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UNIFORMLY CONVEX FUNCTIONS ON BANACH SPACES

J. BORWEIN, A. J. GUIRAO, P. HÁJEK, AND J. VANDERWERFF

(Communicated by N. Tomczak-Jaegermann)

Abstract. Given a Banach space (X,‖ · ‖), we study the connection between
uniformly convex functions f : X → R bounded above by ‖ · ‖p and the
existence of norms on X with moduli of convexity of power type. In particular,
we show that there exists a uniformly convex function f : X → R bounded
above by ‖ · ‖2 if and only if X admits an equivalent norm with modulus of
convexity of power type 2.

1. Introduction

Uniformly convex functions on Banach spaces were introduced by Levitin and
Poljak in [10]. Their properties were studied in depth by Zălinescu [13], and then
later Azé and Penot [1] studied their duality with uniformly smooth convex func-
tions. The monograph [14] provides a systematic development of these topics. Ad-
ditionally, related properties of convex functions and their applications have been
studied in papers such as [2, 3, 4, 5]. In particular, [3] examines various properties
of ‖ · ‖r when ‖ · ‖ is a uniformly convex norm. In this note, we will present a
related result that determines when functions of the form f = ‖ · ‖r are uniformly
convex. We also examine a more general converse problem: if f : X → R is uni-
formly convex and bounded above by ‖ · ‖r, does X admit a norm with a modulus
of convexity of power type related to r?

We work with a real Banach space (X,‖ · ‖) with dual X∗, and let BX and SX

denote the closed unit ball and unit sphere respectively. The modulus of convexity
of a norm ‖ · ‖ on X is defined for ε ∈ [0, 2] by

δ‖·‖(ε) = inf
{

1 − 1
2
‖x + y‖ : x, y ∈ SX , ‖x − y‖ ≥ ε

}
.

The norm ‖·‖ is called uniformly convex if δ‖·‖(ε) > 0 for all ε ∈ (0, 2]; additionally,
we say that ‖·‖ has modulus of convexity of power type p if there exists C > 0 so
that δ‖·‖(ε) ≥ Cεp for ε ∈ [0, 2]. Note that from [11] it follows that p ≥ 2. The
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modulus of smoothness of the norm ‖ · ‖ is defined for τ > 0 by

ρ‖·‖(τ ) = sup
{
‖x + τy‖ + ‖x − τy‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
.

The norm ‖ · ‖ is called uniformly smooth if limτ→0+ ρ‖·‖(τ )/τ = 0; additionally,
we say that ‖·‖ has modulus of smoothness of power type q if there exists C > 0
such that ρ‖·‖(τ ) ≤ Cτ q for τ > 0. It follows also from [11] that q ≤ 2. See [6,
Chapter IV] for more information on these notions.

We now introduce the like-named concepts for convex functions whose definitions
are different from—but motivated by—the norm cases. Given a convex function f :
X → (−∞, +∞] we define its modulus of convexity as the function δf : (0, +∞) →
[0, +∞] given by

δf (t) :=inf
{

1
2
f(x)+

1
2
f(y)−f

(
x + y

2

)
: ‖x − y‖=t, x, y ∈ dom f

}
, t>0,

where the infimum over the empty set is +∞. We say that f is uniformly convex
when δf (t) > 0 for all t > 0; additionally, we say that f has a modulus of convexity
of power type p if there exists C > 0 so that δf (t) ≥ Ctp for all t > 0.

Similarly we consider the modulus of smoothness of the convex function f : X →
(−∞, +∞) as the function ρf : (0, +∞) → [0, +∞] defined by

ρf (t) := sup
{

1
2
f(x) +

1
2
f(y) − f

(
x + y

2

)
: ‖x − y‖ = t

}
, t > 0.

We will say f is uniformly smooth if limt→0+ ρf (t)/t = 0; additionally we say that
f has a modulus of smoothness of power type q if there is a constant C > 0, so that
ρf (t) ≤ Ctq for all t > 0.

