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ON SPACES OF OPERATORS ON C(Q) SPACES
(Q COUNTABLE METRIC SPACE)

CHRISTIAN SAMUEL

(Communicated by Nigel J. Kalton)

Abstract. In this paper we study spaces of nuclear operators N (C(Q)) and
spaces of compact operators K(C(Q)) on spaces of continuous functions C(Q),
where Q is a countable compact metric space, in connection with the C.
Bessaga and A. Pe�lczyński isomorphic classification of these spaces.

We show that the spaces K(C(Q)) [resp. N (C(Q))] and K(C(Q′)) [resp.
N (C(Q′))] are isomorphic if, and only if, C(Q) and C(Q′) are isomorphic. We
show also that N (C(Q)) is not isomorphic to a subspace of K(C(Q)).

1. Notation and terminology

Throughout this paper, the symbols E, F, X, Y, . . . denote Banach spaces. BE

denotes the closed unit ball of E. “Subspace” means closed linear subspace. “Op-
erator” means “bounded linear operator”.

In the sequel we denote α, β, γ, . . . ordinal numbers, ω denotes the first infinite
ordinal and ω1 the first uncountable ordinal. Let α < β be ordinals; then 〈α, β〉
denotes the interval { γ ; α ≤ γ ≤ β } and 〈α, β) denotes the interval { γ ; α ≤ γ <
β } endowed with the order topology. It is a well-known theorem of Mazurkiewicz
and Sierpiński, cf. [5], that every countable compact metric space is homeomorphic
to an interval 〈1, α〉 with ω ≤ α < ω1.

C(α) denotes the space of all continuous scalar-valued functions defined on 〈1, α〉
with the norm ‖x‖ = sup

γ∈〈1,α〉
|x(γ)| and C0(α) is the subspace {x ∈ C(α) ; x(α) =

0 } of C(α). The space of all continuous E-valued functions defined on 〈1, α〉 with
the norm ‖x‖ = sup

γ∈〈1,α〉
‖x(γ)‖ is denoted C(α, E) and C0(α, E) is the subspace

{x ∈ C(α, E) ; x(α) = 0 }. The spaces C(α, E) and C0(α, E) are isomorphic for all
α ∈ 〈ω, ω1〉; cf. [1].

The injective norm on E ⊗ F, denoted by ‖ ‖ε, is given by∥∥∥∥∥
n∑

i=1

xi ⊗ yi

∥∥∥∥∥
ε

= sup

{ ∣∣∣∣∣
n∑

i=1

x∗(xi)y∗(yi)

∣∣∣∣∣ ; x∗ ∈ BE∗ , y∗ ∈ BF∗

}
.

The completion of (E ⊗ F, ‖ ‖ε) is denoted by E ̂̂⊗F.
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The projective norm on E ⊗ F, denoted by ‖ ‖π, is given by

‖u‖π = sup { |ϕ(u)| ; ϕ bounded bilinear form on E × F, ‖ϕ‖ ≤ 1 } .

The completion of (E ⊗ F, ‖ ‖π) is denoted by E⊗̂F.
It is well known that (cf. [2], [3]):
i) given (Ω,S, µ) a measure space, the space L1(µ)⊗̂E may be isometrically

identified with the space L1(µ, E) of Bochner-integrable “functions” from Ω to E,

ii) given K a topological compact space, the space C(K) ̂̂⊗E is isometrically
isomorphic to the space C(K, E) of all continuous E-valued functions defined on
K.

An operator T : E → F is called nuclear if it can be written as the sum of an
absolutely converging series of rank-one operators, i.e., if there are sequences (x∗

n)n

in E∗ and (yn)n in F with
∑

n

‖x∗
n‖ ‖yn‖ < +∞ and such that T (x) =

∑
n

x∗
n(x)yn

for all x ∈ E. Such a series
∑

n

x∗
n ⊗ yn is called a nuclear representation of T ; the

infimum

‖T‖N = inf

{∑
n

‖x∗
n‖ ‖yn‖ ;

∑
n

x∗
n ⊗ yn nuclear representation of T

}
is called the nuclear norm of T. We denote by N (E, F ) the space of nuclear operators
from E to F, N (E) = N (E, E). The space (N (E, F ), ‖ ‖N ) is a Banach space. Also,
L(X, Y ) [resp. K(X, Y )] denotes the space of operators [resp. of compact operators]
from X to Y , L(X) = L(X, X), K(X) = K(X, X).

There exists a closed connection between compact or nuclear operators and ten-
sor products. If E∗ or F has the approximation property, then (cf. [2], [3]):

i) the canonical map from E∗⊗̂F into L(E, F ) is an isomorphism onto N (E, F ),
ii) the canonical map from E∗ ̂̂⊗F into L(E, F ) is an isomorphism onto K(E, F ).
The author is grateful to the referee for helpful comments.

