A NOTE ON EVALUATIONS OF MULTIPLE ZETA VALUES

SHUICHI MUNETA

(Communicated by Ken Ono)

Abstract

In this paper we give a short and simple proof of the remarkable evaluations of multiple zeta values established by D. Bowman and D. M. Bradley.

1. Introduction

The multiple zeta value (MZV) is defined by the convergent series

$$
\zeta\left(k_{1}, k_{2}, \ldots, k_{n}\right):=\sum_{m_{1}>m_{2}>\cdots>m_{n}>0} \frac{1}{m_{1}^{k_{1}} m_{2}^{k_{2}} \cdots m_{n}^{k_{n}}}
$$

where $k_{1}, k_{2}, \ldots, k_{n}$ are positive integers and $k_{1} \geq 2$. One remarkable property of MZVs is that MZVs are evaluated for some special arguments as rational multiples of powers of π^{2}. For example, the following evaluations were proven by many authors (1 , [5], [8]):

$$
\zeta\left(\{2\}_{m}\right)=\frac{\pi^{2 m}}{(2 m+1)!} \quad\left(m \in \mathbb{Z}_{>0}\right)
$$

where $\{2\}_{m}$ denotes the m-tuple $(2,2, \ldots, 2)$. In [8, D. Zagier conjectured the following evaluations:

$$
\zeta\left(\{3,1\}_{n}\right)=\frac{2 \pi^{4 n}}{(4 n+2)!} \quad\left(n \in \mathbb{Z}_{>0}\right)
$$

These evaluations were proved by J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisoněk ([2], [3]). In addition, D. Bowman and D. M. Bradley proved the following theorem which contained these results:
Theorem 1 ([4]). For nonnegative integers m, n, we have

$$
\begin{aligned}
& \sum_{\substack{j_{0}+j_{1}+\cdots+j_{2 n}=m \\
j_{0}, j_{1}, \ldots, j_{2 n} \geq 0}} \zeta\left(\{2\}_{j_{0}}, 3,\{2\}_{j_{1}}, 1,\{2\}_{j_{2}}, \ldots,\{2\}_{j_{2 n-2}}, 3,\{2\}_{j_{2 n-1}}, 1,\{2\}_{j_{2 n}}\right) \\
& \quad=\binom{m+2 n}{m} \frac{\pi^{2 m+4 n}}{(2 n+1) \cdot(2 m+4 n+1)!}
\end{aligned}
$$

In this article we provide a short and simple proof of Theorem 1 which refines the proof of Theorem 5.1 in (4].

[^0]
2. Algebraic setup

We summarize the algebraic setup of MZVs introduced by Hoffman (cf. [6, 7]). Let $\mathfrak{H}=\mathbb{Q}\langle x, y\rangle$ be the noncommutative polynomial ring in two indeterminates x, y and \mathfrak{H}^{1} and \mathfrak{H}^{0} its subrings $\mathbb{Q}+\mathfrak{H} y$ and $\mathbb{Q}+x \mathfrak{H} y$. We set $z_{k}=x^{k-1} y(k=1,2,3, \ldots)$. Then \mathfrak{H}^{1} is freely generated by $\left\{z_{k}\right\}_{k \geq 1}$.

We define the \mathbb{Q}-linear map (called an evaluation map) $Z: \mathfrak{H}^{0} \longrightarrow \mathbb{R}$ by $Z(1)=1$ and

$$
Z\left(u_{1} u_{2} \cdots u_{k}\right)=\int_{1>t_{1}>t_{2}>\cdots>t_{k}>0} \cdots \omega_{u_{1}}\left(t_{1}\right) \omega_{u_{2}}\left(t_{2}\right) \cdots \omega_{u_{k}}\left(t_{k}\right)
$$

$\left(u_{1}, u_{2}, \ldots, u_{k} \in\{x, y\}\right)$, where $\omega_{x}(t)=d t / t$ and $\omega_{y}(t)=d t /(1-t)$. As $u_{1} u_{2} \cdots u_{k}$ is in \mathfrak{H}^{0}, we always have $\omega_{u_{1}}(t)=d t / t$ and $\omega_{u_{k}}(t)=d t /(1-t)$, so the integral converges. By the Drinfel'd integral representation, we have

$$
Z\left(z_{k_{1}} z_{k_{2}} \cdots z_{k_{n}}\right)=\zeta\left(k_{1}, k_{2}, \ldots, k_{n}\right)
$$