This terminology may cause some confusion, because, for example, f = ‖·‖ is
never uniformly convex as a function, even when ‖·‖ is a uniformly convex norm.
Therefore, it is important to note the context in which the terms are used. More-
over, the concepts of uniform smoothness and uniform convexity for functions are
sometimes defined using the gage of uniform convexity and gage of uniform smooth-
ness respectively as found in [14]. It is important to note that these alternate
definitions using the respective gages are equivalent to those just given; cf. [13,
Remark 2.1] and [14, p. 205].

In contrast to the situation for norms, neither the restriction p ≥ 2 for the
modulus of convexity of a convex function nor q ≤ 2 for the modulus of smoothness
of a convex function are necessary. To see this, consider an indicator function of a
single point and a constant function respectively.

It is also instructive to consider the function f = | · |r on the real line where
r > 1 is fixed. For 1 < r ≤ 2, one can check that f ′ satisfies an (r − 1)-Hölder
condition. Then using the Mean Value Theorem, it follows that f has a modulus
of smoothness of power type r. On the other hand, for t > 0, when taking x = t

2 ,
y = − t

2 , we have ρf (t) ≥ 1
2

(
t
2

)r + 1
2

(
t
2

)r = 1
2r tr. Hence f does not have a modulus

of smoothness of power type q where q < r. In the case r > 2, it is straightforward
to check that f is not uniformly smooth. Dually, but certainly not trivially, when
r ≥ 2, f is uniformly convex with modulus of convexity of power type r. The next
section will elaborate on results of this nature in a more general setting.
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Finally, the Fenchel conjugate of f : X → (−∞, +∞] is the function f∗ : X∗ →
[−∞, +∞] defined by

f∗(x∗) = sup{x∗(x) − f(x) : x ∈ X}, x∗ ∈ X∗.

It is through this concept that duality between uniform convexity and uniform
smoothness is studied in the context of convex functions; see [1, 14].

2. Uniform convexity of functions and norms

This section will demonstrate for 2 ≤ p < ∞ that f = ‖ · ‖p is uniformly convex
if and only if the norm ‖ · ‖ has modulus of convexity of power type p.

Lemma 2.1. Let 0 < r ≤ 1. Then |tr − sr| ≤ |t − s|r for all s, t ∈ [0,∞).

Proof. For x ≥ 0 we have (1 + x)r ≤ 1 + xr (see [12, Example 4.20]). Setting
x = (t− s)/s with t ≥ s > 0, and then multiplying by sr, we get tr ≤ sr + (t− s)r.
The conclusion follows from this. �

Theorem 2.2. For 1 < q ≤ 2, the following are equivalent in a Banach space
(X, ‖·‖).
(a) The norm ‖·‖ has modulus of smoothness of power type q.
(b) The derivative of f = ‖·‖q exists everywhere and satisfies a (q − 1)-Hölder
condition.
(c) The function f = ‖·‖q has modulus of smoothness of power type q.
(d) The function f = ‖·‖q is uniformly smooth.

Proof. (a) ⇒ (b): Assume that ‖·‖ has modulus of smoothness of power type q.
According to [6, Lemma IV.5.1], the norm ‖ · ‖ has (Fréchet) derivative at each
point x ∈ X \ {0}—call it φx—and moreover it satisfies on SX a Hölder condition;
that is, there is C > 0 so that

(2.1) ‖φx − φy‖ ≤ C‖x − y‖q−1 for all x, y ∈ SX .

Let f = ‖·‖q. Then f ′(0) = 0, and f ′(x) = q ‖x‖q−1
φx for x �= 0. Thus if x = 0 or

y = 0, then ‖f ′(x) − f ′(y)‖ ≤ q ‖x − y‖q−1. Let x, y ∈ X \ {0}. Then

f ′(x) − f ′(y) = q ‖x‖q−1 φx − q ‖y‖q−1 φy

= q ‖x‖q−1 (φx − φy) +
(
q ‖x‖q−1 − q ‖y‖q−1 )

φy.(2.2)

Using Lemma 2.1 we also compute

(2.3)
∣∣∣q ‖x‖q−1 − q ‖y‖q−1

∣∣∣ ≤ q
∣∣ ‖x‖ − ‖y‖

∣∣q−1≤ q ‖x − y‖q−1
.