2. The spaces N (C(Q)) and K(C(Q′))

W.B. Johnson has shown in [4] that if either X or Y has a local unconditional
structure, then N (X, Y ) is a proper subset of K(X, Y ). In this section we shall show
that no subspace of K(C(Q′)) is isomorphic to N (C(Q)) whatever the countable
metric compact spaces Q and Q′ are.

Lemma 2.1. Let α be a countable ordinal (ω ≤ α < ω1) and let E be a Banach
space which does not contain a subspace isomorphic to c0 and such that E × E
is isomorphic to a subspace of E. Then every subspace of C(α, E) which does not
contain a subspace isomorphic to c0 is isomorphic to a subspace of E.

Proof. We prove the lemma by a transfinite induction on α. The proof of the initial
case α = ω is essentially the same as the proof of the case ω < α where α is a limit
ordinal. Suppose that α is a limit ordinal which satisfies ω < α < ω1 and that,
for every β ∈ 〈ω, α), every subspace of C(β, E) which does not contain a subspace
isomorphic to c0 is isomorphic to a subspace of E.

Consider a subspace X of C0(α, E) which does not contain a subspace isomorphic
to c0.
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Let ω ≤ α1 < α2 < . . . < αk < . . . < α be a strictly increasing sequence
of ordinal numbers converging to α. If there exists an integer k0 such that X is
isomorphic to a subspace of C(αk0 , E), the conclusion will then follow from the
induction hypothesis.

Assume on the contrary that, for every integer k, X is not isomorphic to a
subspace of C(αk, E). Let ε ∈ ]0, 1[. By a standard procedure using the operators

πk : C0(α, E) → C(αk, E)

defined, for every integer k, by πk(f) = f|〈1,αk〉, we can find a strictly increasing
sequence of integers (kl)l≥1 and a normalized sequence (fl)l≥1 of X such that, for
every integer l ≥ 2, we have ‖πkl−1(fl)‖ ≤ ε

2l
and, for every integer l ≥ 1 and for

every ordinal γ > αkl
, we have ‖fl(γ)‖ ≤ ε

2l
.

It is easy to show that for every integer l0 and for every finite scalar sequence
a1, . . . , al0 we have

(1 − ε) max
1≤l≤l0

|al| ≤
∥∥∥∥∥

l0∑
l=1

alfl

∥∥∥∥∥ ≤ (1 + ε) max
1≤l≤l0

|al|.

So (fl)l≥1 is a normalized basic sequence of X equivalent to the canonical basis of
c0. The assumption that, for every integer k, X is not isomorphic to a subspace of
C(αk, E) leads to a contradiction.

In the case α = ω we have to observe that a subspace X of C0(ω, E) which does
not contain a subspace isomorphic to c0 is isomorphic to a subspace of En for some
integer n, so X is isomorphic to a subspace of E. �

The case where α is a successor ordinal is obvious.
The proof of the following lemma is straightforward.

Lemma 2.2. Every infinite dimensional subspace of (�1∞⊕ . . .⊕�n
∞⊕ . . .)�1contains

a subspace isomorphic to �1.

Theorem 2.3. Let α, β be two countable ordinals; then N (C(α)) is not isomorphic
to a subspace of K(C(β)).

Proof. Suppose that there exists an isomorphism T from N (C0(α)) onto a subspace
of K(C0(β)). We know that N (C0(α)) is isometrically isomorphic to �1⊗̂C0(α) =
�1(N, C0(α)) and K(C0(β)) is isometrically isomorphic to �1

̂̂⊗C0(β) = C0(β, �1).
Let, for every integer n, Xn be a subspace of C0(α) isometric to �n

∞. By Lemma 2.2,
the subspace X = (X1⊕· · ·⊕Xn ⊕· · · )�1 of N (C0(α)) does not contain a subspace
isomorphic to c0, so, by Lemma 2.1 with E = �1, the subspace T (X) of C0(β, �1)
is isomorphic to a subspace of �1. This means that c0 is finitely representable in �1,
which is, of course, false and ends the proof. �

Using the same arguments we can prove

Theorem 2.4. Let Q1, Q2, Q3 and Q4 be four countable compact metric spaces.
Then N (C(Q1), C(Q2)) is not isomorphic to a subspace of K(C(Q3), C(Q4)).
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3. Spaces of compact operators

The isomorphic classification of C(Q) spaces with Q a countable compact metric
space is due to C. Bessaga and A. Pe�lczyński [1]. Let ω ≤ α ≤ β < ω1 be countable
ordinal numbers. Then the spaces C(α) and C(β) are isomorphic if, and only if,
β < αω. Thus, under the conditions ω ≤ α ≤ β < αω < ω1, the spaces K(C(α)) and
K(C(β)) are isomorphic. Conversely we shall show that, if K(C(α)) and K(C(β))
are isomorphic, then the spaces C(α) and C(β) are also isomorphic.

