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A TRACE FORMULA AND SCHMINCKE INEQUALITY
ON THE HALF-LINE

AMIN BOUMENIR AND VU KIM TUAN

(Communicated by Walter Craig)

Abstract. In this paper we derive a trace formula for the Schrödinger oper-
ator on the half-line. As a consequence we obtain a Schmincke type inequality
with sharp constant. The main tool in our investigation is the inverse spectral
Gelfand-Levitan theory, which allows us to compare two Schrödinger operators
whose spectra differ by few eigenvalues.

1. Introduction and main results

Lieb and Thirring [11] have shown that the sum of the moments of the negative
eigenvalues −λ1 ≤ −λ2 ≤ · · · ≤ 0 (if any) of the Schrödinger operator −∆ − V on
L2

(
R

d
)

is bounded by

(1.1)
∑

λγ
i ≤ Lγ,d

∫
Rd

(V−(x))γ+d/2dx,

where V−(x) := max{V (x), 0}. One of the challenges is to find the smallest possible
constant Lγ,d, known as the sharp constant in (1.1). For the sake of simplicity we
shall restrict ourselves to eigenvalue inequalities in the case d = 1.

It is well known that if d = 1, then (1.1) cannot hold for γ < 1/2. For the limit
case γ = 1/2, Hundertmark, Lieb, and Thomas [5] have shown that if V− ∈ L1 (R),
then

(1.2)
∑√

λi ≤ L1/2,1

∫ ∞

−∞
V−(x) dx,

where L1/2,1 = 1
2 is a sharp constant. The main tool used in deriving (1.2) is

the Birman-Schwinger principle which relates negative eigenvalues of a Schrödinger
operator with the eigenvalues of a certain integral operator.

If V is continuous, V (x) → 0 as |x| → ∞ and
∫

R
V (x)dx exists (possibly condi-

tionally), Schmincke [13] uses the commutation method to obtain the lower bound
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1040 AMIN BOUMENIR AND VU KIM TUAN

for the sum of the negative eigenvalues

(1.3)
1
4

∫ ∞

−∞
V (x) dx ≤

∑√
λi,

and here 1
4 is a sharp constant.

If we also assume that (1 + |x|)V (x) ∈ L1 (R), then Schmincke’s inequality (1.3)
follows at once from the Faddeev-Zakharov trace formula [15]

(1.4)
∫ ∞

−∞
V (x) dx = 4

∑√
λi +

1
π

∫ ∞

−∞
ln(1 − |R(k)|2)dk,

since the reflection coefficient of the operator H satisfies R(k) ∈ [0, 1].
A well-known fact in the spectral theory of operators is that negative eigenvalues

depend on the self-adjoint extensions, [12]. Also if a Lieb-Thirring inequality holds,
it must do so for all isospectral operators, since it does not depend on the energy
of the bound states. Thus to shed some light on these hidden connections we study
the sum of the negative eigenvalues of a Schrödinger operator on the half-line, with
exponent γ = 1/2, and under the sole condition that q ∈ L1(0,∞). Thus we consider
the one-dimensional self-adjoint Schrödinger operator on the half-line defined by

(1.5)
{

H(y) := −y′′(x, λ) − q(x)y(x, λ) = −λy(x, λ), x ∈ [0,∞),
y′(0, λ) − hy(0, λ) = 0, where h, q(x) ∈ R.

The spectrum of H then is continuous on the positive half-line [0,∞), bounded and
discrete on the negative half-line. From now on we assume that H has only finitely
many negative eigenvalues (which is the case when (1+ x)q(x) ∈ L1(0,∞). Denote
these negative eigenvalues by −λ1,−λ2, · · · ,−λN (N ≥ 0). We use the notation qN

interchangeably with q to specify that H then has exactly N negative eigenvalues.
Recall a known result by Weidl [14] who showed that if q(x) ≥ 0, q ∈ L1(0,∞),
and h = 0, then the Lieb-Thirring inequality (1.2) holds with L 1

2 ,1 < 1.005.

