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COMPLETIONS OF QUANTUM COORDINATE RINGS

LINHONG WANG

(Communicated by Birge Huisgen-Zimmermann)

Abstract. Given an iterated skew polynomial ring C[y1; τ1, δ1] . . . [yn; τn, δn]
over a complete local ring C with maximal ideal m, we prove, under suitable
assumptions, that the completion at the ideal m+〈y1, y2, . . . , yn〉 is an iterated
skew power series ring. Under further conditions, the completion becomes a lo-
cal, noetherian, Auslander regular domain. Applicable examples include quan-
tum matrices, quantum symplectic spaces, and quantum Euclidean spaces.

1. Introduction

Let R be a ring equipped with a skew derivation (τ, δ). The skew power series
ring R[[y; τ ]], when δ = 0, is a well-known, classical object (cf. [5], [11]). The skew
power series ring R[[y; τ, δ]], when δ �= 0, has more recently appeared in quantum
algebras (cf. [8, §4], [9, §4]) and in noncommutative Iwasawa theory (cf. [13], [14]).
In this paper, we study iterated skew power series rings as completions of iterated
skew polynomial rings. Our approach builds on the work of Venjakob in [14].

Our main result can be stated as follows: Let

Rn = C[y1; τ1, δ1] . . . [yl; τl, δl] . . . [yn; τn, δn] (n ≥ 1)

be an iterated skew polynomial ring, where C is a complete local ring with maximal
ideal m, and where C is stable under each skew derivation (τl, δl). For each 1 ≤ l ≤
n, set Il−1 = m + 〈y1, . . . , yl−1〉, and assume that τl(Il−1) ⊆ Il−1, δl(Rl−1) ⊆ Il−1,
and δl(Il−1) ⊆ I2

l−1. Then there exists an iterated skew power series ring

Sn = C[[y1; τ̂1, δ̂1]] . . . [[yl; τ̂l, δ̂l]] . . . [[yn; τ̂n, δ̂n]],

such that τ̂l|Rl−1 = τl and δ̂l|Rl−1 = δl, for 1 ≤ l ≤ n. Moreover, Sn is the
completion of Rn at the ideal m + 〈y1, . . . , yn〉.

The paper is organized as follows: Section 2 reviews some preliminary results
and proves the main result. Section 3 applies the main result to certain quantum
coordinate rings, including quantum matrices, quantum symplectic spaces, and
quantum Euclidean spaces.

Throughout, all rings are unital.
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2. Main result

Let R be a ring, τ a ring endomorphism of R and δ a left τ -derivation, that is,
δ : R → R is an additive map for which δ(rs) = τ (r)δ(s) + δ(r)s for all r, s ∈ R.
The pair of maps (τ, δ) is called a skew derivation on R. To start, we recall the
structure of the skew power series ring in one variable, following Venjakob [14].

2.1. Let S be the additive group of formal power series in y,∑
i

riy
i =

∞∑
i=0

riy
i,

with coefficients ri in R. Using the commutation rule yr = τ (r)y + δ(r), for r ∈ R,
we wish to write the product of two arbitrary elements in S as(∑

i

riy
i

)⎛
⎝∑

j

sjy
j

⎞
⎠ =

∞∑
n

n∑
j=0

∞∑
i=n−j

ri(yisj)n−jy
n,

where each (ynr)i, for 0 ≤ i ≤ n, denotes an element in R such that

ynr =
n∑

i=0

(ynr)iy
i,

for n ≥ 0. However, it is not always the case that
n∑

j=0

∞∑
i=n−j

ri(yisj)n−j

is well defined in R. If, under some additional restrictions (see subsection 2.3), the
multiplication formula is well defined for any two power series in S, we will say that
S is a well-defined skew power series ring, and write S = R[[y; τ, δ]].

2.2. By a local ring we will always mean a ring R such that the quotient ring
by the Jacobson radical J(R) is simple artinian. In particular, a local ring has
a unique maximal ideal which is equal to the Jacobson radical. Let R be a local
ring with maximal ideal m. We will always equip R with the m-adic topology. By
the associated graded ring grR, we will always mean with respect to the m-adic
filtration, that is:

gr R = R/m ⊕ m/m
2 ⊕ · · · .

We will refer to R as a complete local ring if R is also complete (i.e., Cauchy
sequences converge in the m-adic topology) and separated (i.e., the m-adic topology
is Hausdorff).

