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Abstract. Let (X, ∗) be a pointed CW-complex, K be a simplicial complex
on n vertices and XK be the associated polyhedral power. In this paper, we
construct a Sullivan model of XK from K and from a model of X.

Let F(K, X) be the homotopy fiber of the inclusion XK → Xn. Recent
results of Grbić and Theriault, on one side, and of Denham and Suciu, on the
other side, show the diversity of the possible homotopy types for F(K, X).
Here, we prove that the corresponding map between Sullivan models is Golod
attached, generalizing a result of J. Backelin. This property is deduced from
the existence of a succession of fibrations whose fibers are suspensions.

We consider also the Lusternik-Schnirelmann category of XK . In the case
that catXn = n catX, we prove that cat XK = (cat X)(1 + dim K).

Finally, we mention that this work is written in the case of a sequence of

pairs, X = (Xi, Ai)1≤i≤n, as in a recent work of Bahri, Bendersky, Cohen and
Gitler.

The Davis-Januszkiewicz space (see [9]) is defined by the Borel construction
ZK ×T n ETn, where ZK is the moment angle complex associated to a simplicial
complex K on n vertices. This space is an example of the Kth power of a space,
introduced by Buchstaber and Panov in [7] and by Strickland in [17]. Many prop-
erties of this polyhedral power have been developed by Notbohm and Ray in [16]
and by Grbić and Theriault in [14]. We are using here a general version defined by
Bahri, Bendersky, Cohen and Gitler in [5] that we recall now.

Let K be a simplicial complex on n vertices and X = (Xi, Ai)1≤i≤n be a finite
sequence of pairs of CW-complexes. For each simplex σ ∈ K, we denote by Xσ the
subspace of the product space

∏n
i=1 Xi defined by

Xσ =
n∏

i=1

Yi, where Yi =
{

Xi , if i ∈ σ,
Ai , if i �∈ σ.

The polyhedral product determined by X and K is the union

XK =
⋃

σ∈K

Xσ ⊂
n∏

i=1

Xi .

If we need a pointed situation, we choose a base-point xi in each Ai, and we point
XK by (x1, . . . , xn). When Xi = X and Ai = ∗ for all i, we denote the polyhedral
product by XK .
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When X = BS1, the homotopy fiber of XK → Xn is the usual moment-angle
complex ZK and is homotopy equivalent to the complement U(K) of the coordinate
subspaces arrangement associated to K (cf. [7]):

U(K) = Cn −
⋃

σ/∈K

{(z1, . . . , zn) | zi1 = · · · = zik
= 0, if σ = {i1, . . . , ik}}.

In this paper, when X is a sequence of nilpotent spaces of finite type, we describe
the rational homotopy type of XK and the rational homotopy type of the homotopy
fiber of the injection XK →

∏n
i=1 Xi. Recall that a (rational) model of a connected

space X is a commutative differential graded Q-algebra, M, which is connected, of
finite type and quasi-isomorphic to the minimal model of X. More generally, we
refer to [12] for basic information on rational homotopy theory and Sullivan theory
of models. Also, in different parts of this paper, we use the fact that colimits on
simplicial sets give homotopy colimits on the associated polyhedral product and
refer to [16] for these properties.

For any i, 1 ≤ i ≤ n, we consider a surjective model ϕi : Mi → M′
i of the

canonical inclusion Ai ↪→ Xi. For each σ �∈ K, denote by Iσ the ideal of ⊗n
i=1Mi

defined by

Iσ = E1 ⊗ · · · ⊗ En with Ei =
{

ker(ϕi) , if i ∈ σ,
Mi , if i �∈ σ.

The ideal I(K) =
∑

σ �∈K Iσ brings us a model of the polyhedral product as follows.

Theorem 1. Let X = (Xi, Ai)1≤i≤n be a finite sequence of pairs of nilpotent CW-
complexes of finite type. If we choose a surjective model, ϕi : Mi → M′

i, of the
canonical inclusion Ai ↪→ Xi, then

(1) the quotient ⊗n
i=1Mi/I(K) is a model of XK .