Let αj = 1/
∫ ∞
0

|y(x,−λi)|2 dx be the norming constant, which represents the
jump size of the spectral function [10] at −λj . The main result of this paper is the
trace formula

(1.6)
∫ ∞

0

qN (x)dx =
∫ ∞

0

q0(x)dx − 2
N∑

j=1

αj + 4
N∑

j=1

√
λj ,

where q0 is obtained from qN by removing all N negative eigenvalues. The appear-
ance of the norming constants αj distinguishes (1.6) from the Faddeev-Zakharov
trace formula (1.4) and brings out a new relation between isospectral operators.
We then prove that if q0 generates no negative eigenvalues, then the estimate

(1.7)
∫ ∞

0

q0(x)dx ≤ h0

holds, which yields the Schmincke inequality for the half-line

(1.8)
1
4

∫ ∞

0

q(x)dx − h

4
<

∑√
λj .

Observe that inequality (1.8) is different from (1.3) by the boundary term −h
4 and

that inequality (1.8) is proved here without the usual restrictions on q. For example
in [13] it is assumed that q is continuous and q → 0 as x → ∞, while in [14] it is
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required that (1 + x)q(x) ∈ L1(0,∞) for the Faddeev-Zakharov trace formula (1.4)
to hold.

The main tool in deriving (1.6) is the inverse spectral Gelfand-Levitan theory,
[10], which allows us to construct a potential q explicitly in terms of the negative
eigenvalues. The difficulty lies in the fact that the potential q also depends on
the positive spectrum, and the proof of inequality (1.7) without any smoothness
condition imposed on q0 is very technical; see Lemma 8 in [13] for a similar equality
for a continuous potential q0.

Note that an alternative to the Gelfand-Levitan method is the double com-
mutation method, [7]. In [6], Gesztesy and Teschl used it to insert finitely many
eigenvalues in spectra of more general singular Sturm-Liouville operators generated
by

l(y) =
1

k(x)

(
− (p(x)y′(x))′ + q(x)y(x)

)
, where −∞ ≤ a ≤ x ≤ b ≤ ∞.

Integrating equation (4.5) in [6], with suitable asymptotics should yield a similar
relation to (1.6).

Observe that (1.6) has the advantage of measuring the gap of the inequality,
which gives new insight on the sharp constant in (1.3). We also derive a second
inequality, which involves the product of eigenvalues∫ ∞

0

xqN (x)dx =
∫ ∞

0

xq0(x)dx + ln

(
4

∏N
j=1 λj∏N

j=1 α2
j

)
,

in case (1 + x)q(x) ∈ L1(0,∞).

2. A trace formula

Without loss of generality, let HN denote the self-adjoint Schrödinger operator
on the half-line (1.5) whose spectrum has exactly N negative eigenvalues, say 0 >
−λ1 ≥ −λ2 ≥ · · · ≥ −λN . Denote its potential by qN ∈ L1(0,∞) and its spectral
function by ρN (λ) = ρ(λ). The jump of ρN at −λj is denoted by αj and by ρk(λ),
k = 0, 1, · · · , N − 1; we denote the spectral functions obtained from ρN (λ) by
removing the jumps at −λk+1, · · · ,−λN , i.e.

ρk(λ) = ρN (λ) −
N∑

j=k+1

αjH(λ + λj),

where H is the usual Heaviside function. The last spectral function ρ0 is constant for
λ ≤ 0, since we have no negative eigenvalue. Let Hk, where k = 0, ...., N, denote the
family of Schrödinger operators on the half-line, having ρk as the spectral functions

(2.1)
{

Hk(yk) := −y′′
k (x, λ) − qk(x)yk(x, λ) = −λyk(x, λ), x ∈ [0,∞),

y′
k(0, λ) − hkyk(0, λ) = 0.

The potentials qk are locally integrable, qk ∈ L1,loc(0,∞), and all eigensolutions,
yk(., λ), are normalized by yk(0, λ) = 1.

The Gelfand-Levitan theory [10] guarantees the existence and uniqueness of op-
erators Hk when appropriate ρk are given. In fact adding one eigenvalue to a
spectrum is a simple operation, [10], and the relation between qk and qk+1 is

(2.2) qk+1(x) = qk(x) + 2αk+1
d

dx

y2
k(x,−λk+1)

1 + αk+1

∫ x

0
y2

k(s,−λk+1)ds
.
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Here the appearance of the positive sign before the differential operator d
dx is due

to the fact that we are dealing with −qk instead of the usual +qk in (2.1).
To remove one eigenvalue at a time from the spectrum, we simply reverse the

method in [10]. In other words, we will find a formula to go from qk+1 to qk. To
this end, denote by

Fk (x, t) =
∫ ∞

−∞
yk+1(x, λ)yk+1(t, λ)d (ρk(λ) − ρk+1(λ))

= −αk+1yk+1(x,−λk+1)yk+1(t,−λk+1)

and let Kk(x, t) be the solution of the well-known linear Fredholm integral equation

(2.3) Fk(x, t) + Kk(x, t) +
∫ x

0

Kk(x, s)Fk(s, t)ds = 0 for 0 ≤ t ≤ x.