We now work on an estimate for q ‖x‖q−1 ‖φx − φy‖. We may and do assume
that 0 < ‖y‖ ≤ ‖x‖. If ‖y‖ ≤ ‖x‖ /2, then

(2.4) q ‖x‖q−1 ‖φx − φy‖ ≤ 2q ‖x‖q−1 ≤ q2q ‖x − y‖q−1 .

Further, assume that ‖y‖ ≥ ‖x‖ /2. Consider x′ = λx where λ = ‖y‖ / ‖x‖, so that
‖x′‖ = ‖y‖. Then

(2.5) ‖x′ − y‖ ≤ ‖x′ − x‖ + ‖x − y‖ = ‖x‖ − ‖y‖ + ‖x − y‖ ≤ 2 ‖x − y‖ .
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Now let α = ‖y‖. Observe that φx and φy are also support functionals for α−1x′

and α−1y respectively. Applying (2.1), the fact that ‖x‖ ≤ 2α, and (2.5), we obtain

‖φx − φy‖ ≤ C‖α−1x′ − α−1y‖q−1 ≤ C

αq−1
‖x′ − y‖q−1

≤ C2q−1

‖x‖q−1 (2‖x − y‖)q−1 =
C4q−1

‖x‖q−1
‖x − y‖q−1.

Consequently, q ‖x‖q−1 ‖φx − φy‖ ≤ C4q−1q ‖x − y‖q−1. This inequality and (2.4)
show there exists K > 0 such that

(2.6) q ‖x‖q−1 ‖φx − φy‖ ≤ K ‖x − y‖q−1 for all x, y ∈ X \ {0}.

Combining (2.2), (2.3) and (2.6) shows that f ′ satisfies a (q − 1)-Hölder condition.
(b) ⇒ (c) follows from [14, Corollary 3.5.7] (see also [6, Lemma V.3.5]) and

(c) ⇒ (d) is trivial, so we prove (d) ⇒ (a). Suppose ‖·‖ does not have modulus
of smoothness of power type q. According to [6, Lemma IV.5.1] there exist xn,
yn ∈ X and ε > 0 such that xn �= yn, max{‖xn‖, ‖yn‖} ≥ ε and

‖φxn
− φyn

‖ ≥ n ‖xn − yn‖q−1 for all n ∈ N.

This implies ‖xn − yn‖ → 0. Consequently, there exists N ∈ N so that

min{‖xn‖, ‖yn‖} ≥ ε/2 for all n ≥ N.

Now put x̃n = xn/ ‖xn‖ and ỹn = yn/ ‖yn‖ for n ≥ N . Then, for n ≥ N ,

‖x̃n − ỹn‖ ≤
∥∥∥∥ xn

‖xn‖
− yn

‖xn‖

∥∥∥∥ +
∥∥∥∥ yn

‖xn‖
− yn

‖yn‖

∥∥∥∥ ≤ 4
ε
‖xn − yn‖.

Let δn = ‖xn − yn‖ and define un = 1
δn

√
n
x̃n and vn = 1

δn
√

n
ỹn for n ≥ N . Then

‖un − vn‖ ≤ 4
ε
√

n
→ 0. However

‖f ′(un) − f ′(vn)‖ =
∥∥∥q ‖un‖q−1 φun

− q ‖vn‖q−1 φvn

∥∥∥
=

∥∥∥q ‖un‖q−1 φxn
− q ‖vn‖q−1 φyn

∥∥∥
=

q

δq−1
n n

q−1
2

‖φxn
− φyn

‖

≥ q

δq−1
n n

q−1
2

(
nδq−1

n

)
= qn

3−q
2 → ∞.

