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INITIAL VALUE PROBLEMS
IN DISCRETE FRACTIONAL CALCULUS
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(Communicated by Jane M. Hawkins)

Abstract. This paper is devoted to the study of discrete fractional calcu-
lus; the particular goal is to define and solve well-defined discrete fractional
difference equations. For this purpose we first carefully develop the commuta-
tivity properties of the fractional sum and the fractional difference operators.
Then a ν-th (0 < ν ≤ 1) order fractional difference equation is defined. A

nonlinear problem with an initial condition is solved and the corresponding
linear problem with constant coefficients is solved as an example. Further, the
half-order linear problem with constant coefficients is solved with a method of
undetermined coefficients and with a transform method.

1. Introduction

The purpose and contribution of this paper is to introduce a well-defined ν-th
(0 < ν ≤ 1) order fractional difference equation, produce a method of solution
for the general nonlinear problem, and exhibit two more methods of solution for
the linear problem of half-order with constant coefficients. Fractional calculus has a
long history and there seems to be new and recent interest in the study of fractional
calculus and fractional differential equations; we provide two well-cited monographs
here, [9] and [10].

The authors are trained with a perspective in differential equations; moreover,
the kernel of the Riemann–Liouville fractional integral

(t − s)ν−1

Γ(ν)
is a clear analogue of the Cauchy function for ordinary differential equations. Hence,
the authors are heavily influenced by the approach taken by Miller and Ross [8]
who study the linear ν-th order fractional differential equation as an analogue of
the linear n-th order ordinary differential equation.

To the authors’ knowledge, very little progress has been made to develop the
theory of the analogous fractional finite difference equation. Miller and Ross [7]
produced an early paper; the authors [1] have developed and applied a transform
method. The authors [2] also developed and applied a transform method for frac-
tional q-calculus problems. An appropriate bibliography for the fractional q-calculus
is provided in [2].
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We start with basic definitions and results so that this paper is self-contained.
Let ν > 0. Let σ(s) = s + 1. The ν-th fractional sum of f is defined by

(1.1) ∆−νf(t; a) =
1

Γ(ν)

t−ν∑
s=a

(t − σ(s))(ν−1)f(s).

Note that f is defined for s = a mod (1) and ∆−νf is defined for t = a + ν mod
(1); in particular, ∆−ν maps functions defined on Na to functions defined on Na+ν ,
where Nt = {t, t + 1, t + 2, . . .}. We point out that we employ throughout the
notation, σ(s), because eventually progress will be made to develop the theory of
the fractional calculus on time scales [4]. We remind the reader that t(ν) = Γ(t+1)

Γ(t+ν+1) ,
we shall suppress the dependence on a in ∆−νf(t; a) since domains will be clear
by the context, and finally we point out that Miller and Ross [7] have argued that
limν→0+ ∆−ν

a f(t) = f(t).
The following two results (the commutative property of the fractional sum op-

erator and the power rule) and their proofs can be found in a paper by the authors
[1].

Theorem 1.1. Let f be a real-valued function defined on Na and let µ, ν > 0.
Then the following equalities hold:

∆−ν [∆−µf(t)] = ∆−(µ+ν)f(t) = ∆−µ[∆−νf(t)].

Lemma 1.1. Let µ �= −1 and assume µ + ν + 1 is not a nonpositive integer. Then

∆−νt(µ) =
Γ(µ + 1)

Γ(µ + ν + 1)
t(µ+ν).

The µ-th fractional difference is defined as

∆µu(t) = ∆m−νu(t) = ∆m(∆−νu(t)),

where µ > 0 and m − 1 < µ < m, where m denotes a positive integer, and
−ν = µ − m. With this standard definition for the fractional derivative, it is a
straightforward calculation to show that Lemma 1.1 is valid for ν real, µ > −1.

The plan of this paper is the following. In Section 2, we shall state and prove the
commutative type properties of the fractional sum and difference operators. We
shall also introduce and develop properties for a characteristic function, F (t, ν, α),
which plays a role analogous to that of the exponential function for finite difference
equations. In Section 3, we introduce the ν-th (0 < ν ≤ 1) order fractional dif-
ference equation with an initial condition; employing the commutativity properties
of Section 2, we shall construct an equivalent summation equation. Further, we
shall solve an initial value problem for a nonlinear equation. We formally produce
a series solution of a linear equation with constant coefficients. Finally, we shall
focus on the half-order linear equation with constant coefficients and provide two
more methods of solution: a method of undetermined coefficients and a transform
method.