Since the kernel Fk is a degenerate kernel, the solution is simply of the form
Kk(x, t) = αk+1β(x)yk+1(t,−λk+1), where

β(x)
(

1 − αk+1

∫ x

0

y2
k+1(s,−λk+1)ds

)
= yk+1(x,−λk+1),

i.e.

Kk(x, t) =
αk+1yk+1(x,−λk+1)yk+1(t,−λk+1)

1 − αk+1

∫ x

0
y2

k+1(s,−λk+1)ds
,

and
Kk(0, 0) = αk+1yk+1(0,−λk+1)yk+1(0,−λk+1) = αk+1.

Thus we can determine a new potential qk from qk+1 by the following formula [10]:

(2.4) qk(x) = qk+1(x) − 2
d

dx
Kk(x, x).

Integrating (2.4) from 0 to x yields

(2.5)
∫ x

0

qk+1(η)dη =
∫ x

0

qk(η)dη+2αk+1

(
y2

k+1(x,−λk+1)
1 − αk+1

∫ x

0
y2

k+1(s,−λk+1)ds
− 1

)
.

An obvious way to bring out eigenvalues is to take the limit as x → ∞. To this
end we need the following lemma.

Lemma 1. Consider the operator H in (1.5) where q ∈ L1(0,∞). If −λ∗ ∈ σ

is a negative eigenvalue, then y(x,−λ∗) ≈ a(λ∗) exp
(
−x

√
λ∗

)
, and y

′
(x,−λ∗) ≈

−
√

λ∗a(λ∗) exp
(
−x

√
λ∗

)
, as x → ∞. and a(λ∗) �= 0.

Proof. Since q ∈ L1(0,∞), for large x → ∞, we have y(x,−λ) ≈ a(λ) exp
(
−x

√
λ
)

+ b(λ) exp
(
x
√

λ
)

, [12, Thm. 8, Section 22]. Since −λ∗ ∈ σ, then y(.,−λ∗) ∈
L2 (0,∞) and so b(λ∗) = 0 but a(λ∗) �= 0. �

As −λk+1 is an eigenvalue of Hk+1, and since∫ ∞

0

y2
k+1(s,−λk+1)ds =

1
αk+1

,

by Lemma 1 and l’Hospital’s rule we have

(2.6) lim
x→∞

2αk+1y
2
k+1(x,−λk+1)

1 − αk+1

∫ x

0
y2

k+1(s,−λk+1)ds
= − lim

x→∞

4y′
k+1(x,−λk+1)

yk+1(x,−λk+1)
= 4

√
λk+1.
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The existence of the limit of the right-hand side of (2.5), as x → ∞, then yields

(2.7)
∫ ∞

0

qk+1(η)dη =
∫ ∞

0

qk(η)dη + 4
√

λk+1 − 2αk+1.

Next we need to verify that if qk+1 is integrable, then the newly constructed qk is
also integrable.

Lemma 2. Let qk+1 ∈ L1(0,∞) and qk be defined by (2.4). Then qk ∈ L1(0,∞).

Proof. By (2.4) we only need to show that d
dxKk(x, x) ∈ L1(0,∞). From the

asymptotics of yk+1(x,−λk+1) at infinity (Lemma 1) it is not difficult to see that
d
dxKk(x, x) < 0 for large x, say x > M . Then∫ ∞

M

∣∣∣∣ d

dx
Kk(x, x)

∣∣∣∣dx = −
∫ ∞

M

d

dx
Kk(x, x)dx = Kk(M) + 2λk+1 < ∞

and so d
dxKk(x, x) ∈ L1(0,∞), and therefore qk ∈ L1(0,∞). �

We now can repeat the same procedure, which yields after finite steps,

(2.8)
∫ ∞

0

qN (x)dx =
∫ ∞

0

q0(x)dx − 2
N∑

j=1

αj + 4
N∑

j=1

√
λj .

Thus we have proved:

Theorem 1 (trace formula). Assume that qN ∈ L1(0,∞) has only finitely many
negative eigenvalues, and q0 is obtained from qN by removing all negative eigenval-
ues of HN . Then q0 ∈ L1(0,∞), and identity (2.8) holds.

