R

R = a0R � a1R � a2R � · · · � anR with ai+1 = ai − aibiai
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such that
(i) an ∈ J(R);
(ii) aiR/ai+1R is local for all 0 ≤ i ≤ n − 1.

(4) There exist d, d1, · · · , dn ∈ R with dR =
⋂n

i=1 diR ⊆ J(R) such that R/diR
is local for all i ∈ {1, · · · , n} and R/dR ∼=

⊕n
i=1 R/diR.

(5) There exists d ∈ J(R) such that R/dR ∼=
⊕n

i=1 Ai, where {Ai}i∈{1,··· ,n}
are local modules.

(2*), (3*), (4*), (5*). The left-right duals of (2), (3), (4) and (5).

Proof. (1) ⇔ (2) comes directly from Proposition 6 by setting a = 1R.
(2) ⇒ (3) Let R = a0R � a1R � a2R � · · · � anR with ai+1 = ai − aibiai a

hollow chain of a0 = 1R. Then (i) and (ii) come respectively from Lemma 5(1) and
Proposition 8(3).

(3) ⇒ (4) Assume that (3) holds. Let d = an, d1 = a1 and di+1 = (1−aibi) for
all i ∈ {1, · · · , n−1}. Then dR =

⋂n
i=1 diR ⊆ J(R) and R/d1R is local. Obviously,

for all i ∈ {2, · · · , n}, R/diR ∼= ai−1R/aiR is also local. Moreover,

R/dR = R/anR = R/(an−1 − an−1bn−1an−1)R ∼= R/an−1R ⊕ R/(1 − an−1bn−1)R

= R/(an−2 − an−2bn−2an−2)R ⊕ R/(1 − an−1bn−1)R
∼= R/an−2R ⊕ R/(1 − an−2bn−2)R ⊕ R/(1 − an−1bn−1)R
∼= · · ·
∼= R/a1R⊕R/(1 − a1b1)R⊕ · · · ⊕R/(1 − an−2bn−2)R⊕R/(1 − an−1bn−1)R

= R/d1R ⊕ R/d2R ⊕ · · · ⊕ R/dn−1R ⊕ R/dnR.

(4) ⇒ (5) is trivial.
(5) ⇒ (1) d ∈ J(R) shows that dR is small in R, and so

h.dim(R) = h.dim(R/dR) =
n∑

i=1

h.dim(Ai)

=
n∑

i=1

1 = n. �

Corollary 10. The following conditions are equivalent for a ring R:
(1) R is a semilocal ring.
(2) Every right hollow chain

a0R � a1R � a2R � · · · � anR � · · · with ai+1 = ai − aibiai

eventually terminates.
(3) There exists a partial order ≤ on the set R such that

(i) (R,≤) is an Artinian partial order set;
(ii) if a, b ∈ R and 1 − ab /∈ r.U(R), then a − aba < a.

(4) Every descending chain of principal right ideals of R

a0R ⊇ a1R ⊇ a2R ⊇ · · · ⊇ anR ⊇ · · · with ai+1 = ai − aibiai

eventually terminates.

(2*), (3*), (4*). The left-right duals of (2), (3) and (4).
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Proof. (4) ⇒ (2) is trivial.
(1) ⇒ (2) comes from Theorem 9(2) and Corollary 7.
(2) ⇒ (3) If (2) holds, define an order ≤ on R via

b ≤ a if a = b or aR � bR and b = a − ada for some d ∈ R.

If we can prove that ≤ is a partial order, then (3) is easily verified. We need
only to prove the transitivity of “≤”. In fact, suppose that a3 < a2 and a2 < a1.
Set ai+1 = ai − aibiai (i = 1, 2), where 1 − aibi /∈ r.U(R). Write d = b1 +
(1 − b1a1)b2(1 − a1b1). Then

a3 = a2 − a2b2a2 = (a1 − a1b1a1) − (a1 − a1b1a1)b2(a1 − a1b1a1)

= a1 − a1[b1 + (1 − b1a1)b2(1 − a1b1)]a1 = a1 − a1da1.

