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ABSTRACT ELEMENTARY CLASSES INDUCED BY TILTING
AND COTILTING MODULES HAVE FINITE CHARACTER

JAN TRLIFAJ

(Communicated by Julia Knight)

Abstract. Let R be a ring and C be a cotilting class of R–modules. Define
A ≤ B by A ⊆ B and A, B, B/A ∈ C. Then (C,≤) is an abstract elementary
class of finite character. An analogous result holds for all abstract elementary
classes induced by tilting modules.

Introduction

A surprising correspondence between algebraic properties of classes C studied
in infinite dimensional tilting theory and model theoretic properties of the induced
abstract elementary classes (C,≤) has recently been discovered in [3]. In this paper,
we show that two important instances of this correspondence, namely the case when
C is a cotilting class and when C = ⊥T for a tilting class T , always yield abstract
elementary classes of finite character. The latter classes admit the tools of infinitary
logics developed in [2], [9], and [10].

The notion of an abstract elementary class (or AEC, for short) goes back to
Shelah [12] and provides a general framework for far reaching extensions of clas-
sical model theory of first order structures; cf. [2]. AECs of finite character were
introduced by Hyttinen and Kesälä in [9]; recently, Kueker [10] has shown that an
AEC (C,≤) with amalgamation property has finite character if and only if A ≤ B
whenever A, B ∈ C are such that A ⊆ B, and for each finite subset X of A there is
a monomorphism fX : A → B with fX � X = idX and fX(A) ≤ B.

In [3] particular AECs were introduced, namely those of the form (⊥D,≤) where
D is a class of modules over an associative ring R,

⊥D =
⋂

1≤i<ω

KerExti
R(−,D) = {M | Exti

R(M, D) = 0 for all D ∈ D and i ≥ 1}

and A ≤ B means that A is a submodule of B such that A, B, B/A ∈ ⊥D. Since
these AECs have the amalgamation property by [3, Lemma 2.1], we will take
Kueker’s characterization above as our definition of finite character.

In [3] a question was raised as to whether the AECs of the form (⊥D,≤) have
finite character; cf. [3, Question 4.1.(2)].
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Our main result here gives a positive answer in the case when ⊥D is a cotilting
class of modules over an arbitrary ring. It follows that all AECs of the form
(⊥D,≤) over a Dedekind domain, or a right artinian right hereditary ring, have
finite character. We also prove that if T is a tilting class over an arbitrary ring and
(⊥T ,≤) is an AEC, then (⊥T ,≤) has finite character.

Recall that a pair (C,≤) is an abstract elementary class if C is a class of τ–
structures (for some vocabulary τ ) and ≤ is a partial order on C, and both C and
≤ are closed under isomorphism and satisfy:

• (A1) If A ≤ B, then A is a substructure of B.
• (A2) If (Ai | i < δ) is a ≤–increasing chain of elements of C (that is,

Ai ≤ Ai+1 for all i < δ, and Ai =
⋃

j<i Aj for all limit ordinals i < δ), then
(1)

⋃
i<δ Ai ∈ C;

(2) Aj ≤
⋃

i<δ Ai for each j < δ;
(3) if M ∈ C and Ai ≤ M ∈ C for each j < δ, then

⋃
i<δ Ai ≤ M .

• (A3) If A, B, C ∈ C, A ≤ C, B ≤ C and A is a substructure of B, then
A ≤ B.

• (A4) There is a “Löwenheim–Skolem” cardinal number κ such that if A
is a substructure of B ∈ C, then there is A′ ∈ C which contains A as a
substructure so that A′ ≤ B, and the cardinality of A′ is at most |A| + κ.

If A ≤ B, then we will say that A is strong in B.
The basic example of an AEC is the class of all models of a first order theory

with the relation of being an elementary submodel. The examples relevant here
have the form (⊥D,≤) for a class of right R–modules D with the relation A ≤ B if
A is a submodule of B such that A, B, B/A ∈ ⊥D.

We have no restriction on the cardinality of the vocabulary: our running con-
vention here is that ‘τ–structure’ stands for ‘right R–module’ over an arbitrary, but
fixed, ring R, and ‘substructure’ stands for ‘submodule’. Then (⊥D,≤) is an AEC
if and only if the class ⊥D is closed under direct limits and has refinements (see
Lemma 2.1 below).

These two properties of ⊥D are not easy to check. However, there is an important
case where they always hold: by [3, Theorem 0.1(1)] and [14, Theorem 13], this
happens when C = ⊥D is a cotilting class, that is, when C = ⊥{C} for a cotilting
module C.