Consequently, f ′ is not uniformly continuous, and so [14, Theorem 3.5.6] (see also
[6, Lemma V.3.5]) shows that f = ‖·‖q is not a uniformly smooth function. �

The results in [1] enable us to derive the dual version of Theorem 2.2 for uniformly
convex functions.

Theorem 2.3. Let (X, ‖·‖) be a Banach space, and let 2 ≤ p < ∞. Then the
following are equivalent.
(a) The norm ‖·‖ on X has modulus of convexity of power type p.
(b) The function f = ‖·‖p has modulus of convexity of power type p.
(c) The function f = ‖·‖p is uniformly convex.
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Proof. (a) ⇒ (b): Let us assume that ‖·‖ has modulus of convexity of power type
p. Then the modulus of smoothness of the dual norm on X∗, which we denote in
this proof as ‖·‖∗, is of power type q, where 1

p + 1
q = 1; see [6, Proposition IV.1.12].

By Theorem 2.2 the function g = 1
q ‖·‖

q
∗ has modulus of smoothness of power type

q. The Fenchel conjugate of g is g∗ = 1
p ‖·‖p; see [1, 14]. Now g∗—and hence

‖·‖p—has a modulus of convexity of power type p according to [1] (see also [14,
Corollary 3.5.11]).

(b) ⇒ (c) is trivial, so we prove (c) ⇒ (a). Assume that f = ‖·‖p is a uniformly
convex function. Then [1] shows that the Fenchel conjugate f∗ (and hence ‖·‖q

∗)
is a uniformly smooth function. According to Theorem 2.2, ‖·‖∗ has modulus of
smoothness of power type q; therefore ‖·‖ has modulus of convexity of power type
p; see [6, Proposition IV.1.12]. �

We conclude this section by showing that the spaces with nontrivial uniformly
convex functions are those that admit equivalent uniformly convex norms.

Theorem 2.4. Let (X, ‖·‖) be a Banach space. Then the following are equivalent.
(a) There exists a continuous uniformly convex function f defined on BX .
(b) X admits an equivalent uniformly convex norm.
(c) There exist p ≥ 2 and an equivalent norm |·| on X so that the function f = |·|p
is uniformly convex.

Proof. (a) ⇒ (b): By replacing f with the function x 	→ f(x)+f(−x)
2 we may and do

assume that f is symmetric, and a suitable shift guarantees that f(0) = 0. It then
follows that f(x) ≥ 0 for all x ∈ X. Because f is convex and continuous on BX , we
can fix ε ∈ (0, 1) such that f is Lipschitz on εBX (see [14, Corollary 2.2.13]). Let
us consider the norm |||·||| whose unit ball is B = {x ∈ BX : f(x) ≤ δf (ε)}. The
continuity of f at 0 implies 0 ∈ intB. Moreover, B ⊂ εBX . This follows because

f(x) ≥ 2
[
1
2
f(x) +

1
2
f(0) − 1

2
f

(x

2

)]
≥ 2δf (ε) > δf (ε) if ‖x‖ > ε.

Thus, |||·||| is an equivalent norm on X.
Consider xn, yn ∈ BX such that |||xn||| = |||yn||| = 1 and |||xn + yn||| → 2.

Because f is Lipschitz on B, we have that f
(

xn+yn

2

)
→ δf (ε). Consequently

1
2f(xn) + 1

2f(yn) − f
(

xn+yn

2

)
→ 0. Thus, the uniform convexity of f ensures that

‖xn − yn‖ → 0 and hence |||xn − yn||| → 0.
(b) ⇒ (c): From (b) it follows that X is superreflexive (see for instance [6,

Theorem IV.4.1]). Then, there exist p ≥ 2 and an equivalent norm |·| whose
modulus of convexity is of power type p (see [6, Theorem IV.4.8]). Consequently,
Theorem 2.3 ensures that the function f = |·|p is uniformly convex.