Noting that 1−a1d = 1−a1[b1 +(1−b1a1)b2(1−a1b1)] = (1−a1b1)[1−a1b2(1−
a1b1)] and 1− a1b1 /∈ r.U(R), we get 1 − a1d /∈ r.U(R), and so a3 < a1, as desired.

(3) ⇒ (1) Note that ∀a ∈ R, a ∈ J(R) if and only if 1 − ab ∈ r.U(R) for all
b ∈ R. Then using the same proof of Camps and Dicks’ Theorem 1 (see (c) ⇒ (a)
of [2, Theorem 4.2] or (f) ⇒ (a) of [1, Theorem 1], we can prove (1).

(1), (2) ⇒ (4) We prove first the following result.

Claim. For all descending chains

a1R ⊇ a2R ⊇ a3R ⊇ · · · ⊇ anR ⊇ · · · with an+1 = an − anbnan.

If a1R = a2R, then we have a descending chain

a1R ⊇ a′
3R ⊇ · · · ⊇ a′

nR ⊇ · · · with a′
3 = a1 − a1da1, a

′
n+1 = a′

n − a′
ndna′

n

for some d, dn ∈ R (n ≥ 3), and a′
nR = a′

n+1R if and only if anR = an+1R.
a′
3R = a1R if and only if a3R = a2R.

In fact, a1R = a2R with a2 = a1−a1b1a1 implies that 1−a1b1 ∈ r.U(R) = U(R),
i.e., 1 − b1a1 ∈ U(R).

For n ≥ 3, set a′
n = an(1 − b1a1)−1. Then a′

nR = anR, so a′
nR = a′

n+1R
if and only if anR = an+1R. In addition, a′

n+1 = (an − anbnan)(1 − b1a1)−1 =
a′

n − a′
n(1 − b1a1)bna′

n.
a′
3 = a3(1 − b1a1)−1 = (a2 − a2b2a2)(1 − b1a1)−1 = [a1 − a1(1 − b1a1)b2a1], and

a′
3R = a1R means that a3(1 − b1a1)−1R = a1R, that is, a3R = a1R = a2R.

Assume that there exists a descending chain

a0R ⊇ a1R ⊇ a2R ⊇ · · · ⊇ anR ⊇ · · · with ai+1 = ai − aibiai

which never terminates. Then, by the claim, we can obtain an infinite hollow chain

d0R � d1R � d2R � · · · � dnR � · · · with di+1 = di − dicidi,

a contradiction. �
As an application of Corollary 10, we can characterize modules with a semilocal

endomorphism ring as follows.

Theorem 11. The following conditions are equivalent for a module M :
(1) The ring End(M) is semilocal.
(2) For every f0 ∈ End(M) and every sequence g0, g1, g2, · · · of elements of

End(M), if we set fn+1 = fn − fngnfn for every n ≥ 0, then the chains
(i) f0(M) ⊇ f1(M) ⊇ · · · ⊇ fn(M) ⊇ · · ·
(ii) ker f0 ⊆ ker f1 ⊆ · · · ⊆ ker fn ⊆ · · ·
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of submodules of M both eventually terminate.

Proof. (1) ⇒ (2) Set E = End(M). Corollary 10 shows that

f0E ⊇ f1E ⊇ f2E ⊇ · · ·

of E eventually terminates, so there exists m ∈ N such that ∀n > m, fn+1E =
(fn−fngnfn)E, i.e., 1−fngn ∈ r.U(E) = U(E). Thus 1−gnfn ∈ U(E). So ∀n > m,
fn+1(M) = (fn − fngnfn)(M) = fn(1 − gnfn)(M) = fn(M), and ker fn+1 =
ker fn ⊕ ker(1 − gnfn) = ker fn ⊕ 0 = ker fn. Therefore the two chains (i) and (ii)
eventually terminate.

(2) ⇒ (1) Suppose that ∀n > m, ker fn+1 = ker fn ⊕ ker(1 − gnfn) = ker fn

and fn+1(M) = (fn − fngnfn)(M) = fn(M).
Then ker(1−gnfn) = 0. By [2, Lemma 4.1 (a)], ker(1−fngn) ∼= ker(1−gnfn) = 0.

so 1 − fngn is injective.
By Remark 4, fn+1(M) = (fn − fngnfn)(M) = fn(M) implies that 1 − fngn is

surjective.
Therefore ∀n > m, 1 − fngn is bijective. Lemma 3 shows that the descending

chain of E

E = f0E ⊇ f1E ⊇ f2E ⊇ · · ·
with fn+1 = fn − fngnfn eventually terminates. Corollary 10 yields that End(M)
is semilocal. �

We extend Theorem 3 (2) of [4] as follows.