Recall that a module C is cotilting provided that

• (C1) C has finite injective dimension.
• (C2) Exti

R(CI , C) = 0 for each i > 0 and each set I.
• (C3) There are an injective cogenerator W for Mod–R and a finite exact

sequence 0 → Cn → · · · → C0 → W → 0, where Ci a direct summand of a
direct product of copies of the module C for each i ≤ n.

For example, if R is a Dedekind domain, then the AECs of the form (⊥D,≤) for
a class of modules D are exactly the AECs (C,≤) where C is a cotilting class, and
they correspond bijectively to subsets P of the maximal spectrum of R. The class
C corresponding to P is the class of all modules that are p–torsion free for each
p ∈ P (see [3, Theorem 0.2(3)]).

The notion of a cotilting module is a formal dual of the better known notion
of an (infinitely generated) tilting module where a module T is said to be tilting
provided that
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• (T1) T has finite projective dimension.
• (T2) Exti

R(T, T (I)) = 0 for each i > 0 and each set I.
• (T3) There is a finite exact sequence 0 → R → T0 → · · · → Tn → 0, where

Ti a direct summand in a direct sum of copies of the module T for each
i ≤ n.

If T is a tilting module, then

{T}⊥ =
⋂

1≤i<ω

KerExti
R(T,−) = {M | Exti

R(T, M) = 0 for all i ≥ 1}

is the tilting class induced by T .
Given a ring R we let Mod–R denote the category of all right R–modules and

mod–R the subcategory of all strongly finitely presented modules, that is, of the
modules possessing a (possibly infinite) projective resolution consisting of finitely
generated modules.

A class C ⊆ Mod–R is resolving provided that R ∈ C, C is closed under extensions
and direct summands, and C1 ∈ C whenever there is a short exact sequence of the
form 0 → C1 → C2 → C3 → 0, where C2, C3 ∈ C. For example, mod–R is resolving.

A class D ⊆ Mod–R is said to be of finite type in the case where there is a class
S ⊆ mod–R such that D = S⊥ =

⋂
1≤i<ω KerExti

R(S,−). Moreover, if all modules
in S have bounded projective dimension, then D is said to be of bounded type. In
this notation, the main result of [6] says that tilting classes coincide with the classes
of bounded type.

We refer to [2], [3] and [8] for basic properties of the notions defined above.1

We only note that in the general setting of infinitely generated modules, cotilting
theory amounts to more than just dualization of the (infinite dimensional) tilting
theory: while the dual (character module) of any tilting left R–module is a cotilting
right R–module, Bazzoni has recently discovered a class of valuation domains with
cotilting modules that are not equivalent to duals of any tilting modules, [4].

1. AECs induced by cotilting modules

In this section we will consider the AECs of the form (C,≤), where C is a cotilting
class of modules, and show that they are of finite character. We will see that C is
always axiomatizable in the language of the first order theory of modules, so the
complexity of this case rests in the unusual relation of ≤.

We start by recalling a well-known tensor vanishing criterion:

Lemma 1.1. Let R be a ring, D be a left R–module with a finite generating set
(di | i < m), C be a right R–module, and {ci | i < m} be a sequence of elements of
C. Then the following are equivalent:

(1)
∑

i<m ci ⊗ di = 0 in C ⊗R D.
(2) There exist 0 < n < ω, a matrix A = (aji) ∈ Mn×m(R) and elements (c′j |

j < n) in C such that
∑

i<m ajidi = 0 for each j < n, and ci =
∑

j<n c′jaji

for each i < m.

Proof. This is a particular instance of [13, Proposition I.8.8]. �

A class of modules C is said to be definable provided that C is closed under direct
products, direct limits, and pure submodules.

1However, for simplicity of notation, we occasionally deviate from the notation therein.
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There are many characterizations of definable classes of modules; cf. [7, 2.3]. In
particular, each definable class is axiomatizable in the language of the first order
theory of modules by axioms saying that certain Baur–Garavaglia–Monk invariants
are 1; see [11]. We will need the following characterization due to Bazzoni (see [5,
Proposition 5.2]):

Lemma 1.2. Let R be a ring and C be a class of right R–modules. Then the
following are equivalent:

(1) C is definable.
(2) There is a set of R–homomorphisms Θ = {θi : Fi → Gi | i ∈ I} with

all Fi’s and Gi’s finitely presented left R–modules, such that C = Ker(Θ)
where

Ker(Θ) = {M ∈ Mod–R | idM ⊗R θi : M ⊗R Fi → M ⊗R Gi is monic for all i ∈ I}.
Let C be a class of modules. Then C is special provided that for each module B

there exists an exact sequence 0 → B → D → C → 0 with C ∈ C and D ∈ C⊥.
Cotilting classes are particular sorts of definable classes:

Lemma 1.3. Let R be a ring and C be a cotilting class of right R–modules. Then
C is definable, special, and resolving.