2.3. Let R be a complete local ring with maximal ideal m and with skew derivation
(τ, δ). As in [14], we assume that τ (m) ⊆ m, δ(R) ⊆ m and δ(m) ⊆ m2. In [14,
Lemma 2.1], Venjakob proved, under these assumptions, that S = R[[y; τ, δ]] is a
well-defined skew power series ring. The following properties of S are also proved
in, or easily deduced from, Venjakob’s work in [14, §2].

(i) Any element
∑

i riy
i is a unit (in S) if and only if the constant term r0 is a

unit in R. In particular, any element in 1 − 〈m, y〉 is a unit, and so the Jacobson
radical J(S) = 〈m, y〉. Hence, in view of the isomorphism S/J(S) ∼= R/m, S is a
local ring.

(ii) The 〈m, y〉-adic filtration on S is complete and separated.
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(iii) There is a canonical isomorphism gr S ∼= (grR)[ȳ; τ̄ ]. Assume further that
τ̄ is an automorphism. Then, S is right (respectively left) noetherian if gr R is right
(respectively left) noetherian, S is a domain if gr R is a domain, and S is Auslander
regular if the same holds for gr R; see [14, Corollary 2.10] (cf. [10, Chap. III,
Theorem 2.2.5], [10, Chap. III, Theorem 3.4.6 (1)]).

(iv) Now suppose that grR is right noetherian and that τ̄ is an automorphism.
Concerning right global dimension, it follows that rglS ≤ rgl gr R+1. As far as right
Krull dimension is concerned, rKdim gr(S) = rKdim gr R+1, by [6, Theorem 15.19].
Moreover, rKdimS ≤ rKdim grS, as S is a complete filtered ring and gr S is right
noetherian; see [12, D.IV.5]. Therefore rKdimS ≤ rKdim gr R + 1.

2.4. Contained within S is the skew polynomial ring T = R[y; τ, δ]. Following
subsection 2.3 (ii), both S and T are endowed with a Hausdorff 〈m, y〉-adic topology.
Of course, T is a dense subring of S in this topology. Therefore, S is the completion
of T with respect to the 〈m, y〉-adic filtration, following [1, Theorem 3.3.5].

The remainder of this section is devoted to the main result. First we set up a
suitable iterated skew polynomial ring. Then we construct an iterated skew power
series ring, by extending skew derivations.

2.5. Setup. Let C be a complete local ring with maximal ideal m. Set R0 = C,
and let

Rn = C[y1; τ1, δ1] . . . [yl; τl, δl] . . . [yn; τn, δn]

be an iterated skew polynomial ring with skew derivations (τl, δl) of Rl−1, for 1 ≤
l ≤ n. For each 1 ≤ l ≤ n, set

Il−1 = m + 〈y1, . . . , yl−1〉 ⊆ Rl−1,

and assume that

τl(Il−1) ⊆ Il−1, δl(Rl−1) ⊆ Il−1, and δl(Il−1) ⊆ I2
l−1.

We will also need the following notation.

2.6. (i) Let 1 ≤ l ≤ n+1. A nonzero monomial ci1,...,il−1y
i1
1 · · · yil−1

l−1 in Rl−1 is said
to be in normal form. We will write

ciY
i
l−1

for ci1,...,il−1y
i1
1 · · · yil−1

l−1 , where i = (i1, . . . , il−1) ∈ N
l−1.

(ii) We now introduce the notion of degree that we will use for nonzero monomials
in normal form. Let 1 ≤ l ≤ n + 1, and let ciY

i
l−1 ∈ Rl−1. Then there exists a

largest integer k such that ci ∈ mk. Set

s(ci, i) = k + i1 + i2 + · · · + il−1.

We will refer to s(ci, i) as the degree of ciY
i
l−1.

(iii) Let 1 ≤ l ≤ n, and let ciY
i
l−1 and djY

j

l−1 be two nonzero monomials in

Rl−1. Then ciY
i
l−1 ·djY

j

l−1 is 0 or a sum of monomials each with degree ≥ s(ci, i)+

s(dj , j). An inductive argument shows that each of the polynomials τl

(
ciY

i
l−1

)
and

δl

(
ciY

i
l−1

)
is 0 or a finite sum of monomials each with degree ≥ s(ci, i).
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(iv) Let 1 ≤ l ≤ n. By a formal power series in y1, . . . , yl over C, we will mean
an infinite series

f =
∑

i

ciY
i
l ,

where the ci are elements in C and where i ∈ N
l. Note that each monomial ciY

i
l

is in normal form. The set of all formal power series in y1, . . . , yl over C forms an
abelian group, which we will denote as Al.