Lemma 3.1. Let α be a countable ordinal (ω ≤ α < ω1) and let E be a Banach
space. If, for every ordinal γ < α, the space C0(α) is not isomorphic to a subspace
of C0(γ, E), then the space C0(αω) is not isomorphic to a subspace of C0(α, E).

Proof. We use ideas of the proof of Lemma 3 in [1]. Suppose that α is a countable
ordinal such that for every ordinal γ < α, the space C0(α) is not isomorphic to a
subspace of C0(γ, E) and C0(αω) is isomorphic to a subspace of C0(α, E); we shall
show that this assumption leads to a contradiction. Let T be an operator from
C0(αω) into C0(α, E) and b be a real number such that, for every f ∈ C0(αω), we
have

‖f‖ ≤ ‖T (f)‖ ≤ b‖f‖ .

Now we fix an integer N and ε ∈ ]0, 1[ such that b < N and
N

N + 1
≤ 1 − ε

1 + ε
.

Let f0 be the function identically equal to 1 on 〈1, αN 〉 and equal to 0 on 〈αN +
1, αω〉. There exists an ordinal γ1 < α such that ‖T (f0)(γ)‖ ≤ ε for every γ1 < γ ≤
α. Let ∆1

β = 〈αN−1β + 1, αN−1(β + 1)〉 for 0 ≤ β < α and

E1 =
{

f ∈ C0(αω) ; ∀ γ > αN , f(γ) = 0 and ∀ 0 ≤ β < α, f is constant on ∆1
β

}
.

It is obvious that E1 is isomorphic to C0(α). There is no subspace of C0(γ1, �1)
isomorphic to C0(α), so there exists f1 ∈ E1 such that ‖f1‖ = 1 and, for every
γ ≤ γ1, we have ‖T (f1)(γ)‖ ≤ ε. We may change f1 to −f1 and suppose that there
exists β1 ∈ 〈0, α) such that, for every λ ∈ ∆1

β1
, we have 1− ε ≤ f1(λ) ≤ 1. We have

T (f1) ∈ C0(α, �1), so we can find γ2 ∈ (γ1, α) such that ‖T (f1)(γ)‖ ≤ ε for every
γ2 < γ < α. This ends the first step of the proof. �

For the second step, let

∆2
β = 〈αN−1β1 + αN−2β + 1, αN−1β1 + αN−2(β + 1)〉

for 0 ≤ β < α and let

E2 =
{

f ∈C0(αω) ; ∀ γ �∈ ∆1
β1

, f(γ)=0 and ∀ 0≤β < α, f is constant on ∆2
β

}
.

The subspace E2 of C0(αω) is isomorphic to C0(α). In the same way as in the
previous case, we can find f2 ∈ E2, ‖f2‖ = 1 and two ordinal numbers 0 ≤ β2 < α,
γ2 < γ3 < α such that ‖T (f2)(γ)‖ ≤ ε for all γ ≤ γ2, ‖T (f2)(γ)‖ ≤ ε for all γ > γ3

and 1 − ε ≤ f2(γ) ≤ 1 for every γ ∈ ∆2
β2

. Repeating this procedure N times we
shall find f0, . . . , fN ∈ C0(αω) and γ1 < γ2 < · · · < γN < α such that :

• ‖f0‖ = . . . = ‖fN‖ = 1,
• ∅ �= f−1

N ([1 − ε, 1]) ⊂ f−1
N−1([1 − ε, 1]) ⊂ · · · ⊂ f−1

1 ([1 − ε, 1]) ⊂ 〈1, αN 〉 =
f−1
0 (1),
• ∀ 1 ≤ k ≤ N, ∀ γ ≤ γk we have ‖T (fk)(γ)‖ ≤ ε,
• ∀ 1 ≤ k ≤ N, ∀ γ > γk we have ‖T (fk−1)(γ)‖ ≤ ε.
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It is obvious that (N + 1)(1− ε) ≤ ‖f0 + · · ·+ fN‖ and ‖T (f0) + · · ·+ T (fN )‖ ≤
b + Nε; hence (N + 1)(1 − ε) ≤ b + Nε, and so N ≤ b. We obtain a contradiction
with b < N , and so the conclusion of the lemma holds.

Theorem 3.2. Let ω ≤ α ≤ β < ω1 be two countable infinite ordinal numbers and
let E be a Banach space which does not contain a subspace isomorphic to c0. Then
C(β) is isomorphic to a subspace of C(α, E) if, and only if, C(β) is isomorphic to
a subspace of C(α).

Proof. It is obvious that if C(β) is isomorphic to a subspace of C(α), then C(β) is
isomorphic to a subspace of C(α, E).

