PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 137, Number 3, March 2009, Pages 1035-1038
S 0002-9939(08)09590-7

Article electronically published on September 25, 2008

ON FIELDS OF DEFINITION
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(Communicated by Alexander N. Dranishnikov)

ABSTRACT. We show that the degrees of the real fields of definition of arith-
metic Kleinian reflection groups are bounded by 35.

1. INTRODUCTION

In two recent articles [7], [§], Nikulin gave explicit upper bounds for the degrees
of the fields of definition of arithmetic hyperbolic reflection groups in dimensions
n > 4 and n = 2. He pointed out that only the case n = 3 remained open. Later, in
[9], Nikulin extended his method to this case as well and thus completed in general
the solution of the problem. Still the explicit bounds obtained in [7, [8, [O] are far
from being sharp.

In this paper we explore an alternative approach to the problem. As a result
we show that the fields of definition of arithmetic Kleinian reflection groups have
degrees less than 70. This implies that real fields of definition of corresponding
orthogonal groups have degrees bounded by 35 (compare with the 10000-bound in
[9], which was improved to 909 in the latest version of the preprint). We also give
general bounds for discriminants of the fields of definition and good upper bounds
for the discriminants which correspond to non-cocompact Kleinian groups.

A theorem of Nikulin [7, Th. 4.8] states that the degrees of the real fields of
definition in all dimensions are bounded by a maximum of 56, and the degrees in
dimensions 2 and 3. In dimension 2, following the previous work [5], Nikulin gave
an upper bound of 44 for the degrees (see [7, Sec. 4.5]). Combining this with the
result of the present paper, we get a universal upper bound of 56 for all dimensions,
which, in particular, improves on the bounds for the dimensions 4 and 5 obtained
by Nikulin in [8].

Our method is based on the work of Agol [I] combined with Borel’s volume
formula [2] and some number-theoretic results of Chinburg and Friedman [3] [4].

2. PRELIMINARIES

Discrete subgroups of PSL(2,C) are called Kleinian groups. As PSL(2,C) is
isomorphic to the group of orientation preserving isometries of the hyperbolic 3-
space H?, Kleinian groups act isometrically on H?. If a Kleinian group I' acts as
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an orientation preserving subgroup of a discrete group generated by reflections in
hyperbolic hyperplanes, it is called a reflection group. In this case the volume of
the hyperbolic polyhedron P bounded by the reflection hyperplanes is half of the
covolume of I'. If " is an arithmetic subgroup of PSL(2, C) (we refer to [6l Sec. 8] for
the definition and basic properties of arithmetic Kleinian groups), its covolume can
be estimated using its arithmetic invariants. A volume formula of Borel [2] allows
us to write down the estimate in an explicit form. On the other hand, the covolume
of I' can be estimated from the geometry of the polyhedron P. One of the main
ideas of [1] is that the interplay between these two estimates leads to the finiteness
result for the number of conjugacy classes of arithmetic Kleinian reflection groups.
Our purpose is to make this relation explicit and then apply it to get quantitative
bounds for the finiteness theorem.

3. RESULTS

Theorem 1. Let k be a field of definition of an arithmetic Kleinian reflection group.
Then its degree ny, < 70 and the absolute value of the discriminant Dy, < 4.4x10%73,
Moreover, if the group is non-cocompact, then ny = 2 and Dy, < 9240.

Remark 1. It is well-known due to Vinberg that arithmetic reflection groups are
defined by quadratic forms [I0, Lemma 7]. Corresponding forms are defined over
totally real fields, and the fields of definition of arithmetic Kleinian reflection groups
are quadratic extensions of these fields (see [6 Sec. 10.2]). Therefore, the degrees of
the fields of definition of arithmetic Kleinian reflection groups are necessarily even,
and the corresponding real fields of definition of orthogonal groups have degrees
half that. Theorem [I] implies that the degrees of the real fields of definition are
bounded by 70/2 = 35.