2.7. Let 1 ≤ l ≤ n.
(i) Given a power series f =

∑
i ciY

i
l ∈ Al, we can always write

f =
∞∑

k=0

∑
s(ci,i)=k

ciY
i
l ,

after regrouping the monomials appearing in f (if necessary). Note that for each
k, the sum ∑

s(ci,i)=k

ciY
i
l

is finite and possibly equal to 0.
(ii) On the other hand, let

g = G0 + G1 + . . . + Gk + . . . ,

where each Gk is 0 or a finite sum of monomials in Rl all with degree k. Then g is
a well-defined (in the above sense) formal power series in Al. To see this, suppose
that

Gk =
∑

j∈Mk

c
(k)
j Y

j

l ,

where c
(k)
j ∈ C and where Mk ⊆ N

l, for k = 0, 1, . . . . We will set c
(k)
i = 0 when

i /∈ Mk. Now, for a fixed j, the sum

c
(0)
j + c

(1)
j + . . . + c

(k)
j + . . .

might contain infinitely many terms. But each c
(k)
j is such that the degree of c

(k)
j Y

j

l

is equal to k. Hence, the preceding sum is convergent in the m-adic topology.
Therefore,

g = G0 + G1 + . . . + Gk + . . . =
∑

j∈∪Mk

(
c
(0)
j + c

(1)
j + . . . + c

(k)
j + . . .

)
Y

j

l

is a formal power series in Al with all coefficients in C well defined.

2.8. Theorem. Retain the notation and assumptions in setup 2.5. Let S0 = C.
Then there exists an iterated skew power series ring

Sn = C[[y1; τ̂1, δ̂1]] . . . [[yl; τ̂l, δ̂l]] . . . [[yn; τ̂n, δ̂n]],

where each (τ̂l, δ̂l) is a skew derivation on Sl−1 with τ̂l|Rl−1 = τl and δ̂l|Rl−1 = δl,
for 1 ≤ l ≤ n. Moreover, Sn is a complete local ring with maximal ideal mn =
m + 〈y1, . . . , yn〉. (We will refer to Sn as the power series extension of Rn.)



COMPLETIONS OF QUANTUM COORDINATE RINGS 915

Proof. Following subsection 2.3, the ring C[[y1; τ1, δ1]] is well defined and we may
take S1 = C[[y1; τ1, δ1]]. In the notation of subsection 2.6, S1 is the abelian group A1

equipped with a well-defined multiplication restricting to the original multiplication
in R1. Our goal is to show that each abelian group Al becomes an iterated skew
power series ring. In the first step of the proof, we extend the pair of maps τl and
δl to Al−1 for all 1 < l ≤ n. Then, by induction, we will show that each (τl, δl)
extends to a skew derivation on Sl−1 and that each Al forms a ring Sl.

To start, let f =
∑

i ciY
i
l−1 be a power series in Al−1. As in subsection 2.7 (i),

we can write

f =
∞∑

k=0

Fk, where Fk :=
∑

s(ci,i)=k

ciY
i
l−1 (possibly equal to 0).

Our goal now is to extend τl and δl to Al−1. For k = 0, 1, 2, . . ., if τl(Fk) �= 0, then

τl(Fk) =
∑
j∈Tk

t
(k)
j Y

j

l−1

for some subset Tk ⊆ N
l−1 and some t

(k)
j ∈ C. Next, let

Gm =
∞∑

k=0

∑
j∈Nm,k

t
(k)
j Y

j

l−1,

where
Nm,k = {j ∈ Tk | the degree of t

(k)
j Y

j

l−1 is m}.
In other words, we regroup the monomials appearing in

∑
k τl(Fk) by their degrees.

Then

τl(F0) + τl(F1) + . . . + τl(Fk) + . . . = G0 + G1 + . . . + Gm + . . . .

It follows from subsection 2.6 (iii) that any nonzero τl(Fk) is a finite sum and that
each t

(k)
j Y

j

l−1 has degree ≥ k. Hence each Gm is a finite sum by the construction.
Recall from subsection 2.7 (ii) that

G0 + G1 + . . . + Gm + . . .

is a formal power series in Al−1. Therefore,
∞∑

k=0

τl (Fk) ∈ Al−1.

Using the same argument (replacing τl with δl), we also have
∞∑

k=0

δl (Fk) ∈ Al−1.