We next define the shuffle product m on \mathfrak{H} inductively by

$$
\begin{aligned}
1 ш w & =w ш 1=w \\
u_{1} w_{1} ш u_{2} w_{2} & =u_{1}\left(w_{1} ш u_{2} w_{2}\right)+u_{2}\left(u_{1} w_{1} ш w_{2}\right)
\end{aligned}
$$

$\left(u_{1}, u_{2} \in\{x, y\}\right.$ and w, w_{1}, w_{2} are words in $\left.\mathfrak{H}\right)$, together with \mathbb{Q}-bilinearity. The shuffle product m is commutative and associative. By the standard shuffle product identity of iterated integrals, the evaluation map Z is a homomorphism with respect to the shuffle product ш:

$$
Z\left(w_{1} ш w_{2}\right)=Z\left(w_{1}\right) Z\left(w_{2}\right) \quad\left(w_{1}, w_{2} \in \mathfrak{H}^{0}\right)
$$

We also define the shuffle product $\widetilde{\mathrm{II}}$ on \mathfrak{H}^{1} inductively by

$$
\begin{aligned}
1 \widetilde{\mathrm{~m}} w & =w \widetilde{\mathrm{~m}} 1=w \\
u_{1} w_{1} \widetilde{\mathrm{~m}} u_{2} w_{2} & =u_{1}\left(w_{1} \widetilde{\amalg} u_{2} w_{2}\right)+u_{2}\left(u_{1} w_{1} \widetilde{\amalg} w_{2}\right)
\end{aligned}
$$

$\left(u_{1}, u_{2} \in\left\{z_{k}\right\}_{k \geq 1}\right.$ and w, w_{1}, w_{2} are words in $\left.\mathfrak{H}^{1}\right)$, together with \mathbb{Q}-bilinearity. For example, we have

$$
\begin{aligned}
z_{m} \widetilde{\amalg} z_{n} & =z_{m} z_{n}+z_{n} z_{m} \\
z_{m} \widetilde{\amalg} z_{n} z_{l} & =z_{m} z_{n} z_{l}+z_{n} z_{m} z_{l}+z_{n} z_{l} z_{m} .
\end{aligned}
$$

Then Theorem 1 can be restated as follows:

$$
Z\left(z_{2}^{m} \widetilde{\amalg}\left(z_{3} z_{1}\right)^{n}\right)=\binom{m+2 n}{m} \frac{\pi^{2 m+4 n}}{(2 n+1) \cdot(2 m+4 n+1)!} \quad\left(m, n \in \mathbb{Z}_{\geq 0}\right)
$$

3. Proof of Theorem 1

We restate Proposition 4.1 and Proposition 4.2 of 4] by using $\widetilde{\amalg}$ and prove them by induction.

Proposition 2. For integers n, N which satisfy $0 \leq n \leq N$, we have

$$
\begin{align*}
z_{2}^{n} \amalg z_{2}^{N} & =\sum_{k=0}^{n} 4^{k}\binom{N+n-2 k}{n-k}\left\{z_{2}^{N+n-2 k} \widetilde{\amalg}\left(z_{3} z_{1}\right)^{k}\right\}, \tag{1}\\
z_{1} z_{2}^{n} \amalg z_{1} z_{2}^{N} & =2 \sum_{k=0}^{n} 4^{k}\binom{N+n-2 k}{n-k} z_{1}\left\{z_{2}^{N+n-2 k} \widetilde{\amalg} z_{1}\left(z_{3} z_{1}\right)^{k}\right\} . \tag{2}
\end{align*}
$$