For the converse we introduce two sets of ordinal numbers:

I1 = {α ∈ 〈ω, ω1) ; ∀ γ < α, C(α) is not isomorphic to a subspace of C(γ) } ,

I2 = {α ∈ 〈ω, ω1) ; ∀ γ < α, C(α) is not isomorphic to a subspace of C(γ, E) }.
We shall prove that I1 = I2. It is obvious that I2 ⊂ I1. The space E does not
contain a subspace isomorphic to c0, so, for every integer n, the space En does not
contain a subspace isomorphic to c0; therefore ω ∈ I2. Now, suppose that I2 is a
proper subset of I1. Let α1 be the least element of I1 \ I2. We have ω < α1 and for
every β ∈ I1, β < α1 implies β ∈ I2. The ordinal α1 �∈ I2, so there exists an ordinal
γ1 < α1 be such that C(α1) is isomorphic to a subspace of C(γ1, E). Let

α2 = min { γ < α1 ; C(α1) is isomorphic to a subspace of C(γ, E) } .

We have α2 ≤ γ1 and C(α1) is isomorphic to a subspace of C(α2, E). Let us show
that α2 ∈ I1. If this is not the case, there exists an ordinal γ2 < α2 such that C(α2)
is isomorphic to a subspace of C(γ2). Therefore C(α2, E) is isomorphic to a subspace
of C(γ2, E) and so C(α1) is isomorphic to a subspace of C(γ2, E) with γ2 < α2, in
contradiction with the definition of α2. We have α2 ∈ I1 and α2 < α1, so α2 ∈ I2.
By Lemma 3.1, the space C(αω

2 ) is not isomorphic to a subspace of C(α2, E). We
have α1 ∈ I1 and α2 < α1, so, by the result of C. Bessaga and A. Pe�lczyński
[1], the space C(αω

2 ) is isomorphic to a subspace of C(α1). Therefore C(α1) is not
isomorphic to a subspace of C(α2, E) in contradiction with the definition of α2.
Hence I1 = I2 and the converse is proved. �

The following theorem is a straightforward consequence of the previous one.

Theorem 3.3. Let ω ≤ α ≤ β < ω1 be two countable infinite ordinal numbers.
Then K(C(α)) is isomorphic to K(C(β)) if, and only if, β < αω.

4. Spaces of nuclear operators

Under the conditions ω ≤ α ≤ β < αω < ω1 the spaces N (C(α)) and N (C(β))
are isomorphic. We shall show conversely that if N (C(α)) and N (C(β)) are iso-
morphic, then C(α) and C(β) are also isomorphic.

Lemma 4.1. Let α ∈ 〈ω, ω1) and let E be a subspace of �1(N, C(α)) which is not
isomorphic to a subspace of C(α). Then there is a subspace of E which is isomorphic
to �1.

Proof. For every integer k, let πk be the operator on �1(N, C(α)) defined by πk(x) =
(x1, . . . , xk, 0, 0 . . .) for every x = (xi)i≥1 ∈ �1(N, C(α)). Let ε ∈ ]0, 1/2[. Us-
ing a standard trick we can find a normalized sequence (Xn)n≥1 of E and a
strictly increasing sequence (kn)n≥1 of integers such that ‖X1 − πk1(X1)‖ ≤ ε and
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‖Xn − (πkn
− πkn−1)(Xn)‖ ≤ ε for every integer n ≥ 2. Let Y1 = πk1(X1) and

Yn = (πkn
− πkn−1)(Xn) for n = 2, 3, . . . . It is obvious that for every integer n ≥ 1

and for every finite sequence (ai)1≤i≤n of real numbers we have

(1 − ε)
n∑

i=1

|ai| ≤
∥∥∥∥∥

n∑
i=1

aiYi

∥∥∥∥∥ ≤
n∑

i=1

|ai|

and ∥∥∥∥∥
n∑

i=1

aiYi −
n∑

i=1

aiXi

∥∥∥∥∥ ≤ ε
n∑

i=1

|ai|,

so

(1 − 2ε)
n∑

i=1

|ai| ≤
∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥ ≤ (1 + ε)
n∑

i=1

|ai| .

Therefore, the sequence (Xn)n≥1 is equivalent to the canonical basis of �1. �
Theorem 4.2. Let ω ≤ α ≤ β < ω1 be two countable infinite ordinal numbers.
Then N (C(α)) is isomorphic to N (C(β)) if, and only if, β < αω.

Proof. For α ≤ β < αω the spaces C(α) and C(β) are isomorphic and so N (C(α))
and N (C(β)) are also isomorphic. For the converse, suppose that the spaces
N (C(α)) and N (C(β)) are isomorphic. Then, the space C(β) is isomorphic to
a subspace of N (C(α)) = �1(N, C(α)) and so, by Lemma 4.1, C(β) is isomorphic
to a subspace of C(α). This implies that β < αω. �
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