2. Preliminaries

Theorem 2.1. For any ν > 0, the following equality holds:

(2.1) ∆−ν∆f(t) = ∆∆−νf(t) − (t − a)(ν−1)

Γ(ν)
f(a),

where f is defined on Na.
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Proof. First recall the summation by parts formula [6]:

∆s((t − s)(ν−1)f(s)) = (t − σ(s))(ν−1)∆sf(s) − (ν − 1)(t − σ(s))(ν−2)f(s).

Sum by parts to obtain

1
Γ(ν)

t−ν∑
s=a

(t − σ(s))(ν−1)∆sf(s)

=
ν − 1
Γ(ν)

t−ν∑
s=a

(t − σ(s))(ν−2)f(s) +
(t − s)(ν−1)f(s)

Γ(ν)
|t+1−ν
a

=
ν − 1
Γ(ν)

t−ν∑
s=a

(t − σ(s))(ν−2)f(s) +
(ν − 1)(ν−1)f(t + 1 − ν)

Γ(ν)
− (t − a)(ν−1)

Γ(ν)
f(a)

=
1

Γ(ν − 1)

t−(ν−1)∑
s=a

(t − σ(s))(ν−2)f(s) − (t − a)(ν−1)

Γ(ν)
f(a).

Since ∆∆−νf(t) = 1
Γ(ν−1)

∑t−(ν−1)
s=a (t−σ(s))(ν−2)f(s), the desired equality follows.

�

Remark 2.1. Replace ν by ν + 1 in (2.1) and employ Theorem 1.1 to obtain

∆−ν−1∆f(t) = ∆−νf(t) − (t − a)(ν)

Γ(ν + 1)
f(a).

This implies

(2.2) ∆−νf(t) = ∆−ν−1∆f(t) +
(t − a)(ν)

Γ(ν + 1)
f(a).

Remark 2.2. Let p− 1 < ν < p, where p is a positive integer. Theorem 2.1 implies
that

∆∆νf(t) = ∆∆p(∆−(p−ν)f(t)) = ∆p+1(∆−(p−ν)f(t))

= ∆p(∆∆−(p−ν)f(t)) = ∆p[∆−(p−ν)∆f(t) +
(t − a)(p−ν−1)

Γ(p − ν)
f(a)]

= ∆p∆−(p−ν)∆f(t) + ∆p (t − a)(p−ν−1)

Γ(p − ν)
f(a)

= ∆ν∆f(t) +
(t − a)(−ν−1)

Γ(−ν)
f(a).

So we conclude that (2.1) is valid for any real number ν.

Theorem 2.2. For any real number ν and any positive integer p, the following
equality holds:

(2.3) ∆−ν∆pf(t) = ∆p∆−νf(t) −
p−1∑
k=0

(t − a)(ν−p+k)

Γ(ν + k − p + 1)
∆kf(a),

where f is defined on Na.
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Proof. We replace f by ∆f in (2.1):

∆−ν∆2f(t) = ∆∆−ν∆f(t) − (t − a)(ν−1)

Γ(ν)
∆f(a)

= ∆[∆∆−νf(t) − (t − a)(ν−1)

Γ(ν)
f(a)] − (t − a)(ν−1)

Γ(ν)
∆f(a)

= ∆2∆−νf(t) − (t − a)(ν−2)

Γ(ν − 1)
f(a) − (t − a)(ν−1)

Γ(ν)
∆f(a)

= ∆2∆−νf(t) −
1∑

k=0

(t − a)(ν−2+k)

Γ(ν + k − 1)
∆kf(a).

Repeated iterations give the desired result. �

Remark 2.3. Again replace ν by ν + p in (2.3) and employ Theorem 1.1 to obtain

(2.4) ∆−νf(t) = ∆−ν−p∆pf(t) +
p−1∑
k=0

(t − a)(ν+k)

Γ(ν + k + 1)
∆kf(a).

Theorem 2.3. Let p be a positive integer and let ν > p. Then

(2.5) ∆p[∆−νf(t)] = ∆−(ν−p)f(t).