Proof. We prove identities (11) and (2) simultaneously by induction on n. [Step 1] The case $n=0$ of (11) is clear. We can easily prove the case $n=0$ of (2) by induction on N. [Step 2] Suppose that (11) and (2) have been proven for $n-1$. We prove (11) for n by induction on N :

$$
\begin{aligned}
z_{2}^{n} \amalg z_{2}^{n}= & 2 x y\left\{(x y)^{n-1} \amalg(x y)^{n}\right\}+2 x^{2}\left\{y(x y)^{n-1} \amalg y(x y)^{n-1}\right\} \\
= & 2 \sum_{k=0}^{n-1} 4^{k}\binom{n-1-2 k}{n-1-k} z_{2}\left\{z_{2}^{2 n-1-2 k} \widetilde{\amalg}\left(z_{3} z_{1}\right)^{k}\right\} \\
& +\sum_{k=0}^{n-1} 4^{k+1}\binom{2 n-2-2 k}{n-1-k} z_{3}\left\{z_{2}^{2 n-2-2 k} \widetilde{\amalg} z_{1}\left(z_{3} z_{1}\right)^{k}\right\} \\
= & \sum_{k=0}^{n-1} 4^{k}\binom{2 n-2 k}{n-k} z_{2}\left\{z_{2}^{2 n-1-2 k} \widetilde{\amalg}\left(z_{3} z_{1}\right)^{k}\right\} \\
& +\sum_{k=1}^{n} 4^{k}\binom{2 n-2 k}{n-k} z_{3}\left\{z_{2}^{2 n-2 k} \widetilde{\amalg} z_{1}\left(z_{3} z_{1}\right)^{k-1}\right\} \\
= & \binom{2 n}{n} z_{2}^{2 n}+\sum_{k=1}^{n-1} 4^{k}\binom{2 n-2 k}{n-k}\left\{z_{2}^{2 n-2 k} \widetilde{\amalg}\left(z_{3} z_{1}\right)^{k}\right\}+4^{n}\left(z_{3} z_{1}\right)^{n} \\
= & \sum_{k=0}^{n} 4^{k}\binom{2 n-2 k}{n-k}\left\{z_{2}^{2 n-2 k} \widetilde{\mathrm{~m}}\left(z_{3} z_{1}\right)^{k}\right\} .
\end{aligned}
$$

Hence (1) is true for $N=n$. Suppose that the case $N-1$ of (1) has been proven. (We may assume that $N-1 \geq n$ in the following calculation.)

$$
\begin{aligned}
z_{2}^{n} \amalg z_{2}^{N}= & x y\left\{(x y)^{n-1} \mathrm{\amalg}(x y)^{N}\right\}+2 x^{2}\left\{y(x y)^{n-1} \amalg y(x y)^{N-1}\right\} \\
& +x y\left\{(x y)^{n} \amalg(x y)^{N-1}\right\} \\
= & \sum_{k=0}^{n-1} 4^{k}\binom{N+n-1-2 k}{n-1-k} z_{2}\left\{z_{2}^{N+n-1-2 k} \widetilde{\mathrm{\amalg}}\left(z_{3} z_{1}\right)^{k}\right\} \\
& +\sum_{k=0}^{n-1} 4^{k+1}\binom{N+n-2-2 k}{n-1-k} z_{3}\left\{z_{2}^{N+n-2-2 k} \widetilde{\amalg} z_{1}\left(z_{3} z_{1}\right)^{k}\right\} \\
& +\sum_{k=0}^{n} 4^{k}\binom{N+n-1-2 k}{n-k} z_{2}\left\{z_{2}^{N+n-1-2 k} \widetilde{\amalg}\left(z_{3} z_{1}\right)^{k}\right\} \\
= & \sum_{k=0}^{n-1} 4^{k}\binom{N+n-2 k}{n-k} z_{2}\left\{z_{2}^{N+n-1-2 k} \widetilde{\mathrm{~m}}\left(z_{3} z_{1}\right)^{k}\right\} \\
& +\sum_{k=1}^{n} 4^{k}\binom{N+n-2 k}{n-k} z_{3}\left\{z_{2}^{N+n-2 k} \widetilde{\mathrm{~m}} z_{1}\left(z_{3} z_{1}\right)^{k-1}\right\} \\
& +4^{n} z_{2}\left\{z_{2}^{N-n-1} \widetilde{\amalg}\left(z_{3} z_{1}\right)^{n}\right\} \\
= & \binom{N+n}{n} z_{2}^{N+n}+\sum_{k=1}^{n-1} 4^{k}\binom{N+n-2 k}{n-k}\left\{z_{2}^{N+n-2 k} \widetilde{\amalg}\left(z_{3} z_{1}\right)^{k}\right\} \\
& +4^{n}\left\{z_{2}^{N-n} \widetilde{\mathrm{~m}}\left(z_{3} z_{1}\right)^{n}\right\} \\
= & \sum_{k=0}^{n} 4^{k}\binom{N+n-2 k}{n-k}\left\{z_{2}^{N+n-2 k} \widetilde{\amalg}\left(z_{3} z_{1}\right)^{k}\right\} .
\end{aligned}
$$