Remark 2. The non-cocompact arithmetic Kleinian groups are also known as Bian-
chi groups and have a long history in the mathematical literature. While our general
bound for discriminants of the fields of definition is more an existence bound, the
bound for the Bianchi groups is much better (compare with 1.02 x 108-bound in [1}
Sec. 7]). Moreover, in the proof of the theorem we obtained a list of 330 imaginary
quadratic fields which contains all possible candidates for the fields of definition
of Bianchi reflection groups. The key ingredients for this enumeration are Gauss’
theorem on the 2-class number of a quadratic field and Vinberg’s result on class
groups of fields of definition of Bianchi reflection groups (see part 3 of the proof
for details). No proper analogue of any of these two results is currently known in a
more general setting.

4. PROOF OF THEOREM 1

4.1. Let " be a maximal arithmetic Kleinian reflection group and let u(T") denote
its covolume. By the proof of Theorem 6.1 in [I], we have

(4.1) w(l) < 2 x 6472
We now recall a non-trivial corollary of Borel’s volume formula which was obtained

in [4, Lemma 4.3]. It implies

19.08
4.2 r . . -
(4.2) w(T) > 0.69 exp (O37nk h(k,2,B)>7
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where ny is the degree of the field of definition of T and h(k, 2, B) is the order of a
certain subgroup of the 2-class group of k (see [4, Sec. 2] for a precise definition of
h(k,2, B)).
From (1) and (£2) we obtain
- log(12872/0.69) + 19.08/h(k, 2, B)
0.37
< log(12872/0.69) + 19.08

- 0.37
< 71.88.

Nk

It was already pointed out in Remark[I] that the degree of k is necessarily an even
integer, which implies n; < 70. As any arithmetic reflection group is contained in
some maximal arithmetic reflection group it follows that the same bound holds for
the fields of definition of arbitrary arithmetic Kleinian reflection groups.

4.2. Using the Brauer-Siegel theorem and Zimmert’s bound for the regulator, we
can show that the class number

(4.3) iurgloz({%)nkza

(see [, Sec. 3] for more details).
The bound (€3] together with the upper bound for nj gives

70
h(k,2,B) < hy < 1Dy, clzly(fj .

12
Now the volume formula [2] implies (here again we use the notation from [4]):
D¢ (2)2 (Nv—1)
(4.4) w(l) > 22(nk=2)+4+t-172(nk=2)+2[K (B) : k] 1_1! 2
ve
24N
D3/
= 9U92n—12n—222(m—2) o, 2, B)
L
s> Dk (o = QT0PAXT0—5,2x70-2
= tye1 )

Combined with ([@1]) this gives
Dy < (1287%¢1¢2)? < 4.4 x 10%7.

4.3. Now let I" be a non-cocompact arithmetic Kleinian group. It follows that k
is necessarily an imaginary quadratic field and the set of places of k£ at which the
quaternion division algebra associated to I' is ramified is empty (see [6 Th. 8.2.3]).
In the notation of [4] the latter implies ¢ = 0. Thus the volume estimate (£4)
applied to this case gives

D202
(45) e ngg)

We have h(k,2, B) < ha(k), where ha(k) is the 2-class number of k. By Gauss’ theo-
rem, ho(k) < 2171 where t;, is the number of distinct prime divisors of the discrimi-
nant Dg. Well-known number-theoretic estimates imply t < 1.5log Dy / loglog Dy.
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Therefore,

r D* G (2)
’u( )— 21.5log Dy / loglog D —1872

D3/

= 21.5log Dy / loglog Di | G2

If Dy, > 105, then pu(T') > 1492.9 and inequality (&1]) fails. Considering the re-
maining fields, a simple program for the GP PARI calculator allows us to compute
the lower bound (£3) for u(T) using precise values of ho(k) and (;(2). This way
we obtain that there are in total 882 fields which satisfy the criteria and that the
largest Dy, = 9240. The list of the admissible fields can be further improved using
a theorem of Vinberg [I1], which implies that the class numbers of the fields under
consideration should be powers of 2. As a result we obtain that there are only 330
such fields.
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