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MINIMALITY OF THE BOUNDARY
OF A RIGHT-ANGLED COXETER SYSTEM

TETSUYA HOSAKA

(Communicated by Alexander N. Dranishnikov)

Abstract. In this paper, we show that the boundary ∂Σ(W, S) of a right-
angled Coxeter system (W, S) is minimal if and only if WS̃ is irreducible,
where WS̃ is the minimum parabolic subgroup of finite index in W . We also
provide several applications and remarks. In particular, we show that for a
right-angled Coxeter system (W, S), the set {w∞ |w ∈ W, o(w) = ∞} is dense
in the boundary ∂Σ(W, S).

1. Introduction and preliminaries

The purpose of this paper is to study dense subsets of the boundary of a Coxeter
system. A Coxeter group is a group W having a presentation

〈S | (st)m(s,t) = 1 for s, t ∈ S 〉,
where S is a finite set and m : S×S → N∪{∞} is a function satisfying the following
conditions:

(1) m(s, t) = m(t, s) for each s, t ∈ S,
(2) m(s, s) = 1 for each s ∈ S, and
(3) m(s, t) ≥ 2 for each s, t ∈ S with s �= t.

The pair (W, S) is called a Coxeter system. If, in addition,
(4) m(s, t) = 2 or ∞ for each s, t ∈ S with s �= t,

then (W, S) is said to be right-angled. Let (W, S) be a Coxeter system. Then W
has the word metric d� defined by d�(w, w′) = �(w−1w′) for each w, w′ ∈ W , where
�(w) is the word length of w with respect to S. For a subset T ⊂ S, WT is defined
as the subgroup of W generated by T , and is called a parabolic subgroup. If T is
the empty set, then WT is the trivial group. A subset T ⊂ S is called a spherical
subset of S if the parabolic subgroup WT is finite.

Every Coxeter system (W, S) determines a Davis complex Σ(W, S) which is a
CAT(0) geodesic space ([6], [7], [8], [20]). Here the 1-skeleton of Σ(W, S) is the
Cayley graph of W with respect to S. The natural action of W on Σ(W, S) is proper,
cocompact and by isometries. If W is infinite, then Σ(W, S) is noncompact and
Σ(W, S) can be compactified by adding its ideal boundary ∂Σ(W, S) ([4], [7, §4]).
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This boundary ∂Σ(W, S) is called the boundary of (W, S). We note that the natural
action of W on Σ(W, S) induces an action of W on ∂Σ(W, S) by homeomorphisms.

A subset A of a space X is said to be dense in X if A = X. A subset A of a
metric space X is said to be quasi-dense if there exists N > 0 such that each point
of X is N -close to some point of A. Suppose that a group G acts on a compact
metric space X by homeomorphisms. Then X is said to be minimal if every orbit
Gx is dense in X.

For a negatively curved group Γ and the boundary ∂Γ of Γ, it is known that each
orbit Γα is dense in ∂Γ for any α ∈ ∂Γ, that is, ∂Γ is minimal ([9]). We note that
Coxeter groups are nonpositive curved groups and not negatively curved groups
in general. Indeed, there exist examples of Coxeter systems whose boundaris are
not minimal (cf. [14], [16]). The purpose of this paper is to investigate when the
boundary of a Coxeter system is minimal.

In [14, Theorem 1], we have obtained a sufficient condition of a Coxeter system
(W, S) such that some orbit of the Coxeter group W is dense in the boundary
∂Σ(W, S). After some preliminaries in Section 2, we first show that the boundary
of such a Coxeter system is minimal; that is, we prove the following theorem in
Section 3.

Theorem 1. Let (W, S) be a Coxeter system. Suppose that W {s0} is quasi-dense
in W with respect to the word metric and o(s0t0) = ∞ for some s0, t0 ∈ S, where
o(s0t0) is the order of s0t0 in W . Then

(1) ∂Σ(W, S) is minimal, and
(2) {w∞ |w ∈ W, o(w) = ∞} is dense in ∂Σ(W, S).

Here W {s0} = {w ∈ W | �(wt) > �(w) for each t ∈ S \ {s0}} \ {1} and w∞ is
the point of ∂Σ(W, S) to which the sequence {wi | i ∈ N} ⊂ Σ(W, S) converges in
Σ(W, S) ∪ ∂Σ(W, S).

In Sections 4 and 5, we investigate right-angled Coxeter groups and we prove
the following main theorem.

Theorem 2. For a right-angled Coxeter system (W, S), the boundary ∂Σ(W, S) is
minimal if and only if WS̃ is irreducible.

Here for T ⊂ S, WT is said to be irreducible if WT does not split as a product
WT1 ×WT2 for any nonempty subsets T1 and T2 of T , and WS̃ is the minimum par-
abolic subgroup of finite index in (W, S), that is, for the irreducible decomposition
W = WS1 × · · · × WSn

, S̃ =
⋃
{Si |WSi

is infinite} ([11]).
We provide several applications of Theorem 2 in Sections 5 and 6. In particular,

we show the following corollary.