Observe that the value of h0, which appears in the boundary condition at x = 0,
can be computed explicitly in terms of the norming constants αk. Clearly since
yk+1(0, λ) = 1, then

hk = y′
k(0, λ) = y′

k+1(0, λ) + Kk(0, 0) = hk+1 + αk+1.

Tracking down the sequence of constructed eigensolutions we have been using, with

the notation
(

yk(0, λ)
y′

k(0, λ)

)
, we have

(
1

hN

)
⇒

(
1

hN + αN

)
⇒

(
1

hN + αN + αN−1

)
⇒ · · · ⇒

(
1

hN +
∑N

j=1 αj

)
.

Observe that we could have started with any hN and still ended with h0 = hN +∑N
j=1 αj > hN .

Corollary 1. Assume that the conditions of Theorem 1 hold. Then h0 > hN , and∫ ∞

0

qN (x)dx =
∫ ∞

0

q0(x)dx + 2(hN − h0) + 4
N∑

j=1

√
λj ,(2.9)

∫ ∞

0

qN (x)dx − hN =
∫ ∞

0

q0(x)dx − h0 −
N∑

j=1

αj + 4
N∑

j=1

√
λj .

Since we do not have a restriction on the sign of q and the λj are arbitrary,

Corollary 2. We have h0 − hN = 2
∑N

j=1

√
λj if and only if

∫ ∞
0

qN (x)dx =∫ ∞
0

q0(x)dx.
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3. The continuous spectrum case

In order to compare the sum of moments of the negative eigenvalues with∫ ∞
0

qN (x)dx − hN , from (2.9) we only need to estimate
∫ ∞
0

q0(x)dx − h0, which
is determined by the spectral function over [0,∞). Recall that the eigensolution
y0(x, λ) of H0 satisfies the transmutation equation [10]

(3.1) cos
(
x
√

λ
)

= y0(x, λ) +
∫ x

0

G0(x, t)y0(t, λ)dt,

where

G0(x, x) =
1
2

∫ x

0

q0(η)dη − h0.

On the other hand, the kernel function G0(x, t) satisfies the nonlinear integral
equation [3, 10]

(3.2) F (x, t) = G0(t, x) + G0(x, t) +
∫ x

0

G0(x, η)G0(t, η)dη,

where

(3.3) F (x, t) =
∫ ∞

0

cos
(
x
√

λ
)

cos
(
t
√

λ
)

dσ (λ) ,

and σ(λ) = ρ0(λ) − 2
π

√
λ. Setting x = t in (3.2) yields

F (x, x) = 2G0(x, x) +
∫ x

0

G0(x, η)G0(x, η)dη,

which means that

(3.4) F (x, x) −
∫ x

0

q0(η)dη + 2h0 =
∫ x

0

G2
0(x, η)dη ≥ 0.

It is easy to see that

F (x, x) =
∫ ∞

0

cos2
(
x
√

λ
)

dσ(λ)(3.5)

=
1
2

∫ ∞

0

cos
(
2x

√
λ
)

dσ(λ) +
1
2

∫ ∞

0

dσ(λ).

From (3.3) we deduce F (0, 0) =
∫ ∞
0

dσ(λ), while (3.4) yields

F (0, 0) = −2h0,

i.e.

(3.6)
1
2

∫ ∞

0

dσ(λ) = −h0,

and thus we can recast (3.4) as

(3.7)
1
2

∫ ∞

0

cos
(
2x

√
λ
)

dσ(λ) −
∫ x

0

q0(η)dη + h0 =
∫ x

0

G2
0(x, η)dη ≥ 0.

For the next step we need

Proposition 1. Assume that q0 ∈ L1(0,∞). Then

(3.8) lim
x→∞

F (x, x) = −h0.
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Proof. By (3.5) and (3.6) we see that (3.8) would hold true if we could establish
that

(3.9) lim
x→∞

∫ ∞

0

cos
(
2x

√
λ
)

dσ(λ) = 0.

The key here is to use the Riemann-Lebesgue theorem. First a classical result
from Levitan, [9, Lemma 5.2.2], follows if q0 ∈ L1(0,∞). Then ρ0 is absolutely
continuous,

dρ0(λ) =
1
π

1√
λ (m2(λ) + n2(λ))

dλ(3.10)

=
2
π

1
(m2(λ) + n2(λ))

d
√

λ

where

m(λ) = 1 − 1√
λ

∫ ∞

0

sin(t
√

λ)q0(t)y0(t, λ)dt and

n(λ) =
1√
λ

h − 1√
λ

∫ ∞

0

cos(t
√

λ)q0(t)y0(t, λ)dt.