Then, for 1 ≤ l ≤ n and f =
∑

i ciY
i
l−1 ∈ Al−1, we extend τl and δl by setting up

the following maps:

(2.1) τ̂l(f) =
∞∑

k=0

τl

⎛
⎝ ∑

s(ci,i)=k

ciY
i
l−1

⎞
⎠ and δ̂l(f) =

∞∑
k=0

δl

⎛
⎝ ∑

s(ci,i)=k

ciY
i
l−1

⎞
⎠ .

It is clear that τ̂l|Rl−1 = τl and δ̂l|Rl−1 = δl, for all 1 ≤ l ≤ n.
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Now, let n ≥ 2. Assume that the abelian group An−1 is a well-defined power
series ring, which we will denote as Sn−1, and also assume that Sn−1 is a complete
local ring with maximal ideal mn−1 = m + 〈y1, . . . , yn−1〉. Next we show that
(τ̂n, δ̂n), from (2.1), is a skew derivation on Sn−1; that is, τ̂n is an automorphism
of Sn−1 and δ̂n is a left τ̂n-derivation.

Let t be a positive integer. Choose two arbitrary elements a and b in Sn−1. Write
a = at + a′

t and b = bt + b′t, where at (respectively bt) is the sum of the monomials
appearing in a (respectively b) with degree ≤ t. Then it follows from (2.1) that

τ̂n(a) = τ̂n(at) + τ̂n(a′
t) and τ̂n(b) = τ̂n(bt) + τ̂n(b′t).

Therefore, we have

τ̂n(ab) = τn (at · bt) + τ̂n(a′
t · bt + at · b′t + a′

t · b′t), and

τ̂n(a) · τ̂n(b) = τn(at) · τn(bt) + τ̂n(a′
t) · τ̂n(bt) + τ̂n(at) · τ̂n(b′t) + τ̂n(a′

t) · τ̂n(b′t).

Note that τn(at · bt) = τn(at) · τn(bt). It follows from subsection 2.6 (iii) that

τ̂n(ab) − τ̂n(a) · τ̂n(b) ∈ m
t+1
n−1.

Let t → ∞. Then it follows from the completeness of Sn−1 that

τ̂n(ab) = τ̂n(a) · τ̂n(b).

Using the same argument (replacing τ̂n with δ̂n), we can get

δ̂n(ab) = δ̂n(a)b + τ̂n(a)δ̂n(b).

Therefore (τ̂n, δ̂n) is a skew derivation on Sn−1.
In view of the assumptions in setup 2.5 and (2.1), we see that

τ̂n(mn−1) ⊆ mn−1, δ̂n(Sn−1) ⊆ mn−1, and δ̂n(mn−1) ⊆ m
2
n−1.

Following subsection 2.3 (i), (ii), the skew power series ring Sn = Sn−1[[yn; τn, δn]]
is well defined, and Sn is a complete local ring with maximal ideal mn = m +
〈y1, . . . , yn〉. This completes the inductive step. The theorem is proved by induc-
tion. �

The following is a consequence of subsections 2.3, 2.4 and Theorem 2.8.

2.9. Corollary. (i) The power series extension Sn in Theorem 2.8 is the completion
of Rn with respect to the ideal mn = m + 〈y1, . . . , yn〉. Any power series in Sn is a
unit (in Sn) if and only if its constant term is a unit in C.

(ii) The associated graded ring gr Sn is isomorphic to an iterated skew polynomial
ring (gr C)[y1; τ̄1] . . . [yn; τ̄n].

(iii) Assume further that τ̄1, . . . , τ̄n are automorphisms. If gr C is a domain, Sn

is a domain. If gr C is right (respectively left) noetherian, so is Sn. If gr C is
Auslander regular, then Sn is also Auslander regular.

(iv) Suppose that gr C is right noetherian and that τ̄1, . . . , τ̄n are automorphisms.
Then it follows that rKdimSn ≤ rKdim gr C + n and rgl Sn ≤ rgl gr C + n.
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3. Examples

Throughout, let k be a field.

3.1. Quantum matrices. Let Oλ, p(Mn(k)) be the multiparameter quantum co-
ordinate ring of n×n matrices over k, as studied in [2] (cf., e.g., [3]). Here p = (pij)
is a multiplicatively antisymmetric n×n matrix over k, and λ is a nonzero element
of k not equal to 1. Further information about this algebra can be found in [3]. As
shown in [2], Oλ, p(Mn(k)) can be presented as a skew polynomial ring

k[y11] [y1 2; τ1 2] · · · [ylm; τlm, δlm] · · · [ynn; τnn, δnn].