Hence (11) is true for N. We can prove (2) for n by induction on N with using (11) for n.

Before proceeding to the proof of Theorem [1, we prove a key identity. Comparing coefficients of $(x+1)^{2 m+4 n+2}=\left(x^{2}+2 x+1\right)^{m+2 n+1}$, we have

$$
\binom{2 m+4 n+2}{2 n+1}=\sum_{k=0}^{n} 2^{2 k+1} \frac{(m+2 n+1)!}{(n-k)!(2 k+1)!(m+n-k)!}
$$

We can transform this identity as follows:

$$
\begin{align*}
& \frac{1}{(2 n+1)!} \frac{1}{(2 m+2 n+1)!} \tag{3}\\
& =\sum_{k=0}^{n} 4^{k}\binom{m+2 n-2 k}{n-k}\binom{m+2 n}{2 k} \frac{1}{(2 k+1) \cdot(2 m+4 n+1)!}
\end{align*}
$$

Proof of Theorem 1. We prove Theorem 1 by induction on n. The case $n=0$ is well known as has been mentioned in Section 1. Suppose that the assertion has been proven up to $n-1$. Putting $N=m+n$ in (1), we have

$$
\begin{aligned}
4^{n} Z & \left(z_{2}^{m} \widetilde{\widetilde{W}}\left(z_{3} z_{1}\right)^{n}\right) \\
= & \frac{\pi^{2 n}}{(2 n+1)!} \frac{\pi^{2 m+2 n}}{(2 m+2 n+1)!} \\
& -\sum_{k=0}^{n-1} 4^{k}\binom{m+2 n-2 k}{n-k}\binom{m+2 n}{2 k} \frac{\pi^{2 m+4 n}}{(2 k+1) \cdot(2 m+4 n+1)!} \\
= & 4^{n}\binom{m+2 n}{m} \frac{\pi^{2 m+4 n}}{(2 n+1) \cdot(2 m+4 n+1)!}
\end{aligned}
$$

In the first equality we have used the induction hypothesis and the formula $\zeta\left(\{2\}_{m}\right)$ $=\pi^{2 m} /(2 m+1)!($ the case $n=0)$, and in the second equality we have used (3).

References

[1] J. M. Borwein, D. M. Bradley, and D. J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: A compendium of results for arbitrary k, Electron. J. Combin. 4, No. 2 (1997). MR 1444152 (98b:11091)
[2] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisoněk, Combinatorial aspects of multiple zeta values, Electron. J. Combin. 5, Research Paper 38 (1998). MR1637378 (99g:11100)
[3] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisoněk, Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353, No. 3 (2001), 907-941. MR1709772 (2003i:33003)
[4] D. Bowman and D. M. Bradley, The algebra and combinatorics of shuffles and multiple zeta values, J. Combin. Theory Ser. A 97 (2002), 43-61. MR1879045 (2003j:05010)
[5] M. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275-290. MR 1141796 (92i:11089)
[6] M. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997), 477-495. MR1467164 (99e:11119)
[7] K. Ihara, M. Kaneko, and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math. 142 (2006), 307-338. MR2218898(2007e:11110)
[8] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II, Progr. Math., 120, Birkhäuser, Basel, 1994, pp. 497-512. MR1341859 (96k:11110)

Graduate School of Mathematics, Kyushu University, Fukuoka 812-8581, Japan
E-mail address: muneta@math.kyushu-u.ac.jp

[^0]: Received by the editors March 13, 2008, and, in revised form, March 29, 2008. 2000 Mathematics Subject Classification. Primary 11M41; Secondary 11M06.
 Key words and phrases. Multiple zeta values, shuffle.

