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ON THE SAME N-TYPE CONJECTURE FOR THE SUSPENSION
OF THE INFINITE COMPLEX PROJECTIVE SPACE

DAE-WOONG LEE

(Communicated by Paul Goerss)

Abstract. Let [ϕik
, [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]] be an iterated commutator

of self-maps ϕij on the suspension of the infinite complex projective space.

In this paper, we produce useful self-maps of the form I + [ϕik
, [ϕik−1 , · · · ,

[ϕi1 , ϕi2 ], · · · ]], where + means the addition of maps on the suspension struc-
ture of ΣCP∞. We then give the answer to the conjecture saying that the
set of all the same homotopy n-types of the suspension of the infinite complex
projective space is the one element set consisting of a single homotopy type.

1. Introduction

Let X(n) be the nth Postnikov approximation of a space X. We recall that
two CW -spaces X and Y are said to have the same n-type if the nth Postnikov
approximations X(n) and Y (n) are homotopy equivalent. In the early years of
algebraic topology, there was an important question posed by J. H. C. Whitehead:
if X and Y are two spaces whose Postnikov approximations, X(n) and Y (n), are
homotopy equivalent for each integer n, then does it follow that X and Y have the
same homotopy type? It is well known that if X is either finite dimensional or if
X has only a finite number of non-zero homotopy groups, then the answer to the
question is yes! However, in general, there are examples, composed by Adams [1]
and Gray [4], demonstrating that the answer to this question is no!

As usual, let Σ and Ω be the suspension and loop functors in the (pointed) homo-
topy category respectively. Let Aut(X) be a group of self-homotopy equivalences
of X, and let SNT (X) be the set of all homotopy types [Y ] such that X(n) and
Y (n) are homotopy equivalent for each integer n. We can find valuable results re-
garding the same homotopy n-type and those kinds of notions (see [5], [9], [12]). In
particular, Wilkerson [15, Theorem I] proved that for a connected CW -complex X,
there is a bijection of pointed sets SNT (X) ≈ lim1{Aut(X(n))}, where lim1(−)
is the first derived limit of groups in the sense of Bousfield-Kan [2, p. 251].

The most interesting problems of the same homotopy n-type are the suspensions
of the Eilenberg-Mac Lane spaces or the localization of these spaces at any set of
primes J [6]. In the case of odd integers 2d + 1, d ≥ 0, it is well known that
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SNT (ΣkK(Z, 2d + 1)) = ∗ for k ≥ 0. The proof of this depends on the fact
that the space ΣkK(Z, 2d + 1) has the rational homotopy type of a single sphere
in dimension d = k + 2d + 1. What will happen in the case of even integers?
As the reader can see, this is too complicated and intractable, because the space
ΣkK(Z, 2d) has the rational homotopy type of a bouquet of spheres in dimensions
d = k + 2d, k + 4d, k + 6d, · · · . From this point of view, there is a conjecture [11,
p. 287] posed by C. A. McGibbon and J. M. Møller:

Conjecture. SNT (ΣCP∞) = ∗.

The main purpose of this paper is to present the positive answer to the above
conjecture. In Section 2, we describe self-maps on the suspension and loop struc-
tures and create useful self-maps of commutators on the suspension structures. In
Section 3, we give the answer to the conjecture.

2. Construction of self-maps

McGibbon and Møller [11, Theorem 1] proved

Theorem 1. Let X be a 1-connected space with finite type over some subring of the
rationals. Assume that X has the rational homotopy type of a bouquet of spheres.
Then the following three conditions are equivalent:

(1) SNT (X) = ∗,
(2) the map Aut(X)

f �→f(n)

−−−−−→ Aut(X(n)) has a finite cokernel for each n,

(3) the map Aut(X)
f �→f�−−−−→ Aut(π≤n(X)) has a finite cokernel for each n.

Here, the group Aut(π≤n(X)) denotes the group of automorphisms of the graded
Z-module, π≤n(X), preserving the Whitehead product pairings.

Actually, we will use this theorem in order to provide the answer to the con-
jecture. Theorem 1 is the Eckmann-Hilton dual of the corresponding result [10,
Theorem 3] concerning the 1-connected H0-space with finite type over ZJ for some
set of primes J along with cohomology.