Each (τlm, δlm) is a skew derivation as follows:

τlm(yij) =
{

plipjmyij , when l ≥ i and m > j,
λplipjmyij , when l > i and m ≤ j,

δlm(yij) =
{

(λ − 1)pliyimylj , when l > i and m > j,
0, otherwise.

It is not hard to see that these skew derivations satisfy the assumptions in setup 2.5.
Hence, by Theorem 2.8, the power series extension of Oλ, p(Mn(k)) is the iterated
skew power series ring

k[[y11]] [[y1 2; τ̂1 2]] · · · [[ylm; τ̂lm, δ̂lm]] · · · [[ynn; τ̂nn, δ̂nn]],

where each extended skew derivation is defined as in (2.1). Also note that each
τlm acts by nonzero scalar multiplication on the generators, and so each τ̄lm is an
automorphism. It now follows from Corollary 2.9 that the preceding power series
completion is a local, noetherian, Auslander regular domain.

3.2. Quantized k-algebras Kn. There are other well-known quantum coordinate
rings, for example coordinate rings of quantum symplectic space and quantum Eu-
clidean 2n-space (see, e.g., [3]). Horton introduced a class of algebras, denoted
KP, Q

n, Γ (k) or more briefly Kn, that includes coordinate rings of both quantum sym-
plectic space and quantum Euclidean 2n-space; see [7]. To describe this class of
algebras, let P, Q ∈ (k×)n such that P = (p1, . . . , pn) and Q = (q1, . . . , qn) where
pi �= qi for each i ∈ {1, . . . , n}. Further, let Γ = (γi,j) ∈ Mn(k×) with γj,i = γ−1

i,j

and γi,i = 1 for all i, j. Then, as in [7], KP, Q
n, Γ (k) is generated by x1, y1, . . . , xn, yn

satisfying certain relations determined by P, Q and Γ. This algebra can be pre-
sented as an iterated skew polynomial ring,

k[x1][y1; τ1][x2; σ2][y2; τ2, δ2] · · · [xn; σn][yn; τn, δn];

see [7, Proposition 3.5]. Automorphisms σi, τi and τi-derivations δi are defined as
follows:

σi(xj) = q−1
j piγi,jxj 1 ≤ j ≤ i − 1,

σi(yj) = qjγj,iyj 1 ≤ j ≤ i − 1,
τi(xj) = p−1

i γj,ixj 1 ≤ j ≤ i − 1,
τi(yj) = γi,jyj 1 ≤ j ≤ i − 1,
τi(xi) = q−1

i xi,
δi(xj) = 0 1 ≤ j ≤ i − 1,
δi(yj) = 0 1 ≤ j ≤ i − 1,
δi(xi) = −q−1

i

∑
l<i(ql − pl)ylxl.
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Note that these automorphisms and derivations give quadratic relations, and so, by
Theorem 2.8, Kn has the power series extension

k[[x1]][[y1; τ̂1]][[x2; σ̂2]][[y2; τ̂2, δ̂2]] · · · [[xl; σ̂l]][[yl; τ̂l, δ̂l]] · · · [[xn; σ̂n]][[yn; τ̂n, δ̂n]],

where the extended skew derivations are defined as in (2.1). Again, it follows from
Corollary 2.9 that this completion is a local, noetherian, Auslander regular domain.

Moreover, comparing with Corollary 2.9 (iv), the dimensions of the power series
completions in subsection 3.2 can be more precisely determined as follows:

3.3. Let E be an algebra in the class Kn, and Ê be the power series completion of
E with respect to the ideal 〈x1, y1, . . . , xn, yn〉. From subsection 3.2, we see that,
among the defining commutation relations, nonzero derivations only occur in the
following cases:

yixi = τi(xi)yi + δi(xi), for i = 2, . . . , n.

Also note that δi(xi) ∈ Ii−1 = 〈x1, y1, . . . , xi−1, yi−1〉. Hence, the set of generators
{x1, y1, . . . , xn, yn} forms a regular normalizing set (see [15, Definition 1.1]). Since
J(Ê) = 〈x1, y1, . . . , xn, yn〉, it now follows from [15, Theorem 2.7] that the Krull
dimension, classical Krull dimension and global dimension of Ê are all equal to 2n.

3.4. Remark. For the quantum coordinate rings and quantum algebras in subsec-
tions 3.1 and 3.2, it is well known that the derivations δlm and δl are locally nilpo-
tent. In [4], using this fact (and other assumptions), Cauchon constructed the
“Derivation-Elimination Algorithm”. But, for power series completions of these
examples, the extended derivations δ̂lm and δ̂l are not locally nilpotent.
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