Proof. By the definition of the fractional sum,

∆−νf(t) =
1

Γ(ν)

t−ν∑
s=a

(t − σ(s))(ν−1)f(s),

we see that

∆p−1∆−νf(t) =
1

Γ(ν − p + 1)

t−(ν−p+1)∑
s=a

(t − σ(s))(ν−p)f(s) = ∆−(ν−p)−1f(t),

since ν > p. Apply the difference operator to each side of the above equation to
obtain

∆p[∆−νf(t)] = ∆[∆p−1−νf(t)].
Apply (2.1) with ν replaced by ν − p + 1 to obtain

∆p[∆−νf(t)] = ∆p−1−ν [∆f(t)] +
(t − a)(ν−p)

Γ(ν + 1 − p)
f(a).

Apply (2.2) with ν replaced by ν − p and (2.5) is proved. �

Recall [6] that for linear difference equations with constant coefficients, the family
of functions (1 + α)t plays the same role that the family of functions eαt plays for
linear ordinary differential equations with constant coefficients. Miller and Ross
[8] employ the family of functions D−νeαt in a similar role in their study of linear
fractional differential equations with constant coefficients. We develop fundamental
properties for a family of functions

F (t, ν, α) = ∆−ν(1 + α)t,

where ν is any real number so that Γ(ν) is defined. Technically we should write

F (t, ν, α; a) = ∆−ν((1 + α)t; a),

but we continue the convention to suppress notational dependence on a.
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Theorem 2.4. Assume that the following factorial functions are defined:
(i) F (t, ν, α) = αF (t, ν + 1, α) + (t−a)(ν)

Γ(ν+1) .
(ii) ∆tF (t, ν + 1, α) = F (t, ν, α), where ∆t denotes the forward difference operator
in t.
(iii) ∆p

t F (t, ν + p, α) = F (t, ν, α), for p = 0, 1, 2, . . . .
(iv) ∆µF (t, ν, α) = F (t, ν − µ, α), where p − 1 < µ ≤ p.
(v) ∆−µF (t, ν, α) = F (t, ν + µ, α).
(vi) F (t − a, ν, α) = (1 + α)−aF (t, ν, α).

Proof. (i) Let f(t) = (1 + α)t. Then the formula (2.2) in Remark 2.1 implies that

∆−ν(1 + α)t = ∆−ν−1∆(1 + α)t +
(t − a)(ν)

Γ(ν + 1)
= ∆−ν−1α(1 + α)t +

(t − a)(ν)

Γ(ν + 1)
.

Hence we have F (t, ν, α) = αF (t, ν + 1, α) + (t−a)(ν)

Γ(ν+1) .
(ii) Employ (2.1) with f(t) = (1 + α)t, and

αF (t, ν, α) = ∆F (t, ν, α) − (t − a)(ν−1)

Γ(ν)
.

Now, (ii) follows from (i).
(iii) Employ (2.3) and (2.4) with f(t) = (1 + α)t to obtain the following property
for F (t, ν, α):

∆p
t F (t, ν + p, α) = F (t, ν, α), for p = 0, 1, 2, . . . .

(iv) Apply the definition of the fractional difference operator, Theorem 1.1 and
(iii), respectively:

∆µF (t, ν, α) = ∆p∆−(p−µ)F (t, ν, α)

= ∆p∆−(p−µ)∆−ν(1 + α)t = ∆p∆−(p−µ+ν)(1 + α)t

= ∆pF (t, p − µ + ν, t) = F (t, ν − µ, t).

(v) This is a consequence of Theorem 1.1.
(vi) This is a simple consequence of the linearity of the fractional sum and difference
operators. �

3. Existence result for an initial value problem

In this section, we introduce a nonlinear fractional difference equation with an
initial condition and obtain the existence and uniqueness of a solution.

Consider the following nonlinear fractional difference equation with an initial
condition:

∆νy(t) = f(t + ν − 1, y(t + ν − 1)), t = 0, 1, 2, . . . ,(3.1)

∆ν−1y(t)|t=0 = a0,(3.2)

where ν ∈ (0, 1], f is a real-valued function, and a0 is a real number. Note that the
solution, y(t), if it exists, is defined on Nν−1.

First, we construct a summation equation that is equivalent to the IVP (3.1)–
(3.2). Apply the ∆−ν operator to each side of (3.1) to obtain

(3.3) ∆−ν∆νy(t) = ∆−νf(t + ν − 1, y(t + ν − 1)), t = ν, ν + 1, . . . .