(c) ⇒ (a): This is trivial. �

3. Growth rates of uniformly convex functions and renorming

In this section we will construct a uniformly convex norm whose modulus of
convexity is related to the growth rate of a given uniformly convex function on the
Banach space. We begin with some preliminary results.

Lemma 3.1. Let ‖·‖ be a norm on a Banach space X. Consider x, y ∈ X such
that ‖x‖ = ‖y‖, and ‖x − y‖ ≥ δ where 0 < δ ≤ 2 ‖x‖. Then inft≥0 ‖x − ty‖ ≥ δ/2.
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Proof. Assume that ‖x − t0y‖ < δ/2 for some t0 ≥ 0. Then |1 − t0| ‖y‖ < δ/2 and
so

‖x − y‖ ≤ ‖x − t0y‖ + |1 − t0| ‖y‖ < δ,

which is a contradiction. �

The next lemma will be used later to estimate the modulus of convexity of a
norm constructed by using level sets of a symmetric uniformly convex function.

Lemma 3.2. Let N ∈ N and consider norms ‖·‖N , ‖·‖N+1,. . . on (X, ‖·‖) satisfying

(3.1)
1

2n+1
‖·‖ ≤ ‖·‖n ≤ 1

2n
‖·‖ for n ≥ N.

For each n ≥ N , suppose there exists dn > 0 so that∥∥∥∥x + y

2

∥∥∥∥
n

≤ 1 − dn, whenever x, y ∈ X, ‖x‖n = ‖y‖n = 1 and ‖x − y‖ ≥ 1.

Then there exist an equivalent norm |·| on X and M ∈ N so that

δ|·|(t) ≥
dn

n2
whenever 2M+1−n ≤ t ≤ 2 and n ≥ M.

Proof. Put M = max{4, N}, and define |·| by

|·| =
∞∑

m=M

2m+1

m2
‖·‖m .

Observe that |·| ≤
∑∞

m=M
2m+1

m22m ‖·‖ ≤
∑∞

m=4
2

m2 ‖·‖ ≤ ‖·‖; then

(3.2)
1

2M
‖·‖ ≤ 1

M2
‖·‖ ≤ 2M+1

M2
‖·‖M ≤ |·| ≤ ‖·‖ .

Fix n ≥ M and 2M+1−n ≤ t ≤ 2. Consider x, y ∈ X such that |x| = |y| = 1 and
|x − y| = t. Because |x| = |y| = 1, it follows from (3.2) that

(3.3) 1 ≤ ‖x‖ ≤ 2M and 1 ≤ ‖y‖ ≤ 2M .

We assume, without loss of generality, ‖x‖n ≤ ‖y‖n. Now let us denote a = ‖x‖−1
n

and b = ‖y‖−1
n . It follows from (3.1) and (3.3) that 2n−M ≤ b ≤ a ≤ 2n+1, which

in turn implies |ax − ay| ≥ 2.
According to Lemma 3.1, |ax − by| ≥ 1, and hence ‖ax − by‖ ≥ 1. Thus we can

estimate ∥∥∥∥ax + ay

2

∥∥∥∥
n

≤
∥∥∥∥ax + by

2

∥∥∥∥
n

+
1
2
(a − b) ‖y‖n

≤ 1
2
‖ax‖n +

1
2
‖by‖n +

1
2
(a − b) ‖y‖n − dn

=
a

2
(‖x‖n + ‖y‖n) − dn.

This inequality implies

(3.4)
∥∥∥∥x + y

2

∥∥∥∥
n

≤ 1
2
‖x‖n +

1
2
‖y‖n − dn

a
.