(3.11)

The solution y0(t, λ) is bounded. Indeed from the variation of parameters, with
µ =

√
λ,

y0(t, λ) = cos (tµ) + h
sin (xµ)

µ
+

∫ x

0

1
µ

sin µ (x − t) q0(t)y0(t, λ)dt.

We deduce that y0(t, λ) = cos (tµ)+O
(

1
µ

)
as µ → ∞, and so supx≥0 |y0(x, λ)| < M .

Since q0 ∈ L1 (0,∞) both functions n and m are well defined, and

m(λ) = 1 − 1
2µ

∫ ∞

0

sin(2µt)q0(t)dt + O

(
1
µ2

)
,

m2(λ) + n2(λ) = 1 − 1
µ

∫ ∞

0

sin(2µt)q0(t)dt + O

(
1
µ2

)
.

Going back to σ, we have

dσ(λ) =
2
π

[
1

(m2(λ) + n2(λ))
− 1

]
d
√

λ(3.12)

=
2
π

⎡
⎣ 1

1 − 1
µ

∫ ∞
0

sin(2µt)q(t)dt + O
(

1
µ2

) − 1

⎤
⎦ dµ

=
2
π

(
1
µ

∫ ∞

0

sin(2µt)q(t)dt + O

(
1
µ2

))
dµ.

Thus we have decomposed dσ as

dσ(λ) = S(µ)dµ + V (µ)dµ,

where V ∈ L1 (0,∞) and S(µ) = 1
µ

∫ ∞
0

sin(2µt)q0(t)dt. By the Riemann-Lebesgue
Theorem we clearly have

(3.13) lim
x→∞

∫ ∞

0

cos (2xµ)V (µ)dµ = 0.
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The second part can be treated as a composition of the Fourier cosine and sine
transforms [4, p. 4]:∫ ∞

0

cos (2xµ) S(µ)dµ =
∫ ∞

0

cos (2xµ)
1
µ

∫ ∞

0

sin(2µt)q0(t)dtdµ(3.14)

=
∫ ∞

0

cos (xη)
1
η

∫ ∞

0

sin(ηt)q0(t)dtdη.

In order to proceed further we need a result on the Fourier transform.

Lemma 3. Let q0 ∈ L1(0,∞). Then∫ ∞

0

cos (xη)
1
η

∫ ∞

0

sin(ηt)q0(t)dtdη =
π

2

∫ ∞

x

q0(t)dt.

Proof. Since q0 ∈ L1(0,∞), the L2 theory is not applicable. Nevertheless we have∫ ∞

0

cos (xη)
1
η

∫ ∞

0

sin(ηt)q0(t)dtdη

= lim
ν→∞

∫ ν

0

cos (xη)
1
η

∫ ∞

0

sin(ηt)q0(t)dtdη

= lim
ν→∞

∫ ∞

0

q0(t)
∫ ν

0

cos (xη)
1
η

sin(ηt)dηdt

=
1
2

lim
ν→∞

∫ ∞

0

q0(t)
∫ ν

0

1
η

(sin(η(x + t) + sin(η(t − x)) dηdt.

Observe that
∫ ν

0
1
η sin(ηa)dη converges boundedly to π

2 sign(a) as ν → ∞. We can
interchange the order of integration and the limit to obtain∫ ∞

0

cos (xη)
1
η

∫ ∞

0

sin(ηt)q0(t)dtdη

=
1
2

∫ ∞

0

q0(t) lim
ν→∞

∫ ν

0

1
η

(
sin(η(x + t)dη + lim

ν→∞

∫ ν

0

1
η

sin(η(t − x)
)

dηdt

=
π

4

∫ ∞

0

sign (x + t) q0(t)dt +
π

4

∫ ∞

0

sign (t − x) q0(t)dt

=
π

2

∫ ∞

x

q0(t)dt. �

Thus applying Lemma 3 to (3.14) yields

(3.15) lim
x→∞

∫ ∞

0

cos (2xµ) S(µ)dµ = 0,

and combining (3.15) and (3.13) yields (3.9), which reduces formula (3.7) to

(3.16)
∫ ∞

0

q0(η)dη − h0 ≤ 0.
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Theorem 2 (Schmincke inequality). Assume that qN ∈ L1(0,∞). Then by (3.16),
formula (2.8) becomes

(3.17)
1
4

∫ ∞

0

qN (η)dη − 1
4
hN <

N∑
j=1

√
λj .