(2) Moreover, if J ⊂ K is a subcomplex, then the projection

pK,J : ⊗n
i=1Mi/I(K) → ⊗n

i=1Mi/I(J)

is a model of the inclusion XJ ↪→ XK .

As a direct consequence, we see that XK is formal if the maps ϕi are formalisable
(see [13] or [18] for a definition and some properties of this notion), due to the fact
that the cofiber of a formalisable map is formal. In particular, we recover a result
of Notbohm and Ray (see [16, Theorem 5.5]): if the space X is formal, then XK is
also formal. Note that the result of Notbohm and Ray is more general and works
over an arbitrary commutative ring.

Theorem 1 is exactly the rational homotopy version of the result of Bahri, Ben-
dersky, Cohen and Gitler concerning the cohomology of XK . For any field F,
the authors prove, in [5, Theorem 1.22], that there is an isomorphism of algebras
H∗(XK ; F) ∼= ⊗n

i=1H
∗(Xi; F)/I(SR), where I(SR) is the Stanley-Reisner ideal gen-

erated by monomials xi1 · · ·xik
for which the xi are elements in H∗(Xi; F) and the

sequence I = (i1, . . . , ik) for 1 ≤ i1 ≤ · · · ≤ ik ≤ n does not correspond to a simplex
of K.

We consider now the homotopy fiber F(K, BS1) of (BS1)K → (BS1)n. In [14,
Theorems 1.2 and 1.3], Grbić and Theriault provide us with sufficient conditions
on K which give a fiber F(K, BS1) with the homotopy type of a wedge of spheres.
Recall that a local homomorphism f : R → S is said to be Golod if TorR(S, k) has
trivial Massey products of all orders ≥ 2; see [2] for more details. On the topological
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side of the looking glass described in [1], this notion corresponds to the fact that the
homotopy fiber of f has the rational homotopy type of a wedge of spheres. There-
fore, in terms of rational models, the result of Grbić and Theriault means: with
some hypotheses on K, the canonical map Q[x1, . . . , xn] → Q[x1 . . . , xn]/I(SR)
is Golod, with xi of degree 2. Jörgen Backelin has proved (see [3] and [4]) that,
in this case, the map Q[x1, . . . , xn] → Q[x1, . . . , xn]/I(SR) can always be decom-
posed in a finite sequence of surjective maps that are Golod. Such a property
is called Golod attached. Here, we prove that this result is true in general: for
any sequence, X = (Xi, Ai)1≤i≤n, of nilpotent spaces of finite type, the map
⊗n

i=1Mi → ⊗n
i=1Mi/I(K) is Golod attached. In fact, this result comes from the

next statement written at the level of spaces.

Theorem 2. If X = (Xi, Ai)1≤i≤n is a finite sequence of pairs of CW-complexes,
then there is a sequence of fibrations,

F2 F3 · · · Fn

↓ ↓ ↓
XK2 XK3 · · · XK

↓ ↓ ↓∏n
i=1 Xi XK2 · · · XKn−1 ,

where the Fi are suspensions and the Ki are sub-complexes of K.

A precise description of the Ki is given in the proof. From the“Golod attached”
property, we deduce a nice decomposition of the rational Lie algebra of homotopy of
F(K, X) and the fact that, generically, π∗(Ω(F(K, X)) contains a free Lie algebra
on two generators.

Corollary 1. Suppose that the CW-pairs X = (Xi, Ai)1≤i≤n are nilpotent spaces
of finite type and let F(K, X) be the homotopy fiber of XK →

∏n
i=1 Xi. Then there

exist an integer N and a sequence of short exact sequences of graded Lie algebras
where the Li are free graded Lie algebras defined over the rationals,

0 → Ln → π≥N (ΩF(K, X)) ⊗ Q → En−1 → 0,
0 → Ln−1 → En−1 → En−2 → 0,

. . . . . . . . .
0 → L3 → E3 → L2 → 0.