Corollary 12. The following conditions are equivalent for a module M for which
every epimorphism M → M splits:

(i) The ring End(M) is semilocal.
(ii) For every f0 ∈ End(M) and every sequence g0, g1, g2, · · · of elements of

End(M), if we set fn+1 = fn − fngnfn for every n ≥ 0, then the chain f0(M) ⊇
f1(M) ⊇ · · · ⊇ fn(M) ⊇ · · · of submodules of M eventually terminates.

Moreover, h.dim(End(M)) ≤ h.dim(M).

Proof. By Theorem 11, we need only to prove (ii) ⇒ (i). Set E = End(M). Given
a descending chain f0E ⊇ f1E ⊇ · · · ⊇ fnE ⊇ · · · with fn+1 = fn−fngnfn, by (ii),
there exists m ∈ N such that ∀n > m, fn+1(M) = (fn − fngnfn)(M) = fn(M). By
Remark 4, 1− fngn is surjective, so 1− fngn ∈ r.U(E). Lemma 3 and Corollary 10
yield that End(M) is semilocal.

Assume that h.dim(M) = m < ∞ and h.dim(End(M)) > m. Then by Theo-
rem 9 there exists a hollow chain in E,

E = f0E � f1E � · · · � fmE � fm+1E,

with fi+1 = fi − figifi ∈ E for all i ∈ {0, 1, · · · , m}. Then for all i ∈ {0, 1, · · · , m},
1 − figi /∈ r.U(E), and so 1 − figi is not surjective. By Remark 4, f0(M) �

f1(M) � · · · � fm(M) � fm+1(M) is a strictly descending chain. Write N1 =
f1(M) � M and Ni+1 = (1M − figi)(M) � M for all i ∈ {1, · · · , m}. Then for
all i ≥ 1, (N1 ∩ N2 ∩ · · · ∩ Ni) + Ni+1 = fi(M) + (1M − figi)(M) = M , and so
{Ni|i = 1, · · · , m + 1} is a coindependent set of proper submodules of M . Thus
h.dim(M) > m, a contradiction. �

Similarly, we extend Theorem 5 of [1] and Theorem 3 (1) of [4] as follows.
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Corollary 13. The following conditions are equivalent for a module M for which
every monomorphism M → M splits:

(i) The ring End(M) is semilocal.
(ii) For every f0 ∈ End(M) and every sequence g0, g1, g2, · · · of elements of

End(M), if we set fn+1 = fn − fngnfn for every n ≥ 0, then the chain ker f0 ⊆
ker f1 ⊆ · · · ⊆ ker fn ⊆ · · · of submodules of M eventually terminates.

Moreover, h.dim(End(M)) ≤ dim(M).

Proof. Set E = End(M). We need only to prove (ii) ⇒ (i). For this, it is enough
to show that every descending chain Ef0 ⊇ Ef1 ⊇ · · · ⊇ Efn ⊇ · · · of left ideals
of E with fn+1 = fn − fngnfn eventually terminates. Given such a chain, by (ii)
there exists m ∈ N such that ∀n > m, ker fn+1 = ker(fn − fngnfn) = ker fn, i.e.,
ker fn ⊕ ker(1− gnfn) = ker fn, so ker(1− gnfn) = 0, i.e., 1− gnfn is injective, and
so 1 − gnfn ∈ l.U(E) for all n > m. It follows that Ef0 ⊆ Ef1 ⊆ · · · ⊆ Efn ⊆ · · ·
eventually terminates, so End(M) is semilocal. h.dim(End(M)) ≤ dim(M) comes
from Theorem 9(2) and the fact that ∀i ≥ 1, ker fi+1 = ker(fi − figifi) = ker fi ⊕
ker(1 − gifi). �
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