Corollary 3. For a right-angled Coxeter system (W, S), the set {w∞ |w ∈ W, o(w)
= ∞} is dense in the boundary ∂Σ(W, S).

In Section 6, we give some remarks on dense subsets of boundaries of CAT(0)
groups.

2. Lemmas on Coxeter groups

In this section, we show some lemmas for (right-angled) Coxeter groups which
are used later.

We first give some definitions.
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Definition 2.1. Let (W, S) be a Coxeter system and w ∈ W . A representation
w = s1 · · · sl (si ∈ S) is said to be reduced, if �(w) = l, where �(w) is the minimum
length of a word in S which represents w.

Definition 2.2. Let (W, S) be a Coxeter system. For each w ∈ W , we define
S(w) = {s ∈ S | �(ws) < �(w)}. For a subset T ⊂ S, we also define WT = {w ∈
W |S(w) = T}.

The following lemma is known.

Lemma 2.3 ([1], [5, p.37], [18]). Let (W, S) be a Coxeter system.
(1) Let w ∈ W and let w = s1 · · · sl be a representation. If �(w) < l, then

w = s1 · · · ŝi · · · ŝj · · · sl for some 1 ≤ i < j ≤ l.
(2) For each w ∈ W and s ∈ S, �(ws) equals either �(w) + 1 or �(w) − 1, and

�(sw) also equals either �(w) + 1 or �(w) − 1.
(3) For each w ∈ W , S(w) is a spherical subset of S; i.e., WS(w) is finite.

We can obtain the following lemma from Lemma 2.3 (3).

Lemma 2.4. Let (W, S) be a Coxeter system and let T be a maximal spherical
subset of S. Then WT is quasi-dense in W .

Proof. Let w ∈ W . There exists an element w′ of longest length in the coset wWT .
Then we show that S(w′) = T .

Let t ∈ T . Since w′t ∈ w′WT = wWT and w′ is the element of longest length
in wWT , �(w′t) < �(w′), i.e., t ∈ S(w′). Thus T ⊂ S(w′). Now T is a maximal
spherical subset of S and S(w′) is a spherical subset of S by Lemma 2.3 (3). Hence
S(w′) = T and w′ ∈ WT .

Here d�(w, w′) ≤ max{�(v) | v ∈ WT }. Hence WT is quasi-dense in W . �
Lemma 2.5 ([14, Lemma 2.3 (3)]). Let (W, S) be a Coxeter system and s, t ∈ S
such that o(st) = ∞. Then W {s}t ⊂ W {t}.

Next, we provide some lemmas for right-angled Coxeter groups. We note that
right-angled Coxeter groups are rigid; that is, a right-angled Coxeter group deter-
mines its Coxeter system uniquely up to isomorphism ([21]).

By a consequence of Tits’ solution to the word problem ([23], [5, p.50]), we can
obtain the following lemma (cf. [12, Lemma 5]).

Lemma 2.6. Let (W, S) be a right-angled Coxeter system, let w ∈ W , let w =
s1 · · · sl be a reduced representation and let t, t′ ∈ S. If tw = t(s1 · · · sl) is reduced
and twt′ = w, then t = t′ and tsi = sit for any i ∈ {1, . . . , l}.

Using Lemma 2.6, we prove the following lemma.

Lemma 2.7. Let (W, S) be a right-angled Coxeter system, let U be a spherical
subset of S, let s0 ∈ S\U and let T = {t ∈ U | o(s0t) = 2}. Then WUs0 ⊂ WT∪{s0}.

Proof. Let w ∈ WU . To prove that ws0 ∈ WT∪{s0}, we show that S(ws0) =
T ∪{s0}. We note that �(ws0) = �(w)+1 since s0 �∈ U = S(w). Hence s0 ∈ S(ws0).
Also for each t ∈ T , by the definition of T , �(ws0t) = �(wts0) < �(ws0), and
t ∈ S(ws0). Thus T ∪ {s0} ⊂ S(ws0). Next we show that S(ws0) ⊂ T ∪ {s0}. Let
t ∈ S(ws0). Then �(ws0t) < �(ws0). If w = a1 . . . al is a reduced representation,
then by Lemma 2.3 (1),

ws0t = (a1 . . . al)s0t = (a1 . . . âi . . . al)s0
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for some i ∈ {1, . . . , l}, or t = s0. By Lemma 2.6, we obtain that s0t = ts0.
This implies that if t �= s0, then �(wt) < �(w), i.e., t ∈ S(w) = U . Since t ∈ U
and s0t = ts0, t ∈ T . Hence S(ws0) ⊂ T ∪ {s0}. Thus S(ws0) = T ∪ {s0} and
ws0 ∈ WT∪{s0}. We obtain that WUs0 ⊂ WT∪{s0}. �

It is well-known that a Coxeter system (W, S) is irreducible if and only if the
underlying graph of its Coxeter graph is connected ([1], [5, p.23], [18, p.30]). If
the Coxeter system (W, S) is right-angled, then the underlying graph of its Coxeter
graph is the graph Γ∞(W, S), where Γ∞(W, S) is defined as follows: the vertex set
of Γ∞(W, S) is S and for s, t ∈ S, {s, t} spans an edge in Γ∞(W, S) if and only if
m(s, t) = ∞. Hence we obtain the following lemma.