Corollary 2. We take over the notation and hypotheses of Corollary 1 and suppose
also that Xi = X and Ai = ∗ for i = 1, . . . , n. If K �= ∆n−1 and if the algebra
of cohomology H∗(X; Q) is not a polynomial algebra Q[α] on a generator of even
degree, then the rational Lie algebra of homotopy, π∗(Ω(F(K, X))), contains a free
Lie algebra on two generators.

1. A model for the polyhedral product XK

Proof of Theorem 1. We work by induction on the dimension of K and on the num-
ber of simplices of maximal dimension. Let σ be a simplex of maximal dimension
and suppose that σ = {1, 2, . . . , r}. Then we decompose K in K = K ′∪{1, 2, . . . , r},
where K ′ is obtained from K by deleting the simplex σ.

If we have a pair of simplicial sets, L ⊂ M , we denote by jM,L : I(M) → I(L) the
canonical inclusion and by pM,L : ⊗n

i=1 Mi/I(M) → ⊗n
i=1Mi/I(L) the associated

projection.
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Observe that the simplices that are not in K are exactly the simplices that are
not in K ′ and not in {1, . . . , r}. We thus have a short exact sequence of complexes,

0 ��I(K)
i1 ��I(K ′) ⊕ I(∆r−1)

i2 ��I(∂∆r−1) ��0,

with i1 =
(
jK,K′ , jK,∆r−1

)
and i2 = jK′,∂∆r−1 − j∆r−1,∂∆r−1 .

We first prove that the projections pK,K′ : ⊗n
i=1 Mi/I(K) → ⊗n

i=1Mi/I(K ′)
and pK,∆r−1 : ⊗n

i=1 Mi/I(K) → ⊗n
i=1Mi/I(∆r−1) are models of the injections

XK′
↪→ XK and X∆r−1

↪→ XK . Since

I(∆r−1) =
n−r−1∑

j=0

(
⊗r+j

i=1Mi

)
⊗ ker ϕj ⊗

(
⊗n

i=r+j+2Mi

)
,

the quotient ⊗n
i=1Mi/I(∆r−1) is isomorphic to (⊗r

i=1Mi) ⊗ (⊗n
i=r+1M′

i). The
quotient of ⊗n

i=1Mi by the short exact sequence of ideals gives a new short exact
sequence of complexes,

0 �� ⊗n
i=1Mi/I(K)

p1 �� (⊗n
i=1Mi/I(K ′)) ⊕

(
(⊗r

i=1Mi) ⊗ (⊗n
i=r+1M′

i)
)

p2��
(⊗r

i=1Mi/ ⊗r
i=1 kerϕi) ⊗ (⊗n

i=r+1M′
i) �� 0,

where p1 = (pK,K′ , pK,∆r−1) and p2 = pK′,∂∆r−1 − p∆r−1,∂∆r−1 .
From induction and [12, Proposition 13.5], we deduce that ⊗n

i=1Mi/I(K) is a
model for XK , pK,K′ a model of the inclusion XK′

↪→ XK and pK,∆r−1 a model of
the inclusion X∆r−1

↪→ XK .
When J ⊂ K is a sub-complex there exists a simplex of maximal dimension,

∆r−1, such that the injection J ↪→ K factorizes via K ′ or ∆r−1, and this gives the
second point of the statement by induction. �

Remark . In the case K = ∂∆n−1, Xi = X and Ai = ∗ for i = 1, . . . , n, the space
XK is the fat wedge of n copies of X. By Theorem 1, if (∧Z, D) is a minimal model
for X, then a model for XK is given by (∧Z, D)⊗n/(∧+Z)⊗n. This is the model
for the fat wedge described in [11].

2. The homotopy fiber of the inclusion XK →
∏n

i=1 Xi

There exist two kinds of results which show the diversity of the possible homotopy
types of this fiber.