Proof. This follows e.g. from [8, Theorems 4.3.23 and 8.1.10]. �
Notice that if C is cotilting, then any set Θ such that C = Ker(Θ) as in

Lemma 1.2(2) must consist of monomorphisms, since R ∈ C.

Theorem 1.4. Let R be a ring and C be a cotilting class of right R–modules. Then
(C,≤) is an AEC of finite character.

Proof. Assume that (C,≤) is not of finite character. Then there are modules
A ⊆ B ∈ C such that B/A /∈ C, but for each finite subset X ⊆ A there is a
monomorphism fX : A → B with fX � X = idX and B/fX(A) ∈ C.

By Lemma 1.3, C is special, so there is an exact sequence 0 → B ⊆ D → C → 0
with D ∈ C⊥ and B, C, D ∈ C, and C is resolving, so D/A /∈ C.

By Lemmas 1.3 and 1.2, there is a set of R–monomorphisms Θ such that C =
KerΘ. Since D/A /∈ C there exist finitely presented left R–modules F ⊆ G such
that the inclusion θ : F ↪→ G belongs to Θ but the map idD/A⊗R θ : (D/A)⊗RF →
(D/A) ⊗R G is not monic.

Let {fi | i < m} be an R–generating subset of F , and {gj | j < n} an R–
generating subset of G. Then there is a matrix (rij) ∈ Mm×n(R) such that fi =∑

j<n rijgj for each i < m. By assumption there exist elements (di | i < m) in
D such that

∑
i<m(di + A) ⊗R fi �= 0 in (D/A) ⊗R F but

∑
i<m(di + A) ⊗R fi =∑

j<n(
∑

i<m dirij + A) ⊗R gj = 0 in (D/A) ⊗R G.
By Lemma 1.1, the latter just says that there exist elements (d′k | k < p) in

D and a matrix (skj) ∈ Mp×n(R) such that
∑

i<m skjgj = 0 for each k < p and
(
∑

i<m dirij) + A = (
∑

k<p d′kskj) + A for each j < n. In particular, we can define
(aj | j < n) in A by aj = (

∑
i<m dirij) − (

∑
k<p d′kskj) for each j < n. Then∑

j<n(
∑

i<m dirij − aj) ⊗R gj = 0 in D ⊗R G by Lemma 1.1.
Take X = {aj | j < n} and define I = fX(A). Since aj = fX(aj) for each

j < n, Lemma 1.1 implies that
∑

j<n(
∑

i<m dirij + I) ⊗R gj = 0 in (D/I) ⊗R G.
Since B/I ∈ C and (D/I)/(B/I) ∼= C ∈ C, also D/I ∈ C, so the map idD/I ⊗R θ :
(D/I)⊗R F → (D/I)⊗R G is monic; thus

∑
i<m(di + I)⊗R fi = 0 in (D/I)⊗R F .
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Denote by ν the inclusion ν : I ↪→ D. Then
∑

i<m di ⊗R fi ∈ Im(ν ⊗R idF ) ⊆
D⊗R F , so there exist elements (a′

i | i < m) in A such that
∑

i<m(di − fX(a′
i))⊗R

fi = 0 in D ⊗R F .
It follows that

∑
i<m(di−fX(a′

i))⊗Rfi =
∑

j<n(
∑

i<m(di−fX(a′
i))rij)⊗Rgj = 0

in D⊗R G. By Lemma 1.1 there exist elements (b̄l | l < q) in D and a matrix (tlj) ∈
Mq×n(R) such that

∑
j<n tljgj = 0 for each l < q, and

∑
i<m(di − fX(a′

i))rij =∑
l<q b̄ltlj for each j < n. Then

fX(aj) +
∑

k<p

d′kskj = aj +
∑

k<p

d′kskj =
∑

i<m

dirij =
∑

i<m

fx(a′
i)rij +

∑

l<q

b̄ltlj .