Lemma 2.8 (cf. [1], [5], [18]). For a right-angled Coxeter system (W, S), the fol-
lowing statements are equivalent:

(1) (W, S) is irreducible.
(2) Γ∞(W, S) is connected.
(3) For each a, b ∈ S with a �= b, there exists a sequence {a = s1, s2, . . . , sn =

b} ⊂ S such that o(sisi+1) = ∞ for any i ∈ {1, . . . , n − 1}.

3. Minimality of the boundary of a Coxeter system

In this section, we show an extension of a result in [14] on minimality of the
boundary of a Coxeter system.

Theorem 3.1. Let (W, S) be a Coxeter system. Suppose that W {s0} is quasi-dense
in W and o(s0t0) = ∞ for some s0, t0 ∈ S. Then

(1) ∂Σ(W, S) is minimal, and
(2) {w∞ |w ∈ W, o(w) = ∞} is dense in ∂Σ(W, S).

Proof. Suppose that W {s0} is quasi-dense in W and o(s0t0) = ∞ for some s0, t0 ∈ S.
Then we show that Wγ is dense in ∂Σ(W, S) for any γ ∈ ∂Σ(W, S).

Let γ ∈ ∂Σ(W, S) and let {vi} ⊂ W be a sequence which converges to γ in
Σ(W, S) ∪ ∂Σ(W, S). Since W {s0} is quasi-dense in W , there exists a number
N > 0 such that for each v ∈ W , d�(v, x) ≤ N for some x ∈ W {s0}. Hence for
each v ∈ W , there exists u ∈ W such that �(u) ≤ N and vu ∈ W {s0}. For each
i, there exists ui ∈ W such that �(ui) ≤ N and (vi)−1ui ∈ W {s0}. We note that
the set {u ∈ W | �(u) ≤ N} is finite because S is finite. Hence {ui | i ∈ N} is finite,
and there exist u ∈ W and a sequence {ij | j ∈ N} ⊂ N such that uij

= u for any
j ∈ N. Then for each j ∈ N, (vij

)−1uij
= (vij

)−1u ∈ W {s0} and (vij
)−1ut0 ∈ W {t0}

by Lemma 2.5, since o(s0t0) = ∞. Hence t0u
−1vij

∈ (W {t0})−1. The sequence
{t0u−1vij

| j ∈ N} converges to t0u
−1γ, since {vij

| j ∈ N} converges to γ. Here we
recall the proof of [14, Theorem 4.1]. If we put xj = t0u

−1vij
and α = t0u

−1γ, then
the sequence {xj} ⊂ (W {t0})−1 converges to α. By the proof of [14, Theorem 4.1],
we obtain that Wα is dense in ∂Σ(W, S); that is, Wt0u

−1γ is dense in ∂Σ(W, S).
Hence Wγ is dense in ∂Σ(W, S), since Wt0u

−1 = W . Thus every orbit Wγ is dense
in ∂Σ(W, S) and ∂Σ(W, S) is minimal.

The minimality of ∂Σ(W, S) implies that the set {w∞ |w ∈ W, o(w) = ∞} is
dense in ∂Σ(W, S) (see Proposition 6.2). �
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Here we have a question whether conversely if ∂Σ(W, S) is minimal, then W {s0}

is quasi-dense in W and o(s0t0) = ∞ for some s0, t0 ∈ S. The answer to this
question is no in general.

For example, let S = {s1, s2, s3} and let

W = 〈S | s2
1 = s2

2 = s2
3 = (s1s2)4 = (s2s3)4 = (s3s1)4 = 1〉.

Then W is a negatively curved group and the boundary ∂Σ(W, S) is minimal. On
the other hand, there do not exist s0, t0 ∈ S such that o(s0t0) = ∞.

In Section 5, we will show that in the case (W, S) is right-angled, the answer to
this question is yes.

4. Key lemma

In this section, we prove the following lemma, which plays a key role in the proof
of the main theorem.

Lemma 4.1. Let (W, S) be a right-angled Coxeter system such that W is infinite.
If W is irreducible, then W {s0} is quasi-dense in W for some s0 ∈ S.

Proof. We suppose that W {s} is not quasi-dense in W for any s ∈ S. Then we
show that W is not irreducible.

Let s0 ∈ S, let T1 = {t ∈ S | o(s0t) = 2} and let S1 = S \ T1. If T1 = ∅,
then o(s0s) = ∞ for each s ∈ S \ {s0}; hence W {s0} is quasi-dense in W , which
contradicts the assumption. Thus T1 �= ∅. If S1 = {s0}, then W = W{s0} × WT1 ;
i.e., W is not irreducible. We suppose that S1 �= {s0}.