• In [14] Grbić and Theriault give sufficient conditions on K for which the
fiber of (BS1)K → (BS1)n is a wedge of spheres. This cannot be true in
general; it suffices to consider the case where K is the join of two simplicial
complexes. More explicitly, if K = S0 ∗S0, i.e. K is the simplicial subcom-
plex on {1, 2, 3, 4} whose simplices in maximal degrees are {1, 3}, {1, 4},
{2, 3} and {2, 4}, then the fiber (BS1)K → (BS1)n has the homotopy type
of S3 × S3.

• On the other hand this fiber is not always a formal space, as shown by
Denham and Suciu in [10].

In this section, we give the proof of Theorem 2 which provides us with a de-
composition of the fiber of XK →

∏n
i=1 Xi as a succession of fibrations and implies



RATIONAL HOMOTOPY OF THE POLYHEDRAL PRODUCT FUNCTOR 895

that the algebraic model of this map is Golod attached. We describe also a Sullivan
model of the different spaces appearing in this decomposition.

Let L ⊆ {1, . . . , n} be any simplicial complex. We consider the following sub-
simplicial complexes:

• for σ ∈ L, link(σ) = {τ ∈ L | τ ∪ σ ∈ L and τ ∩ σ = ∅},
• for σ ∈ L, star(σ) = {τ ∈ L | τ ∪ σ ∈ L},
• for any vertex p, res(1, . . . , p) = L ∩ {1, . . . , p}.

Proof of Theorem 2. We observe first that K can be written as a pushout:

link({n}) ��

��

star({n})

��
res(1, . . . , n − 1) �� K

Recall from [7] that XK∗L � XK ×XL. As star({n}) is the join link({n}) ∗ {n},
we have Xstar({n}) = X link({n}) × Xn, where link({n}) is considered as a simplicial
complex on {1, . . . , n − 1}. Therefore, we have a homotopy pushout

Yn × An
��

��

Yn × Xn

��
Zn × An

�� XK

where Yn = X link({n}), Zn = Xres(1,...,n−1) and An ⊂ Xn comes from the definition
of X.

First step: We set Kn−1 = res(1, . . . , n−1)∗{n}, which gives XKn−1 = Zn×Xn.
We are looking at the homotopy fiber Fn of XK → XKn−1 . For that, we send each
corner of the previous square onto Zn × Xn. Denote by F ′

n the homotopy fiber of
Yn → Zn and by F ′′

n the homotopy fiber of An → Xn. From the classical Cube
Lemma (see [15]), we know that the homotopy fibers of the four previous maps onto
Zn × Xn constitute a homotopy pushout. An easy computation of three of them
gives the next homotopy pushout:

F ′
n × F ′′

n
��

��

F ′
n

��
F ′′

n
�� Fn

Therefore, Fn is the join F ′
n ∗ F ′′

n . That is a suspension.

Inductive step: Suppose that the simplicial complex Kp+1 has been constructed
such that {p + 1, . . . , n} ∈ Kp+1 and K ∩ {1, . . . , p} = Kp+1 ∩ {1, . . . , p}. We have
a pushout:

link({p + 1, . . . , n}) ��

��

star({p + 1, . . . , n})

��
res(1, . . . , p) �� Kp+1



896 YVES FÉLIX AND DANIEL TANRÉ

We set Kp = res(1, . . . , p) ∗ {p + 1, . . . , n}, and the same argument as above gives
that the fiber of XKp+1 → XKp is a suspension. Observe that at the end of the
process, K1 = ∆n−1 and XK1 =

∏n
i=1 Xi. �

Proof of Corollary 1. The sequence of fibrations of Theorem 2 gives information
on the rational homotopy of XK and also on the rational homotopy of the fiber of
the inclusion XK →

∏n
i=1 Xi. Recall that, in a fibration F → E → B, the image of

the connecting map π∗(ΩB) ⊗ Q → π∗−1(ΩF ) ⊗ Q belongs to the center and that
the center of a free Lie algebra on two (or more) generators is zero.