986 FERHAN M. ATICI AND PAUL W. ELOE

Apply Theorem 1.1 to the right-hand side of (3.3) to obtain

∆−ν∆νy(t) = ∆−ν∆∆−(1−ν)y(t) = ∆∆−ν∆−(1−ν)y(t) − t(ν−1)

Γ(ν)
y(ν − 1)

= ∆−νf(t + ν − 1, y(t + ν − 1)).

So, for t ∈ Nν−1 we have

(3.4) y(t) =
t(ν−1)

Γ(ν)
a0 +

1
Γ(ν)

t−ν∑
s=0

(t − σ(s))(ν−1)f(s + ν − 1, y(s + ν − 1)).

The recursive iteration to this sum equation implies that (3.4) represents the unique
solution of the IVP (3.1)–(3.2).

We close with three examples in which techniques are exhibited to solve discrete
fractional equations with constant coefficients.

Example 3.1. Consider

∆νy(t) = λy(t + ν − 1), t = 0, 1, 2, . . . ,(3.5)

∆ν−1y(t)|t=0 = a0.(3.6)

Note that the solution is defined on Nν−1 and ∆ν−1y(t)|t=0 = y(ν − 1) since
(−ν)(−ν) = Γ(1 − ν). So the IVP (3.5)–(3.6) is equivalent to the IVP

∆νy(t) = λy(t + ν − 1), t = 0, 1, 2, ...,

y(ν − 1) = a0.

By (3.4), the solution of the IVP (3.5)–(3.6) is a solution of the summation equation

y(t) =
t(ν−1)

Γ(ν)
a0 +

λ

Γ(ν)

t−ν∑
s=0

(t − σ(s))(ν−1)y(s + ν − 1).

We employ the method of successive approximations. Set

y0(t) =
t(ν−1)

Γ(ν)
a0,

ym(t) = y0(t) +
λ

Γ(ν)

t−ν∑
s=0

(t − σ(s))(ν−1)ym−1(s + ν − 1)

= y0(t) + λ∆−νym−1(t + ν − 1),
m = 1, 2, . . . .

Apply the power rule (Lemma 1.1) to show that

y1(t) = y0(t) + λ∆−νy0(t + ν − 1) = a0

(
t(ν−1)

Γ(ν)
+ λ

(t + ν − 1)(2ν−1)

Γ(2ν)

)
.

With repeated applications of the power rule it follows inductively that

ym(t) = a0

m∑
i=0

λi

Γ((i + 1)ν)
(t + (i − 1)(ν − 1))(iν+ν−1),

m = 0, 1, 2, . . . .
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Formally, take the limit m → ∞ to obtain

(3.7) y(t) = a0

∞∑
i=0

λi

Γ((i + 1)ν)
(t + (i − 1)(ν − 1))(iν+ν−1).

One immediate observation can be made. Set ν = 1. Then y(t) = a0

∑∞
i=0

λi

i! t(i).
Since the IVP (3.5)–(3.6) with ν = 1 has the unique solution a0(1 + λ)t, we obtain
(1 + λ)t =

∑∞
i=0

λi

i! t
(i). This equality appears as a special case of [3, Lemma 4.4]

for a time scale T = Z, the set of integers.

Example 3.2. Consider the following half-order difference equation with constant
coefficients:

∆1/2y(t) + a∆0y(t − 1/2) = 0, t = 0, 1, 2, . . . .

We shall employ a method of undetermined coefficients as motivated by Miller and
Ross [8]. Assume that a solution has the form

y(t) = AF (t, 0, λ) + F (t,−1/2, λ).

Note the y is defined on N−1/2. Substitute y(t) into the equation to obtain

(3.8) ∆1/2y(t) + a∆0y(t − 1/2) = A∆1/2(1 + λ)t + ∆1/2∆1/2(1 + λ)t

+ aA(1 + λ)−1/2(1 + λ)t + a(1 + λ)−1/2∆1/2(1 + λ)t.

Before we continue and simplify (3.8), we shall perform the following calculation
for the sake of clarity. We shall show that ∆1/2∆1/2(1+λ)t = λ(1+λ)t. Indeed, it
follows from the definition of the fractional difference, Theorem 2.1 and the power
rule that

∆1/2∆1/2(1 + λ)t = ∆1/2∆∆−1/2(1 + λ)t

= ∆1/2

(
∆−1/2∆(1 + λ)t +

(t + 1/2)(−1/2)

Γ(1/2)
(1 + λ)−1/2

)

= ∆∆−1/2∆−1/2∆(1 + λ)t + ∆1/2

(
(t + 1/2)(−1/2)

Γ(1/2)
(1 + λ)−1/2

)

= λ(1 + λ)t + ∆∆−1/2

(
(t + 1/2)(−1/2)

Γ(1/2)
(1 + λ)−1/2

)

= λ(1 + λ)t.