Let s1 ∈ S1 \ {s0}, let T2 = {t ∈ T1 | o(s1t) = 2} and let S2 = S \ T2 =
S1 ∪ (T1 \ T2). We note that o(sit) = 2 for each i ∈ {0, 1} and t ∈ T2, i.e.,
W{s0,s1}∪T2 = W{s0,s1} × WT2 . Since s1 ∈ S1 \ {s0}, we obtain that o(s0s1) = ∞
and W{s0,s1} is irreducible.

Now we show that T2 �= ∅. Suppose that T2 = ∅. This means that o(s1t) = ∞
for any t ∈ T1. Let U be a maximal spherical subset of S such that s0 ∈ U .
Then o(uv) = 2 for each u, v ∈ U with u �= v, because (W, S) is right-angled and
WU is finite. Hence o(s0u) = 2 for any u ∈ U , since s0 ∈ U . This means that
U ⊂ T1 ∪ {s0}. Hence o(s1u) = ∞ for any u ∈ U , because o(s1t) = ∞ for any
t ∈ T1 and o(s0s1) = ∞. Thus WUs1 ⊂ W {s1} by Lemma 2.7. Here by Lemma 2.4,
WU is quasi-dense in W , since U is a maximal spherical subset of S. Hence W {s1}

is quasi-dense in W . This contradicts the assumption. Thus we obtain that T2 �= ∅.
If S2 = {s0, s1}, then W = W{s0,s1}×WT2 and W is not irreducible. We suppose

that S2 �= {s0, s1}. Let s2 ∈ S2 \ {s0, s1}, let T3 = {t ∈ T2 | o(s2t) = 2} and let
S3 = S \ T3 = S2 ∪ (T2 \ T3).

By induction, we define sk, Tk+1, Sk+1 as follows: Let

sk ∈ Sk \ {s0, . . . , sk−1},
Tk+1 = {t ∈ Tk | o(skt) = 2} and

Sk+1 = S \ Tk+1.

Then W{s0,s1,...,sk}∪Tk+1 = W{s0,s1,...,sk} × WTk+1 . If Sk+1 \ {s0, s1, . . . , sk} = ∅,
then W = WSk+1 × WTk+1 , i.e., W is not irreducible. Here we note that Tk+1 ⊂
Tk ⊂ · · · ⊂ T2 ⊂ T1. If Tk �= ∅ for each k, then by the finiteness of S, there exists a
number n such that W = WSn

× WTn
; hence W is not irreducible.

We prove the following statements by induction on k.
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(ik) Tk �= ∅.
(iik) W{s0,...,sk−1} is irreducible.
(iiik) There exists a spherical subset Uk ⊂ Tk such that WUk∪{si} is quasi-dense

in W for each i ∈ {0, . . . , k − 1}.
We first consider the case k = 2. The statement (i2) T2 �= ∅ was proved in the

above. Also (ii2) holds, since W{s0,s1} = W{s0} ∗ W{s1} is irreducible. We show
that the statement (iii2) holds. Let U be a maximal spherical subset of S such
that s0 ∈ U . Then WU is quasi-dense in W by Lemma 2.4. Let U2 = U ∩ T2. We
note that U2 = {t ∈ U | o(s1t) = 2}. By Lemma 2.7, WUs1 ⊂ WU2∪{s1}. Hence
WU2∪{s1} is quasi-dense in W . (This implies that U2 �= ∅ by the assumption.) Also
WU2∪{s0} is quasi-dense in W , since WU2∪{s1}s0 ⊂ WU2∪{s0} by Lemma 2.7. Thus
(iii2) holds.

We suppose that (ik), (iik) and (iiik) hold for some k ≥ 2. Then we prove that
(ik+1), (iik+1) and (iiik+1) hold.

(ik+1): We show that Tk+1 �= ∅. Suppose that Tk+1 = ∅. If o(sksi) = 2 for any
i ∈ {0, 1, . . . , k − 1}, then sk ∈ Tk, which contradicts the definition of sk. Hence
o(sksi0) = ∞ for some i0 ∈ {0, 1, . . . , k − 1}. Since Tk+1 = ∅, o(skt) = ∞ for any
t ∈ Tk. Here Uk ⊂ Tk and o(skt) = ∞ for any t ∈ Uk. Hence WUk∪{si0}sk ⊂ W {sk}

by Lemma 2.7. By (iiik), WUk∪{si0} is quasi-dense in W . Thus W {sk} is also
quasi-dense in W , which contradicts the assumption. Hence Tk+1 �= ∅.

(iik+1): We show that W{s0,...,sk−1,sk} is irreducible. Now o(sksi0) = ∞ for some
i0 ∈ {0, 1, . . . , k − 1} by the above argument. Also W{s0,...,sk−1} is irreducible by
the hypothesis (iik). Hence W{s0,...,sk−1,sk} is irreducible.