Proof. Since N ≥ 1, the norming constant in (2.8), α1 > 0 forces the strict inequal-
ity. �

Remark 1. We can start from q0(x) = 0, h0 = 0, and a pair (α1, λ1) to construct
q1 ∈ L1(0,∞). Since the positive α1 can be chosen as small as we like, the constant
1
4 is sharp.

Proposition 2. Assume that q ∈ L1(0,∞) and
∫ ∞
0

q(t)dt > h. Then the operator

{
−y′′(x, λ) − q(x)y(x, λ) = λy,
y′(0, λ) − hy(0, λ) = 0

has at least one negative eigenvalue.

Proof. By
∫ ∞
0

|q(t)| dt < ∞, the operator

{
−y′′(x, λ) − q(x)y(x, λ) = λy,
y′(0, λ) − hy(0, λ) = 0

has a continuous spectrum and [0,∞) ⊂ σ. If we use (3.17), then we obtain that
0 <

∑N
j=1

√
λj and thus the existence of at least one negative eigenvalue. �

Remark 2. A similar result has been proved for the Schrödinger operator on the
whole real line in [13], where the potential q is required to be continuous on R and
tends to 0 as |x| → ∞, and in [14], where the potential q is assumed to satisfy the
Faddeev condition (1 + |x|)q(x) ∈ L1(R).

4. Product of eigenvalues

In this section we assume additionally that the Faddeev condition holds:

∫ ∞

0

(1 + x)|q(x)| dx < ∞.

From (2.2) we already have

∫ t

0

qk+1(η)dη =
∫ t

0

qk(η)dη − 2αk+1 + 2
αk+1y

2
k(t,−λk+1)

1 + αk+1

∫ t

0
y2

k(s,−λk+1)ds
.



1048 AMIN BOUMENIR AND VU KIM TUAN

As yk(x,−λk+1) ∼ ex
√

λk+1 , another integration leads to∫ x

0

∫ t

0

(qk+1(η) − qk(η)) dηdt

= −2αk+1x + 2
∫ x

0

αk+1y
2
k(t,−λk+1)

1 + αk+1

∫ t

0
y2

k(s,−λk+1)ds
dt

= −2αk+1x + 2
∫ x

0

d

dt
ln

(
1 + αk+1

∫ t

0

y2
k(s,−λk+1)ds

)
dt

= −2αk+1x + 2 ln
(

1 + αk+1

∫ x

0

y2
k(s,−λk+1)ds

)

= −2αk+1x + 2 ln
(

αk+1

∫ x

0

y2
k(s,−λk+1)ds

)
+ o (1)

= −2αk+1x + 2 ln

(
αk+1

e2
√

λk+1x

2
√

λk+1

)
+ o (1)

=
(
4
√

λk+1 − 2αk+1

)
x − 2 ln

(
2
√

λk+1

αk+1

)
+ o (1) .

Recasting (2.7) as

4
√

λk+1 − 2αk+1 =
∫ ∞

0

(qk+1(η) − qk(η)) dη

simplifies the previous integral:∫ x

0

(x − η) (qk+1(η) − qk(η)) dη

= x

∫ ∞

0

(qk+1(η) − qk(η)) dη − 2 ln

(
2
√

λk+1

αk+1

)
+ o (1) ,

2 ln

(
2
√

λk+1

αk+1

)

=
∫ x

0

η (qk+1(η) − qk(η)) dη + x

∫ ∞

x

(qk+1(η) − qk(η)) dη + o (1) .

If (1 + x)qN (x) ∈ L1(0,∞), then (1 + x)qk(x) ∈ L1(0,∞) for any k = 0, 1, · · · , N ,
and

x

∫ ∞

x

|qk+1(η) − qk(η)| dη ≤
∫ ∞

x

η |qk+1(η) − qk(η)| dη = o (1) .

Taking the limit as x → ∞ yields∫ ∞

0

η (qk+1(η) − qk(η)) dη = 2 ln

(
2
√

λk+1

αk+1

)
.

Now adding more eigenvalues leads to

Proposition 3. Assume that (1 + x)qN (x) ∈ L1(0,∞). Then∫ ∞

0

x (qN (x) − q0(x)) dx = ln

(
4

∏N
j=1 λj∏N

j=1 α2
j

)
.
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