Now return to (3.8):

∆1/2y(t) + a∆0y(t − 1/2) = ∆1/2(1 + λ)t
(
A + a(1 + λ)−1/2

)

+ (1 + λ)t
(
λ + Aa(1 + λ)−1/2

)

= (1 + λ)−1/2F (t,−1/2, λ)
(
A(1 + λ)1/2 + a

)

+ (1 + λ)−1/2F (t, 0, λ)
(
λ(1 + λ)1/2 + Aa

)

= (1 + λ)−1/2F (t,−1/2, λ)
(
A(1 + λ)1/2 + a

)

+ A(1 + λ)−1/2F (t, 0, λ)
(
A−1λ(1 + λ)1/2 + a

)
.
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Set P (x) =
√

x(1 + x) + a. Set λ = A2. Then (3.8) reduces to

∆1/2y(t) + a∆0y(t − 1/2) = (1 + λ)−1/2P (λ)
(
F (t,−1/2, λ) +

√
λF (t, 0, λ)

)
.

Thus, if λ is a root of P (x) = 0, then

y(t) =
√

λF (t, 0, λ) + F (t,−1/2, λ)

is a solution of the discrete fractional equation for t = −1/2, 1/2, 3/2, . . . . This
completes the illustration of the method of a characteristic equation.

For the third solution method, we shall employ the R-transform method to solve
the half-order difference equation with initial condition (3.1)–(3.2). For the sake of
self-containment, we provide basic definitions and properties.

The discrete transform (R-transform) is defined by

Rt0(f(t))(s) =
∞∑

t=t0

(
1

s + 1

)t+1

f(t),

where f is defined on Nt0 . The R-transform is the Laplace transform on the time
scale of integers [5] (see also [4]), and it is not intended to be the more commonly
employed z-transform.

Lemma 3.1 ([1]). For 0 < ν < 1 and the function f defined for ν − 1, ν, ν + 1, . . . ,

R0(∆νf(t))(s) = sνRν−1(f(t)) − f(ν − 1).

Lemma 3.2. Let λ be any real number. Then
(i) R−1/2F (t,−1/2, λ) = R−1/2∆1/2(1 + λ)t =

√
s

s−λ ,
(ii) R−1/2F (t, 0, λ) = R−1/2(1 + λ)t = 1√

λ+1(s−λ)
.

Example 3.3. Apply the R0-transform to each side of

∆1/2y(t) + a∆0y(t − 1/2) = 0, t = 0, 1, 2, . . . ,

where a is any nonpositive real number. Then by Lemma 3.1, it follows that
√

sR−1/2y(t) − y(−1/2) +
1√

s + 1
R−1/2y(t) = 0.

In particular,

(3.9) R−1/2y(t) =
a0

√
s + 1√

s(s + 1) + a
.

Set α =
√

a2 + 1/22 − 1/2 and β = 1/2 +
√

a2 + 1/22. Then

a0

√
s + 1√

s(s + 1) + a
=

a0

α + β

(
(1 + α)

√
s

s − α
− (1 − β)

√
s

s + β
− a

√
s + 1

s − α
+

a
√

s + 1
s + β

)
.

Apply Lemma 3.2 to each side of (3.9) (where of course we use the calculation above
for the right-hand side of (3.9)) to obtain

y(t) =
a0

α + β

(
(α + 1)F (t,−1/2, α) − a

√
α + 1F (t, 0, α)

)

+
a0

α + β

(
(β − 1)F (t,−1/2,−β) + a

√
1 − βF (t, 0,−β)

)
.

Note that x = β satisfies the equation
√

x(x − 1)+a = 0. So this implies that λ1 =
β − 1 and λ2 = −β are the roots of the characteristic equation

√
x(1 + x) + a = 0
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that we obtained in Example 3.2. Employing these observations and the relation
α + 1 = β, we can write the solution in the following form:

y(t) =
a0β

2β − 1

(
F (t,−1/2, β − 1) +

√
β − 1F (t, 0, β − 1)

)

+
a0(β − 1)
2β − 1

(
F (t,−1/2,−β) +

√
−βF (t, 0,−β)

)
.
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