(iiik+1): By (iiik), there exists a spherical subset Uk ⊂ Tk such that WUk∪{si}

is quasi-dense in W for each i ∈ {0, . . . , k − 1}. We define Uk+1 = Uk ∩ Tk+1,
i.e., Uk+1 = {t ∈ Uk | o(skt) = 2}. Here o(sksi0) = ∞ for some i0 ∈ {0, 1, . . . ,
k − 1} by the above argument. Then WUk∪{si0}sk ⊂ WUk+1∪{sk} by Lemma 2.7.
Hence WUk+1∪{sk} is quasi-dense in W , since WUk∪{si0} is so. Finally we show
that WUk+1∪{si} is quasi-dense in W for each i ∈ {0, . . . , k − 1, k}. We note that
W{s0,...,sk−1,sk} is irreducible by (iik+1). Hence for each j0 ∈ {0, . . . , k − 1}, there
exists a sequence {sk = a0, a1, . . . , am = sj0} ⊂ {si | i = 0, 1, . . . , k} such that
o(aiai+1) = ∞ by Lemma 2.8. Then by Lemma 2.7,

WUk+1∪{sk}a1a2 · · · am ⊂ WUk+1∪{a1}a2 · · · am

⊂ · · · ⊂ WUk+1∪{am} = WUk+1∪{sj0},

because o(siu) = 2 for any i ∈ {0, 1, . . . , k− 1, k} and u ∈ Uk+1. Thus WUk+1∪{sj0}

is quasi-dense in W . Hence (iiik+1) holds.
Thus by the induction on k, we can define sk−1, Tk, Sk which satisfy (ik), (iik) and

(iiik). Since S is finite, there exists a number n such that Sn = {s0, s1, . . . , sn−1}
and W = WSn

× WTn
, where Tn �= ∅. Therefore W is not irreducible. �

5. Dense subsets of the boundary of a right-angled Coxeter group

We obtain the following main theorem from Theorem 3.1 and Lemma 4.1.

Theorem 5.1. Let (W, S) be a right-angled Coxeter system such that W is infinite.
Then the following statements are equivalent:

(1) ∂Σ(W, S) is minimal.
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(2) WS̃ is irreducible.
(3) W {s0} is quasi-dense in W and o(s0t0) = ∞ for some s0, t0 ∈ S.
(4) There does not exist a finite-index subgroup of W which splits as a product

W1 × W2 where each Wi is infinite.

Proof. (3) ⇒ (1): If the statement (3) holds, then ∂Σ(W, S) is minimal by Theo-
rem 3.1.

(1) ⇒ (2): Suppose that WS̃ is not irreducible. Let WS̃ = WS1×WS2 , where WS1

and WS2 are infinite. Then ∂Σ(W, S) = ∂Σ(WS̃ , S̃) and Σ(WS̃ , S̃) = Σ(WS1 , S1) ×
Σ(WS2 , S2). Here by [11, Theorem 4.3], ∂Σ(WS1 , S1) is W -invariant, that is,
W∂Σ(WS1 , S1) = ∂Σ(WS1 , S1). Thus for α ∈ ∂Σ(WS1 , S1), Wα ⊂ ∂Σ(WS1 , S1).
Hence ∂Σ(W, S) is not minimal. In Section 6, we will give a more general proof
(Theorem 6.4).

(2) ⇒ (3): Suppose that WS̃ is irreducible. By Lemma 4.1, (WS̃){s0} = W {s0} ∩
WS̃ is quasi-dense in WS̃ for some s0 ∈ S̃. Here W = WS̃×WS\S̃ and WS\S̃ is finite
(see [11]). Hence W {s0} is quasi-dense in W . Since WS̃ is irreducible, o(s0t0) = ∞
for some t0 ∈ S̃ by Lemma 2.8. Thus the statement (3) holds.

(4) ⇒ (2): If WS̃ is not irreducible, then WS̃ splits as a product WS̃ = WA1×WA2

for some Ai ⊂ S̃, where each WAi
is infinite. Here WS̃ is a finite-index subgroup of

W .
(1) ⇒ (4): We obtain this implication from Theorem 6.4. �
The following question appears in [15].

Question 5.2. Let (W, S) be a Coxeter system. Is it the case that if (W, S) is an
irreducible Coxeter system, then W∂Σ(WT , T ) is dense in ∂Σ(W, S) for any subset
T of S such that WT is infinite?

Theorem 5.1 implies that the answer to Question 5.2 is yes for right-angled Cox-
eter groups. Moreover, as an application of Theorem 5.1, we obtain the following
corollary.

Corollary 5.3. Let (W, S) be a right-angled Coxeter system and let T ⊂ S. Then
the following statements are equivalent:

(1) W∂Σ(WT , T ) is dense in ∂Σ(W, S).
(2) If W = WS1 ×· · ·×WSn

is the irreducible decomposition of W , then WSi∩T

is infinite for each i ∈ {1, . . . , n} such that WSi
is infinite.

Proof. (1) ⇒ (2): Let W = WS1×· · ·×WSn
be the irreducible decomposition of W .