In our case, since the fibers Fi are suspensions, we have three possibilities for
their rationalisation: they are either contractible, homotopy equivalent to a sphere,
or else homotopy equivalent to a wedge of at least two spheres. In the first two
cases, for some N we have an isomorphism π≥N (ΩXKi)⊗Q ∼= π≥N (ΩXKi+1)⊗Q.
In the third case we have a short exact sequence,

0 → Li → π∗(ΩXKi
i ) ⊗ Q → π∗(ΩXKi+1) ⊗ Q → 0 ,

where Li = π∗(ΩFi)⊗Q is a free graded Lie algebra. This gives the statement. �

Proof of Corollary 2. Since K �= ∆n−1, there exists an integer i such that K �=
{i} ∗ ({1, . . . , n} − {i}). Let i = n for the sake of simplicity.

Suppose that one of the Lj of the statement of Corollary 1 is a free Lie algebra
on at least two generators. We choose j maximal with this property. Thus, for
some N , the Lie subalgebra (Lj)≥N of the elements of degree greater than or equal
to N injects in π≥N (Ω(F(K, X)))⊗ Q.

Finally, using the notation of the proof of Theorem 2, we observe that F ′
n is

not contractible and that the dimension of the reduced homology of F ′′
n is greater

than 2, from the hypothesis on the cohomology of X. This implies that Fn has the
rational homotopy type of a wedge of at least two spheres. �

Remark . We end this section with a description of a model of the fibrations ap-
pearing in Theorem 2. For the sake of simplicity, we do it in the case Xi = X,
Ai = ∗ for all i with X a nilpotent space of finite type. The extension to the case
of a sequence of spaces is left to the reader.

Let (∧Z, D) be the minimal model of X. It follows from Theorem 1 that
a model for the inclusion XK ↪→ Xn is given by the projection (∧Z, D)⊗n →
(∧Z, D)⊗n/I(K). Consider a relative minimal model, (∧Z, D) → (∧Z ⊗ ∧Z̄, D),
for the path space fibration ΩX → PX → X. Then, a model of the homotopy fiber
of the inclusion XK → Xn is given by the tensor product

(∧Z, D)⊗n/(I(K)) ⊗(∧Z,D)⊗n (∧Z ⊗ ∧Z̄, D)⊗n.

Observe that this fits with [5, Theorem 1.26], where the fiber of XK ↪→ Xn is
determined as the moment-angle complex associated to (PX, ΩX) and K.

Denote by T the simplices in {1, . . . , n}\K and decompose T as T = T2∪. . .∪Tn,
where Tk is the subset consisting of simplices on {1, . . . , k} and containing k. Denote
Ik =

∑
j≤k

∑
σ∈Tj

Iσ and Ak = (∧Z, D)⊗k/Ik. The spaces Ak and Ak+1 can be
related as follows.

For each σ ∈ Ik+1/Ik, write σ = {i1, . . . , is}∪{k+1}, with 1 ≤ i1 < · · · < is ≤ k,
and denote by Jσ the image of B1 ⊗ . . . ⊗ Bk in Ak, where

Bi =
{

∧+Z, if i ∈ {i1, . . . , is},
∧Z, if i �∈ {i1, . . . , is}.
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Set Jk =
∑

σ∈Tk+1
Jσ. Then we clearly have Ak+1 = Ak ⊗ ∧Z / Jk ⊗ ∧+Z. The

projection pk : Ak ⊗ (∧Z)⊗n−k → Ak+1 ⊗ (∧Z)⊗n−k−1 is a Sullivan model of the
fibration XKk → XKk−1 .

Example 3. Let X be a wedge of spheres with cohomology H and let K be
a simplicial complex on n vertices, of dimension ≤ 2 and containing all the 1-
simplices {i, j} for i �= j. Then the homotopy fiber of the injection XK ↪→ Xn has
the rational homotopy type of a wedge of spheres.