Therefore, fX(aj −
∑

i<m a′
irij) =

∑
l<q b̄ltlj −

∑
k<p d′kskj for each j < n, and

Lemma 1.1 yields
∑

j<n fX(aj −
∑

i<m a′
irij) ⊗ gj = 0 in D ⊗R G.

Since fX is monic, there exists gX = f−1
X : I → D such that gXfX = idA.

However, D/I ∈ C and D ∈ C⊥, so gX extends to an R-homomorphism g : D → D.
Then

(g ⊗R G)(
∑

j<n

fX(aj −
∑

i<m

a′
irij) ⊗ gj) =

∑

j<n

(aj −
∑

i<m

a′
irij) ⊗ gj = 0

in D ⊗R G. But then
∑

j<n(
∑

i<m(di − a′
i)rij) ⊗R gj = 0 in D ⊗R G, whence∑

i<m(di − a′
i) ⊗R fi = 0 in D ⊗R G.

Since D ∈ C, the map idD⊗Rθ : D⊗RF → D⊗RG is monic, so
∑

i<m(di−a′
i)⊗R

fi = 0 in D⊗RF , in contradiction with
∑

i<m(di+A)⊗Rfi �= 0 in (D/A)⊗RF . �

An AEC (C,≤) is said to admit intersections if for each C ∈ C and each sub-
structure C ′ ⊆ C, the intersection of all strong substructures of C containing C ′ is
strong in C.

Corollary 1.5. Let R be a ring and D be a class of modules of bounded injective
dimension such that (⊥D,≤) is an AEC. If (⊥D,≤) admits intersections, then ⊥D
is a cotilting class; hence (⊥D,≤) has finite character.

Proof. Since (⊥D,≤) admits intersections, the class ⊥D is closed under direct prod-
ucts by [3, Lemma 2.8]. Then ⊥D is a cotilting class by [8, Theorem 4.3.23], and
Theorem 1.4 applies. �

By [3, Theorem 0.2(3)], all AECs of the form (⊥D,≤) over a Dedekind domain
admit intersections, so we have

Corollary 1.6. Let R be a Dedekind domain. Then each AEC of the form (⊥D,≤)
for a class of modules D has finite character.

There is also a positive answer in the hereditary artinian case:

Corollary 1.7. Let R be a right hereditary and right artinian ring. Then each
AEC of the form (⊥D,≤) for a class of modules D has finite character.

Proof. Since D consists of modules of injective dimension ≤ 1, [3, Lemmas 1.5 and
1.11] yield that ⊥D is a torsion–free class of modules and ⊥D is a cotilting class by
[8, Theorem 4.3.23]. So again, (⊥D,≤) has finite character by Theorem 1.4. �
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2. AECs induced by tilting modules

We turn to the tilting setting and, more generally, to the setting of classes of
finite type.

Given a class of modules S, a module M ∈ Mod–R is called S–filtered provided
that M contains a chain of submodules (Mα | α ≤ σ) such that M0 = 0, Mσ = M ,
Mα ⊆ Mα+1 and Mα+1/Mα

∼= Sα for some Sα ∈ S for all α < σ, and Mα =⋃
β<α Mβ for all limit ordinals α ≤ σ. The chain (Mα | α ≤ σ) is called an

S–filtration of M .
A class of modules C is said to have refinements provided there is a cardinal

κ such that each module from C is Cκ–filtered, where Cκ denotes the class of all
≤ κ–generated modules in C. This property is relevant here because of the following
result proved in [3, §1]:

Lemma 2.1. Let R be a ring and D ⊆ Mod–R. Then (⊥D,≤) is an AEC if and
only if the class ⊥D is closed under direct limits and has refinements.

Remark 2.2. In view of Lemma 2.1 it is easy to see that our proof of Theorem 1.4
actually works in a more general setting for all AECs of the form (⊥D,≤) with
⊥D closed under direct products and pure submodules. However, this more general
setting still does not cover the tilting case as shown by the following example (which
also shows that the reverse implication in Corollary 1.5 fails in general).

Example 2.3. Consider a ring R which is right perfect but not left perfect (for
instance, take R = UTω(K), the ring consisting of all upper tringular ω×ω matrices
over a field K which are constant on the main diagonal and have only finitely many
non–zero entries above it; see [1, p. 322]). Let D denote a representative set of
all simple right R–modules (for R = UTω(K), we can take D = {K} because the
Jacobson radical J of R consists of the matrices that are zero on the main diagonal,
and R/J ∼= K).