UNIFORMLY CONVEX FUNCTIONS ON BANACH SPACES 1087

Thus, using (3.4) and the triangle inequality for ‖·‖j when j �= n, and then that
a ≤ 2n+1, we obtain∣∣∣∣x + y

2

∣∣∣∣ ≤
∞∑

j=M

2j+1

2j2
‖x‖j +

∞∑
j=M

2j+1

2j2
‖y‖j −

2n+1dn

n2a
≤ 1 − dn

n2
,

which finishes the proof. �
Lemma 3.3. Let (X, ‖·‖) be a Banach space and let f : X → (−∞, +∞) be
a symmetric, continuous, and uniformly convex function, with f(0) < 0. Then
f(x) > 0 whenever x ∈ X and ‖x‖ > max{−f(0)/(2δf (1)), 1}.

Proof. The symmetry of f implies that f ≥ f(0). Also, the continuity and uniform
convexity of f guarantees that f is also convex. Now, take any x ∈ X as in the
conclusion of the lemma. Then

δf (1) ≤ 1
2
f(0) +

1
2
f

(
x

‖x‖

)
− f

(
x

2 ‖x‖

)
≤ 1

2
f(0) +

1
2
f

(
x

‖x‖

)
− f (0)

≤ −1
2
f(0) +

1
2

[(
1 − 1

‖x‖

)
f(0) +

1
‖x‖f(x)

]
= − 1

2 ‖x‖f(0) +
1

‖x‖f(x),

and hence, f(x) ≥ ‖x‖ δf (1) + 1
2f(0) > 0. �

Proposition 3.4. Let (X, ‖·‖) be a Banach space and let F : [0, +∞) → [0, +∞)
be a continuous convex function satisfying F (0) = 0. Suppose f : X → R is a
continuous symmetric uniformly convex function satisfying f(x) ≤ F (‖x‖) for all
x ∈ X. Then there exists an equivalent norm |·| on X such that given any γ > 0,
there are constants α > 0 and β > 0 so that

δ|·|(t) ≥
α

F (βt−1)
tγ for 0 < t ≤ 2.

Proof. Because F (0) = 0, the convexity of F ensures that F (λt) ≤ λF (t) for
0 ≤ λ ≤ 1; hence F is nondecreasing on [0, +∞) because it is nonnegative there.
Consequently, F ◦ ‖·‖ is a convex function. According to Lemma 3.3, there exists
N ∈ N so that f(x) ≥ 0 if ‖x‖ ≥ N . Now replace f with [f +F ◦‖·‖]/2. Obviously,
this new f will still be uniformly convex. We have

(3.5) F

(
‖x‖
2

)
≤ 1

2
F (‖x‖) ≤ f(x) ≤ F (‖x‖) whenever ‖x‖ ≥ N.

For n ≥ N , let ‖·‖n be the norm whose unit ball is Bn = {x ∈ X : f(x) ≤ F (2n)}.
It follows from (3.5) that if ‖x‖n = 1, then 2n ≤ ‖x‖ ≤ 2n+1. Consequently,

1
2n+1

‖·‖ ≤ ‖·‖n ≤ 1
2n

‖·‖ .

Let
Mn = sup{f ′

+(u, v) : u, v ∈ X, ‖u‖n = ‖v‖n = 1}.
If u,v are such, we have ‖u‖ ≥ 2n ‖u‖n = 2n ≥ 2N > N and hence

f ′
+(u, v) ≤ f(u + v) − f(u) ≤ f(u + v) ≤ F (‖u + v‖)

≤ F
(
2n+1 ‖u + v‖n

)
≤ F

(
2n+2

)
.(3.6)

Therefore, Mn ≤ F
(
2n+2

)
.

Now consider x, y ∈ X such that ‖x‖n = ‖y‖n = 1 and ‖x − y‖ ≥ 1. We will
verify the hypothesis of Lemma 3.2. Put z = x+y

2 and z′ = x+y
‖x+y‖n

. We observe
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that f(x) = f(y) = f(z′) = F (2n). Then, using the definition of δf (1) and the
convexity of f , we have

δf (1) ≤ 1
2
f(x) +

1
2
f(y) − f

(
x + y

2

)
= f(z′) − f(z)

≤ f ′
+(z′, z′ − z) ≤ Mn ‖z′ − z‖n ,(3.7)

and hence ‖z′ − z‖n ≥ δf (1)/Mn. Therefore

(3.8)
∥∥∥∥x + y

2

∥∥∥∥
n

= 1 − ‖z − z′‖n ≤ 1 − δf (1)
Mn

≤ 1 − δf (1)
F (2n+2)

.

