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A NOTE ON EVALUATIONS OF MULTIPLE ZETA VALUES

SHUICHI MUNETA

(Communicated by Ken Ono)

Abstract. In this paper we give a short and simple proof of the remark-
able evaluations of multiple zeta values established by D. Bowman and D. M.
Bradley.

1. Introduction

The multiple zeta value (MZV) is defined by the convergent series

ζ(k1, k2, . . . , kn) :=
∑

m1>m2>···>mn>0

1
mk1

1 mk2
2 · · ·mkn

n

,

where k1, k2, . . . , kn are positive integers and k1 ≥ 2. One remarkable property of
MZVs is that MZVs are evaluated for some special arguments as rational multiples
of powers of π2. For example, the following evaluations were proven by many
authors ([1], [5], [8]):

ζ({2}m) =
π2m

(2m + 1)!
(m ∈ Z>0)

where {2}m denotes the m-tuple (2, 2, . . . , 2). In [8], D. Zagier conjectured the
following evaluations:

ζ({3, 1}n) =
2π4n

(4n + 2)!
(n ∈ Z>0).

These evaluations were proved by J. M. Borwein, D. M. Bradley, D. J. Broadhurst
and P. Lisoněk ([2], [3]). In addition, D. Bowman and D. M. Bradley proved the
following theorem which contained these results:

Theorem 1 ([4]). For nonnegative integers m, n, we have∑
j0+j1+···+j2n=m

j0,j1,...,j2n≥0

ζ({2}j0 , 3, {2}j1 , 1, {2}j2 , . . . , {2}j2n−2 , 3, {2}j2n−1 , 1, {2}j2n
)

=
(

m + 2n

m

)
π2m+4n

(2n + 1) · (2m + 4n + 1)!
.

In this article we provide a short and simple proof of Theorem 1 which refines
the proof of Theorem 5.1 in [4].
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2. Algebraic setup

We summarize the algebraic setup of MZVs introduced by Hoffman (cf. [6], [7]).
Let H = Q 〈x, y〉 be the noncommutative polynomial ring in two indeterminates x, y
and H1 and H0 its subrings Q+Hy and Q+xHy. We set zk = xk−1y (k = 1, 2, 3, . . .).
Then H1 is freely generated by {zk}k≥1.

We define the Q-linear map (called an evaluation map) Z : H0 −→ R by Z(1) = 1
and

Z(u1u2 · · ·uk) =
∫

· · ·
∫

1>t1>t2>···>tk>0

ωu1(t1)ωu2(t2) · · ·ωuk
(tk)

(u1, u2, . . . , uk ∈ {x, y}), where ωx(t) = dt/t and ωy(t) = dt/(1 − t). As u1u2 · · ·uk

is in H0, we always have ωu1(t) = dt/t and ωuk
(t) = dt/(1 − t), so the integral

converges. By the Drinfel′d integral representation, we have

Z(zk1zk2 · · · zkn
) = ζ(k1, k2, . . . , kn).

We next define the shuffle product x on H inductively by

1xw = wx1 = w,

u1w1xu2w2 = u1(w1xu2w2) + u2(u1w1xw2)

(u1, u2 ∈ {x, y} and w, w1, w2 are words in H), together with Q-bilinearity. The
shuffle product x is commutative and associative. By the standard shuffle product
identity of iterated integrals, the evaluation map Z is a homomorphism with respect
to the shuffle product x:

Z(w1xw2) = Z(w1)Z(w2)
(
w1, w2 ∈ H

0
)
.

We also define the shuffle product x̃ on H1 inductively by

1x̃w = wx̃1 = w,

u1w1x̃u2w2 = u1(w1x̃u2w2) + u2(u1w1x̃w2)

(u1, u2 ∈ {zk}k≥1 and w, w1, w2 are words in H1), together with Q-bilinearity. For
example, we have

zmx̃zn = zmzn + znzm,

zmx̃znzl = zmznzl + znzmzl + znzlzm.

Then Theorem 1 can be restated as follows:

Z (zm
2 x̃(z3z1)n) =

(
m + 2n

m

)
π2m+4n

(2n + 1) · (2m + 4n + 1)!
(
m, n ∈ Z≥0

)
.

3. Proof of Theorem 1

We restate Proposition 4.1 and Proposition 4.2 of [4] by using x̃ and prove them
by induction.