Then (⊥D,≤) is an AEC and ⊥D is the class of all projective right R–modules
(see [3, Example 2.11]). Since R is not left perfect, ⊥D is not closed under direct
products by a classical result of Chase, and [3, Lemma 2.8] gives that (⊥D,≤) does
not admit intersections. Clearly, ⊥D = ⊥T for the trivial tilting class T = Mod–R,
so (⊥D,≤) has finite character by Theorem 2.4 (for S = {R}).

Assume that S ⊆ mod–R is resolving. Let D = S⊥ and C = ⊥D. Then D is
of finite type and C coincides with the class of all direct summands of S–filtered
modules (see e.g. [8, Corollary 3.2.4]). This description of the class C makes it
possible to prove yet another case of finite character:

Theorem 2.4. Let R be a ring, S be a subclass of mod–R, and C = ⊥(S⊥). Assume
that (C,≤) is an AEC. Then (C,≤) has finite character.

Proof. Possibly replacing S by ⊥(S⊥)∩mod–R, we can assume that S is resolving.
Consider an exact sequence 0 → A ⊆ B → M → 0 with A, B ∈ C. Assume

that for each finite subset X of A there is a monomorphism fX : A → B with
fX � X = idX and fX(A) ≤ B. By [8, Corollary 3.2.4], there is a module C ∈ C
such that A′ = A ⊕ C is S–filtered, and clearly B′ = B ⊕ C ∈ C. Extending fX to
C by identity, we can w.l.o.g. assume that A = A′ is S–filtered.

Fix an S–filtration (Mα | α ≤ σ) of A. W.l.o.g., σ is infinite. For each α < σ,
take a finitely generated submodule Aα ⊆ A such that Mα+1 = Mα +Aα. A subset
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S ⊆ σ is said to be closed when Mα ∩Aα ⊆
∑

β∈S,β<α Aβ for each α ∈ S. Consider
the Hill family F = {

∑
α∈S Aα | S closed in σ} (see [8, Theorem 4.2.6] for κ = ω).

Let F be a finite closed subset of σ and X be a finite R–generating subset
of AF =

∑
α∈F Aα. Then A ∼= fX(A), AF = fX(AF ), and B/fX(A) ∈ C by

assumption. By [8, Theorem 4.2.6], fX(A)/AF is S–filtered, hence B/AF ∈ C. By
[8, Theorem 4.2.6], A is a directed union of the AF ’s where F runs over all finite
closed subsets of σ, so M ∼= B/A is a direct limit of the B/AF ’s. As B/AF ∈ C,
also M ∈ C by [3, Lemma 1.5]; that is, A is strong in B. �

A module M is
∑

–pure split if every pure embedding N ′ ⊆ N , where N is a
direct summand in a direct sum of copies of M , splits. For example, each

∑
–pure

injective module is
∑

–pure split (see [8, 5.3]).

Corollary 2.5. Let R be a ring, T be a tilting right R–module with the tilting class
T = T⊥, and C = ⊥T . Then (C,≤) is an AEC if and only if T is

∑
–pure split. In

this case (C,≤) is of finite character.

Proof. By [6], T is of bounded type, so T = S⊥ where S = ⊥T ∩mod–R is resolving.
Moreover, the class C has refinements by [8, Theorem 5.2.10], so Lemma 2.1 yields
that (C,≤) is an AEC iff C is closed under direct limits. But the latter is equivalent
to T being

∑
–pure split by [8, Proposition 5.3.4]. The final claim follows by

Theorem 2.4. �
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[9] T. Hyttinen and M. Kesälä, Independence in finitary abstract elementary classes, Annals of
Pure Appl. Logic 143(2006), 103–138. MR2258625 (2007k:03087)

[10] D. W. Kueker, Abstract Elementary Classes and Infinitary Logics, preprint (2008).
[11] M. Prest, Model Theory and Modules, LMS Lecture Note Ser. 130, Cambridge Univ. Press,

Cambridge, 1988. MR933092 (89h:03061)

[12] S. Shelah, Classification of nonelementary classes, II. Abstract elementary classes, In J. T.
Baldwin, ed., Classification Theory (Chicago, IL, 1985), Lecture Notes in Math. 1292,
Springer, Berlin, 1987, 419–497. MR1033034 (91h:03046)

[13] B. Stenström, Rings of Quotients, Springer-Verlag, New York-Heidelberg, 1975. MR0389953
(52:10782)
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