For the proof, we use the minimal model of XK . Denote first by (H ⊗ ∧Z̄, d) a
relative minimal model of the augmentation (H, 0) → (Q, 0). Then a model of the
fiber is given by A = (H⊗n/I(K)⊗ (∧Z̄)⊗n, D). We introduce a new gradation on
V = H⊗∧Z̄ by V = V0⊕V1, V0 = Q⊗∧Z̄, V1 = H+⊗∧Z̄. Note that the sequence

0 ��Q ��V0
d ��V1

��0 is exact. This gradation induces a gradation on

A for which A4 = 0 and for which the sequence 0 ��Q ��A0
D ��A1

D ��A2

is exact. Therefore we can choose a representative for the cohomology in A2 ⊕ A3.
Since the product of those cocycles is zero, we get a quasi-isomorphism of algebras
H(A, d) → (A, d). This implies that the homotopy fiber is a wedge of spheres.

Finally, observe that, as the 2-simplices of K are arbitrary, this complex is not
necessarily shifted; see [14, Definition 1.1].

3. The Lusternik-Schnirelmann category of XK

The (Lusternik-Schnirelmann) category of a space X, cat X, is the least integer
m (or ∞) such that X can be covered by m + 1 open sets each contractible in X.
The category of a power Xn satisfies cat Xn ≤ n cat X. The equality happens to
be true in many situations, in particular when X is a simply connected rational
space [12, Theorem 30.2]; see also [6] or [8] for other examples.

Proposition 4. If X is a simply connected finite type CW-complex such that, for
any n, catXn = n · catX, then the category of the polyhedral power, XK , is equal
to (catX) · (1 + dimK).

Proof. Suppose σ is a simplex of K. Then Xσ ∼= X |σ| × {∗}n−|σ|, and we have a
sequence of injections Xσ ↪→ XK ↪→ Xn. By using the canonical projection of Xn

on X |σ| × {∗}n−|σ|, we see that Xσ is a homotopy retract of XK . Thus we have
catXK ≥ catXσ = (catX) · (1 + dimK) .

On the other hand, if catX = m, then X is a retract of the mth Ganea space,
Gm(X), which is an iterated m-cone. Therefore XK is a retract of (Gm(X))K ,
which is a p-cone with p = m · (1 + dimK). This gives the converse inequality. �
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d’Ascq Cedex, France

E-mail address: Daniel.Tanre@univ-lille1.fr

http://www.ams.org/mathscinet-getitem?mr=733934
http://www.ams.org/mathscinet-getitem?mr=733934
http://www.ams.org/mathscinet-getitem?mr=0400212
http://www.ams.org/mathscinet-getitem?mr=0400212
http://www.ams.org/mathscinet-getitem?mr=1897064
http://www.ams.org/mathscinet-getitem?mr=1897064
http://www.ams.org/mathscinet-getitem?mr=1990857
http://www.ams.org/mathscinet-getitem?mr=1990857
http://www.ams.org/mathscinet-getitem?mr=1104531
http://www.ams.org/mathscinet-getitem?mr=1104531
http://www.ams.org/mathscinet-getitem?mr=2330154
http://www.ams.org/mathscinet-getitem?mr=664027
http://www.ams.org/mathscinet-getitem?mr=664027
http://www.ams.org/mathscinet-getitem?mr=1802847
http://www.ams.org/mathscinet-getitem?mr=1802847
http://www.ams.org/mathscinet-getitem?mr=952575
http://www.ams.org/mathscinet-getitem?mr=952575
http://www.ams.org/mathscinet-getitem?mr=2321037
http://www.ams.org/mathscinet-getitem?mr=0402694
http://www.ams.org/mathscinet-getitem?mr=0402694
http://www.ams.org/mathscinet-getitem?mr=2135544
http://www.ams.org/mathscinet-getitem?mr=2135544
http://www.ams.org/mathscinet-getitem?mr=558804
http://www.ams.org/mathscinet-getitem?mr=558804

	1. A model for the polyhedral product XK
	2. The homotopy fiber of the inclusion XKi=1nXi
	3. The Lusternik-Schnirelmann category of XK
	References