Applying Lemma 3.2, we find an equivalent norm |·| and M ≥ N such that

δ|·|(t) ≥
δf (1)

F (2n+2)
· 1
n2

, whenever n ≥ M and 2M+1−n ≤ t ≤ 2.

Fix any γ > 0. Find n0 > M so large that n−2 ≥ (2−n)γ for all n ≥ n0. Then

δ|·|(t) ≥
δf (1)

F (2n+2)
·
(

1
2n

)γ

whenever n ≥ n0 and 2M+1−n ≤ t ≤ 2.

Let α = δf (1)
(

1
2n0+1

)γ and β = 2n0+3. The previous inequality, along with the
fact that F is nondecreasing, ensures that for 2M+1−n0 ≤ t ≤ 2 we have

δ|·|(t) ≥
δf (1)

F (2n0+2)

(
1

2n0

)γ

≥ δf (1)
F (2n0+3t−1)

(
t

2n0+1

)γ

=
αtγ

F (βt−1)
,

and for 2M+1−n ≤ t ≤ 2M+2−n where n ≥ n0 + 1, we have

δ|·|(t) ≥
δf (1)

F (2n+2)

(
1
2n

)γ

≥ δf (1)
F (2M+4t−1)

(
t

2M+2

)γ

≥ αtγ

F (βt−1)
.

Altogether, δ|·|(t) ≥ α
F (βt−1) t

γ for all 0 < t ≤ 2, as desired. �

Theorem 3.5. Let (X, ‖·‖) be a Banach space, and let p ≥ 2. Suppose f : X → R

is a continuous uniformly convex function such that f(x) ≤ ‖x‖p for all x ∈ X.
Then for any r > p, X admits an equivalent norm with modulus of convexity of
power type r.

Proof. Apply Proposition 3.4 with F (t) = tp. �

Remark 3.6. It should be noted that p < 2 cannot be in Theorem 3.5, since by [14,
Proposition 3.5.8], lim inf‖x‖→∞ f(x)/ ‖x‖2

> 0.

In the case p = 2 we will prove the following sharp result.

Theorem 3.7. Let (X, ‖·‖) be a Banach space. Then there is a continuous uni-
formly convex funtion f : X → R satisfying f ≤ ‖·‖2 if and only if X admits an
equivalent norm with modulus of convexity of power type 2.
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Before proving this theorem, we will present a preliminary lemma, and we also
refer the reader to [7] for some related information about this case.

Lemma 3.8. Let (X, ‖ · ‖) be a Banach space and N ∈ N. Suppose that |·|N ,
|·|N+1,. . . are norms on X such that

(3.9) K ‖·‖ ≤ |·|n ≤ ‖·‖ ,

for some K > 0 and all n ≥ N . Then there exists an equivalent norm |·| such that

δ|·|(t) ≥ lim inf
n→∞

δ|·|n(t), for 0 < t < 2.

Proof. Let us consider a free (i.e., nonprincipal) ultrafilter U on N. Then limU |x|n
exists for each x ∈ X, where limU |x|n = L means that for each ε > 0, there exists
A ∈ U such that | |x|n − L| < ε for all n ∈ A. Now define |·| : X → [0, +∞) by

|x| = lim
U

|x|n , for all x ∈ X.