We suppose that there exists i0 ∈ {1, . . . , n} such that WSi0
is infinite and WSi0∩T

is finite. Let A1 = S\Si0 and A2 = Si0 . Then W = WA1×WA2 , WA2 is infinite and
WA2∩T is finite. We note that ∂Σ(WA1 , A1) is W -invariant by [11, Theorem 4.3].
Since WT = WA1∩T × WA2∩T and WA2∩T is finite, ∂Σ(WT , T ) ⊂ ∂Σ(WA1 , A1).
Thus

W∂Σ(WT , T ) ⊂ W∂Σ(WA1 , A1) = ∂Σ(WA1 , A1).
Since WA2 is infinite and

∂Σ(W, S) = ∂Σ(WA1 , A1) ∗ ∂Σ(WA2 , A2),

W∂Σ(WT , T ) is not dense in ∂Σ(W, S).
(2) ⇒ (1): Let W = WS1 × · · · × WSn

be the irreducible decomposition of W .
Suppose that (2) holds. Then we prove that (1) holds by induction on n.
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We first consider the case n = 1. Then W = WS1 is irreducible. Since WS1∩T is
infinite, ∂Σ(WT , T ) �= ∅. Hence W∂Σ(WT , T ) is dense in ∂Σ(W, S) by Theorem 5.1.

Next we consider the case n > 1. Let A1 = S1 ∪ · · · ∪ Sn−1 and A2 = Sn. Then
W = WA1 × WA2 and WT = WA1∩T × WA2∩T . Here

W∂Σ(WT , T ) = W (∂Σ(WA1∩T , A1 ∩ T ) ∗ ∂Σ(WA2∩T , A2 ∩ T ))

⊃ WA1∂Σ(WA1∩T , A1 ∩ T ) ∗ WA2∂Σ(WA2∩T , A2 ∩ T ).

By the inductive hypothesis, WAi
∂Σ(WAi∩T , Ai ∩ T ) is dense in ∂Σ(WAi

, Ai) for
each i = 1, 2. Since

∂Σ(W, S) = ∂Σ(WA1 , A1) ∗ ∂Σ(WA2 , A2),

we obtain that W∂Σ(WT , T ) is dense in ∂Σ(W, S). �
Also we obtain the following corollary from Theorem 5.1. We give a proof in

Section 6.

Corollary 5.4. For a right-angled Coxeter system (W, S), the set {w∞ |w ∈
W, o(w) = ∞} is dense in the boundary ∂Σ(W, S).

6. Remarks on dense subsets of boundaries of CAT(0) groups

In this section, we investigate dense subsets of boundaries of CAT(0) groups.
The definitions and basic properties of CAT(0) spaces and their boundaries can
be found in [4]. A group Γ is called a CAT(0) group if Γ acts geometrically (i.e.,
properly and cocompactly by isometries) on some CAT(0) space. For example,
a Coxeter group W acts geometrically on the Davis complex Σ(W, S), which is a
CAT(0) space, and every Coxeter group is a CAT(0) group.

We pose the following open problem.

Question 6.1. Suppose that a group Γ acts geometrically on a CAT(0) space X.
Is it the case that the set {γ∞ | γ ∈ Γ, o(γ) = ∞} is dense in the boundary ∂X?

Here we note that γ∞ is the point of the boundary ∂X to which the sequence
{γix0 | i ∈ N} ⊂ X converges in X ∪ ∂X, where x0 ∈ X and γ∞ does not depend
on the point x0.

We introduce some relations between this question and the minimality of bound-
aries of CAT(0) groups.

We first show the following proposition.

Proposition 6.2. Suppose that a group Γ acts geometrically on a CAT(0) space
X. If there exists δ ∈ Γ such that o(δ) = ∞ and Γδ∞ is dense in the boundary ∂X,
then the set {γ∞ | γ ∈ Γ, o(γ) = ∞} is dense in ∂X. Hence, if the boundary ∂X
is minimal, then the set {γ∞ | γ ∈ Γ, o(γ) = ∞} is dense in ∂X.

Proof. Suppose that δ ∈ Γ such that o(δ) = ∞ and Γδ∞ is dense in ∂X. Let
α ∈ ∂X. Since Γδ∞ is dense in ∂X, there exists a sequence {γi} ⊂ Γ such
that {γiδ

∞} converges to α in ∂X. Here for x0 ∈ X and each i, the sequence
{(γiδγ

−1
i )jx0}j converges to γiδ

∞ in X ∪ ∂X. Hence (γiδγ
−1
i )∞ = γiδ

∞ and
{(γiδγ

−1
i )∞}i converges to α in ∂X. Thus {γ∞ | γ ∈ Γ, o(γ) = ∞} is dense in ∂X.

Now we suppose that the boundary ∂X is minimal. It is known that every
CAT(0) group has an element of infinite order ([22, Theorem 11]). Let δ ∈ Γ with
o(δ) = ∞. Then Γδ∞ is dense in ∂X because ∂X is minimal. Hence, by the above
argument, the set {γ∞ | γ ∈ Γ, o(γ) = ∞} is dense in the boundary ∂X. �
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We obtain the following proposition from some splitting theorems for CAT(0)
spaces.