Proposition 2. For integers n, N which satisfy 0 ≤ n ≤ N , we have

zn
2 xzN

2 =
n∑

k=0

4k

(
N + n − 2k

n − k

) {
zN+n−2k
2 x̃(z3z1)k

}
,(1)

z1z
n
2 xz1z

N
2 = 2

n∑
k=0

4k

(
N + n − 2k

n − k

)
z1

{
zN+n−2k
2 x̃z1(z3z1)k

}
.(2)
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Proof. We prove identities (1) and (2) simultaneously by induction on n. [Step 1]
The case n = 0 of (1) is clear. We can easily prove the case n = 0 of (2) by induction
on N . [Step 2] Suppose that (1) and (2) have been proven for n− 1. We prove (1)
for n by induction on N :

zn
2 xzn

2 = 2xy{(xy)n−1x(xy)n} + 2x2{y(xy)n−1xy(xy)n−1}

= 2
n−1∑
k=0

4k

(
2n − 1 − 2k

n − 1 − k

)
z2{z2n−1−2k

2 x̃(z3z1)k}

+
n−1∑
k=0

4k+1

(
2n − 2 − 2k

n − 1 − k

)
z3{z2n−2−2k

2 x̃z1(z3z1)k}

=
n−1∑
k=0

4k

(
2n − 2k

n − k

)
z2{z2n−1−2k

2 x̃(z3z1)k}

+
n∑

k=1

4k

(
2n − 2k

n − k

)
z3{z2n−2k

2 x̃z1(z3z1)k−1}

=
(

2n

n

)
z2n
2 +

n−1∑
k=1

4k

(
2n − 2k

n − k

)
{z2n−2k

2 x̃(z3z1)k} + 4n(z3z1)n

=
n∑

k=0

4k

(
2n − 2k

n − k

)
{z2n−2k

2 x̃(z3z1)k}.

Hence (1) is true for N = n. Suppose that the case N − 1 of (1) has been proven.
(We may assume that N − 1 ≥ n in the following calculation.)

zn
2 xzN

2 = xy{(xy)n−1x(xy)N} + 2x2{y(xy)n−1xy(xy)N−1}
+ xy{(xy)nx(xy)N−1}

=

n−1∑
k=0

4k

(
N + n − 1 − 2k

n − 1 − k

)
z2{zN+n−1−2k

2 x̃(z3z1)
k}

+

n−1∑
k=0

4k+1

(
N + n − 2 − 2k

n − 1 − k

)
z3{zN+n−2−2k

2 x̃z1(z3z1)
k}

+
n∑

k=0

4k

(
N + n − 1 − 2k

n − k

)
z2{zN+n−1−2k

2 x̃(z3z1)
k}

=

n−1∑
k=0

4k

(
N + n − 2k

n − k

)
z2{zN+n−1−2k

2 x̃(z3z1)
k}

+
n∑

k=1

4k

(
N + n − 2k

n − k

)
z3{zN+n−2k

2 x̃z1(z3z1)
k−1}

+ 4nz2{zN−n−1
2 x̃(z3z1)

n}

=

(
N + n

n

)
zN+n
2 +

n−1∑
k=1

4k

(
N + n − 2k

n − k

)
{zN+n−2k

2 x̃(z3z1)
k}

+ 4n{zN−n
2 x̃(z3z1)

n}

=

n∑
k=0

4k

(
N + n − 2k

n − k

)
{zN+n−2k

2 x̃(z3z1)
k}.



934 SHUICHI MUNETA

Hence (1) is true for N . We can prove (2) for n by induction on N with using (1)
for n. �

Before proceeding to the proof of Theorem 1, we prove a key identity. Comparing
coefficients of (x + 1)2m+4n+2 = (x2 + 2x + 1)m+2n+1, we have(

2m + 4n + 2
2n + 1

)
=

n∑
k=0

22k+1 (m + 2n + 1)!
(n − k)!(2k + 1)!(m + n − k)!

.

We can transform this identity as follows:

1
(2n + 1)!

1
(2m + 2n + 1)!

(3)

=
n∑

k=0

4k

(
m + 2n − 2k

n − k

)(
m + 2n

2k

)
1

(2k + 1) · (2m + 4n + 1)!
.

Proof of Theorem 1. We prove Theorem 1 by induction on n. The case n = 0 is
well known as has been mentioned in Section 1. Suppose that the assertion has
been proven up to n − 1. Putting N = m + n in (1), we have

4nZ (zm
2 x̃(z3z1)n)

=
π2n

(2n + 1)!
π2m+2n

(2m + 2n + 1)!

−
n−1∑
k=0

4k

(
m + 2n − 2k

n − k

)(
m + 2n

2k

)
π2m+4n

(2k + 1) · (2m + 4n + 1)!

= 4n

(
m + 2n

m

)
π2m+4n

(2n + 1) · (2m + 4n + 1)!
.

In the first equality we have used the induction hypothesis and the formula ζ({2}m)
= π2m/(2m+1)! (the case n = 0), and in the second equality we have used (3). �
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