The definition of |·| together with (3.9) ensures that |·| is an equivalent norm on X.
We will proceed by reductio ad absurdum. Assume there is t ∈ (0, 2) such that

δ|·|(t) < lim inf δ|·|n(t). Since δ|·| is continuous—see [9]—there exists t′ ∈ (t, 2) such
that δ|·|(t′) < lim inf δ|·|n(t). Then, there exist x, y ∈ X and a constant a > 0
such that |x| = |y| = 1, |x − y| ≥ t′ and 1 − |(x + y)/2| < a < lim inf δ|·|n(t). For
n ∈ N, let xn = x/ |x|n and yn = y/ |y|n. By the definition of |·|, there exists A ∈ U
such that |xm − ym|m > t and 1 − |(xm + ym)/2|m < a for all m ∈ A. Therefore
δ|·|m(t) < a < lim inf δ|·|n(t) for all m ∈ A, which yields a contradiction, since U is
free and then A is infinite. �

Proof (of Theorem 3.7). Suppose (X, ‖·‖) admits an equivalent norm |·| that has
modulus of convexity of power type 2. We may and do assume that |·| has modulus
of convexity of power type 2 and satisfies |·| ≤ ‖·‖. According to Theorem 2.3,
f = |·|2 is uniformly convex as desired.

Conversely, suppose f : X → R is a uniformly convex function such that f ≤
‖·‖2. Proceeding as in Theorem 3.4 when F (t) = t2 we obtain norms {‖·‖n}n≥N

satisfying 1
2n+1 ‖·‖ ≤ ‖·‖n ≤ 1

2n ‖·‖, and then (3.8) becomes
∥∥∥∥x + y

2

∥∥∥∥
n

≤ 1 − δf (1)
16

(
1
2n

)2

, whenever ‖x‖n = ‖y‖n = 1 and ‖x − y‖n ≥ 1
2n

.

The previous inequality implies

δ‖·‖n
(2−n) ≥ δf (1)

16
(2−n)2.

According to [8, Corollary 11] there is a universal constant L > 0 such that

δ‖·‖n
(2−n)

(2−n)2
≤ 4L

δ‖·‖n
(η)

η2
for 2−n ≤ η ≤ 2.

Let R = δf (1)
64L ; then the previous two inequalities imply

(3.10) δ‖·‖n
(t) ≥ Rt2 for 2−n ≤ t ≤ 2.
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For each n ≥ N , let us consider the new norm |·|n = 2n ‖·‖n. These new norms
satisfy 1

2 ‖·‖ ≤ |·|n ≤ ‖·‖ and δ|·|n(·) = δ‖·‖n
(·). Let |·| be the norm found for our

|·|N , |·|N+1,. . . in Lemma 3.8. Then (3.10) yields that

δ|·|(t) ≥ lim inf
n→∞

δ|·|n(t) = lim inf
n→∞

δ‖·‖n
(t) ≥ Rt2 for 0 < t ≤ 2,

which finishes the proof. �

It does not appear as though the proof of Theorem 3.7 can be adapted to work
in the case p > 2. This is because the analogue of Figiel’s result ([8, Corollary 11])
is not valid when p > 2. Indeed, if δ‖·‖ has modulus of power type less than p for
some norm ‖·‖, then lim δ‖·‖(ε)/εp → ∞ as ε → 0; hence a Figiel constant does not
exist. However we have not checked whether such a constant exists for the family
of norms ‖·‖n used in Proposition 3.4.
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We thank Professor C. Zălinescu and an anonymous referee for several helpful
comments which led to improvements in both the accuracy and presentation of this
paper.

References
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4. D. Butnariu, A. N. Iusem, and C. Zălinescu, On uniform convexity, total convexity and
convergence of the proximal point and outer Bregman projection algorithms in Banach spaces,
J. Convex Anal. 10 (2003), no. 1, 35–61. MR1999901 (2004e:90161)

5. D. Butnariu and E. Resmerita, Bregman distances, totally convex functions, and a method
for solving operator equations in Banach spaces, Abstr. Appl. Anal. (2006), Art. ID 84919,
39 pp. MR2211675 (2006k:47142)

6. R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach Spaces, Pit-
man Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific
& Technical, Harlow, 1993. MR1211634 (94d:46012)
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