Proposition 6.3. Suppose that a group Γ = Γ1×Γ2 acts geometrically on a CAT(0)
space X, where Γ1 and Γ2 are infinite. Then X contains a quasi-dense subspace
X ′ = X1 ×X2 and there exists a product subgroup Γ′

1 ×Γ′
2 of finite index in Γ such

that X1 is the convex hull C(Γ′
1x0) for some x0 ∈ X and Γ′

2 acts geometrically on
X2 by projection.

Proof. By [13, Lemma 2.1], there exist subgroups G1 × A1 and G2 × A2 of finite
index in Γ1 and Γ2 respectively such that G1 and G2 have finite center and Ai is
isomorphic to Z

ni for some ni (i = 1, 2).
In the case that Ai is not trivial for some i ∈ {1, 2}, we put Γ′

1 = Ai and
Γ′

2 = G1 × G2 × A3−i. Then by [3, Proposition 1.1] and [4, Theorem II.7.1], the
proposition holds.

In the case that A1 and A2 are trivial, we put Γ′
1 = G1 and Γ′

2 = G2. Here
G1 and G2 have finite center. By [17, Theorem 2] and [19, Corollary 10], the
proposition holds. Here concerning the condition in [19, Corollary 10], we note
that if the CAT(0) group Γ has finite center, then there does not exist a Γ-fixed
point in the boundary ∂X (cf. [17, Lemma 3.2]). �

Concerning the nonminimality of boundaries of CAT(0) groups, using Proposi-
tion 6.3, we show the following theorem.

Theorem 6.4. Suppose that a group Γ acts geometrically on a CAT(0) space X.
If Γ contains a finite-index subgroup Γ1 ×Γ2 where Γ1 and Γ2 are infinite, then the
boundary ∂X is not minimal.

Proof. Let Γ1 × Γ2 be a finite-index subgroup of Γ, where Γ1 and Γ2 are infinite.
Then Γ1×Γ2 acts geometrically on X. By Proposition 6.3, X contains a quasi-dense
subspace X1 ×X2 and there exists a product subgroup Γ′

1 ×Γ′
2 of finite index in Γ

such that X1 is the convex hull C(Γ′
1x0) for some x0 ∈ X and Γ′

2 acts geometrically
on X2 by projection.

To prove that ∂X is not minimal, we show that Γ(∂X1) is not dense in ∂X.
Since Γ′

1 × Γ′
2 is a subgroup of finite index in Γ, there exist a number n and

{δ1, . . . , δn} ⊂ Γ such that Γ =
⋃n

i=1 δi(Γ′
1 × Γ′

2).
Since X1 = C(Γ′

1x0) is Γ′
1-invariant, Γ′

1(∂X1) = ∂X1. For each γ2 ∈ Γ′
2, γ2X1

and X1 are parallel by the proof of the splitting theorems ([3], [4], [17], [19]); hence
γ2(∂X1) = ∂X1, that is, Γ′

2(∂X1) = ∂X1. Thus (Γ′
1 × Γ′

2)(∂X1) = ∂X1.
Hence

Γ(∂X1) = (
n⋃

i=1

δi(Γ′
1 × Γ′

2))(∂X1)

=
n⋃

i=1

(δi(Γ′
1 × Γ′

2)(∂X1))

=
n⋃

i=1

(δi(∂X1)).
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Here we note that Γ(∂X1) =
⋃n

i=1(δi(∂X1)) is closed. Hence

dim Γ(∂X1) = dim
n⋃

i=1

(δi(∂X1)) = dim ∂X1

< dim(∂X1 × [0, 1]) ≤ dim(∂X1 ∗ ∂X2) = dim ∂X.

Here we note that dim ∂Xi is finite, because the boundary of a cocompact proper
CAT(0) space is finite-dimensional ([22, Theorem 12]).

Thus Γ(∂X1) is not dense in ∂X. This implies that ∂X is not minimal. �

The referee has pointed out that the converse of Theorem 6.4 (if Γ does not
contain a finite-index subgroup Γ1 × Γ2 where Γ1 and Γ2 are infinite, then the
boundary ∂X is minimal) will not be true in general and that a counterexample
will be supplied by the theory of lattices in semisimple groups, since an irreducible
lattice on a product of two hyperbolic planes does not factor (with infinite factors)
(cf. [10]).

On the other hand, Theorem 5.1 implies that the converse of Theorem 6.4 holds
for right-angled Coxeter groups and their boundaries.

Let A be the set of all infinite CAT(0) groups Γ such that for any CAT(0) space
X on which Γ acts geometrically, the set {γ∞ | γ ∈ Γ, o(γ) = ∞} is dense in ∂X.

Now we show the following proposition.

Proposition 6.5. Suppose that Γ1, . . . , Γn ∈ A and that each Γi does not contain a
finite-index subgroup Γi1×Γi2 such that Γi1 and Γi2 are infinite. Then Γ1×· · ·×Γn ∈
A.

Proof. We note that each Γi is either isomorphic to Z or has finite center by [13,
Lemma 2.1]. Hence we can suppose that for some number k, Γi is isomorphic to Z

for each i ≤ k and Γi has finite center for each i > k.
We prove that Γ ∈ A by induction on n.
In the case n = 1, it is obvious.
We consider the case n = 2. Suppose that Γ = Γ1 × Γ2 acts geometrically on a

CAT(0) space X. By Proposition 6.3, X contains a quasi-dense subspace X1 ×X2

such that X1 = C(Γ1x0) for some x0 ∈ X and Γ2 acts geometrically on X2 by
projection. Let α ∈ ∂X. Here

∂X = ∂X1 ∗ ∂X2 = (∂X1 × ∂X2 × [−π, π])/ ∼ .

Hence α = [α1, α2, θ] for some α1 ∈ ∂X1, α2 ∈ ∂X2 and θ ∈ [−π, π]. Now {γ∞ | γ ∈
Γ1, o(γ) = ∞} is dense in ∂X1 and {δ∞ | δ ∈ Γ2, o(δ) = ∞} is dense in ∂X2.
Hence there exist sequences {γi} ⊂ Γ1 and {δi} ⊂ Γ2 such that {γ∞

i } converges to
α1 and {δ∞i } converges to α2. Since 〈γi, δi〉 is isomorphic to Z × Z, by the Flat
Torus Theorem ([4, Theorem II.7.1]), 〈γi, δi〉 acts geometrically on some convex hull
C(〈γi, δi〉xi) which is isometric to the Euclidean plane. Here C(〈γi, δi〉xi) ⊂ X1×X2

and
{γ−∞

i , γ∞
i , δ−∞

i , δ∞i } ⊂ ∂(C(〈γi, δi〉xi)).

Then there exists a sequence {aij} ⊂ 〈γi, δi〉 such that {a∞
ij }j converges to

[γ∞
i , δ∞i , θ]. Here the sequence {[γ∞

i , δ∞i , θ]}i converges to α. Hence

α ∈ {a∞
ij | i, j ∈ N} ⊂ {γ∞ | γ ∈ Γ, o(γ) = ∞}.

Thus {γ∞ | γ ∈ Γ, o(γ) = ∞} is dense in ∂X and Γ = Γ1 × Γ2 ∈ A.
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We consider the case n > 2. Suppose that Γ = Γ1 × · · · × Γn−1 × Γn acts
geometrically on a CAT(0) space X. Let Γ̃1 = Γ1 × · · · × Γn−1 and Γ̃2 = Γn.
Here we can suppose that Γ̃2 has finite center or that each Γi is isomorphic to Z

for i = 1, . . . , n. By the inductive hypothesis and the same argument as the proof
in the case n = 2, we obtain that {γ∞ | γ ∈ Γ, o(γ) = ∞} is dense in ∂X and
Γ = Γ1 × · · · × Γn−1 × Γn ∈ A. �

Suppose that a group Γ acts geometrically on a CAT(0) space X. Then there
exists a finite-index subgroup Γ1 × · · · × Γn of Γ such that each Γi is infinite and
each Γi does not contain a finite-index subgroup Γi1 × Γi2 where Γi1 and Γi2 are
infinite. Here the decomposition process terminates and n is finite. Indeed each Γi

is a CAT(0) group by [17, Theorem 9.1] and there exists γi ∈ Γi with o(γi) = ∞
by [22, Theorem 11]. Then 〈γ1, . . . , γn〉 ⊂ Γ is isomorphic to Z

n. Here such an n is
finite, because every abelian subgroup of a CAT(0) group is finitely generated ([4,
Corollary II.7.6]).

Hence Proposition 6.5 implies that Question 6.1 is equivalent to the following
question.

Question 6.6. For an infinite CAT(0) group Γ which does not contain a finite-
index product subgroup of two infinite subgroups, does Γ ∈ A?

Finally, we prove Corollary 5.4. Concerning Question 6.1, we obtain a positive
answer for right-angled Coxeter groups and their boundaries.

Proof of Corollary 5.4. Let (W, S) be a right-angled Coxeter system and let W =
WS1 ×· · ·×WSn

be the irreducible decomposition of W . We may suppose that WSi

is infinite for any i ≤ k and WSi
is finite for any i > k for some number k. Then

S̃ = S1 ∪ · · · ∪ Sk and

Σ(W, S) = Σ(WS1 , S1) × · · · × Σ(WSk
, Sk) × Σ(WS\S̃, S \ S̃),

where Σ(WS\S̃ , S \ S̃) is bounded, since WS\S̃ is finite. Hence,

∂Σ(W, S) = ∂Σ(WS1 , S1) ∗ · · · ∗ ∂Σ(WSk
, Sk).

Here each Coxeter system (WSi
, Si) is irreducible and right-angled and ∂Σ(WSi

, Si)
is minimal by Theorem 5.1. Thus for each i ∈ {1, . . . , k}, the set {w∞ |w ∈
Wi, o(w) = ∞} is dense in ∂Σ(WSi

, Si) by Proposition 6.2. By a similar argument
to the proof of Proposition 6.5, we obtain that the set {w∞ |w ∈ W, o(w) = ∞} is
dense in the boundary ∂Σ(W, S). �
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