Let ϕ̂1 : CP∞ → ΩΣCP∞ and x1 : S2 → ΩΣCP∞ be the inclusions. Morisugi
[13] considered the maps inductively:

ϕ̂n+1 : CP∞ ∆̄−−−−−→ CP∞ ∧ CP∞ ϕ̂1∧ϕ̂n−−−−−→ ΩΣCP∞ ∧ ΩΣCP∞ �−−−−−→ ΩΣCP∞

and

xn+1 : S2n+2 = S2 ∧ S2n x1∧xn−−−−→ ΩΣCP∞ ∧ ΩΣCP∞ �−−−−→ ΩΣCP∞,

where ∆̄ is the reduced diagonal map and � means an extension of the adjoint of
the Hopf construction of CP∞. Now we take a self-map ϕn : ΣCP∞ → ΣCP∞ by
the adjoint of ϕ̂n : CP∞ → ΩΣCP∞ for n = 1, 2, · · · . On the other hand, one can
find a self-map ψq : CP∞ → CP∞ which corresponds to q ∈ Z ∼= H2(CP∞; Z) ∼=
[CP∞, CP∞]. The suspension of this map gives a self-map Σψq of ΣCP∞. McGib-
bon [8, Theorem 1] showed that every self-map of ΣCP∞ is a linear combination
of these maps, Σψ1, Σψ2, · · · , Σψn, up to homology. Indeed, we can construct
self-maps of ΣCP∞ by using the suspension structure, up to homology, as fol-
lows: ϕ1 = Σψ1, ϕ2 = Σψ2 − 2Σψ1, ϕ3 = Σψ3 − 3Σψ2 + 3Σψ1, and in general
ϕn =

∑n−1
r=0 (−1)r

(
n
r

)
Σψn−r, where

(
n
r

)
is a binomial coefficient. We note that

these self-maps are exactly the same as the above self-maps (see [13, Theorem 1.7])
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and xn is the rationally non-trivial indecomposable generator of π2n(ΩΣCP∞) for
each n. By Theorem 1.4, ibid., we have

Theorem 2. {ϕ̂n} and {xn} have the following properties:

(1) ϕ̂n : CP∞ → ΩΣCP∞ factors as CP∞ p−→ CP∞/CPn−1 gn−→ ΩΣCP∞

(where p is the projection) such that the restriction to the bottom sphere of
the map gn coincides with the map xn : S2n → ΩΣCP∞.

(2) Let [ϕ̂m, ϕ̂n] be a commutator in the group [CP∞, ΩΣCP∞]. Then i∗[ϕ̂m, ϕ̂n]
= q∗ < xm, xn >. Here i : CPm+n → CP∞ is the inclusion, q : CPm+n →
S2m+2n is the projection and < xm, xn > is the Samelson product in
π∗(ΩΣCP∞).

Similarly, let [ϕm, ϕn] be the commutator of ϕm and ϕn in the group [ΣCP∞,
ΣCP∞]. That is, [ϕm, ϕn] = ϕm + ϕn − ϕm − ϕn, where + and − mean the
operations of maps induced by the suspension structure on ΣCP∞. We note that
the restriction [ϕm, ϕn]|(ΣCP∞)2m+2n

to the skeleton is inessential (see [7]).

Remark 3. In order to produce enough self-maps in Aut(ΣCP∞) so that the map
Aut(ΣCP∞) → Aut(π≤n(ΣCP∞)) has a finite cokernel for each n, we now con-
struct the self-homotopy equivalences of ΣCP∞ by the form I + [ϕin

, [ϕin−1 , · · · ,
[ϕi1 , ϕi2 ], · · · ]], where I is the identity map on ΣCP∞ and [ϕin

, [ϕin−1 , · · · , [ϕi1 , ϕi2 ],
· · · ]] is the iterated commutator of self-maps ϕij

.

We recall that the Samelson product gives π∗(ΩX), ∗ ≥ 1, the structure of graded
Lie algebra ([14], and [3], p. 141); that is, < x, y >= −(−1)|x||y| < y, x >,
and < x, < y, z >>=<< x, y >, z > +(−1)|x||y| < y, < x, z >>. For an-
other notion in order to understand the given conjecture, we require a steady
calculation in π∗(ΩΣCP∞) (or π∗(ΣCP∞)). Let L and L≤n denote the Lie al-
gebras defined by the Samelson products on the quotients π∗(ΩΣCP∞)/torsion
and π≤2n(ΩΣCP∞)/torsion, respectively. That is,

L = π∗(ΩΣCP∞)/torsion (= L < x1, x2, · · · , xn, · · · >, dim xn = 2n)

and
L≤n = π≤2n(ΩΣCP∞)/torsion = π∗(ΩΣCP∞)(2n)/torsion,

where (ΩΣCP∞)(2n) means the Postnikov approximation and xn : S2n → ΩΣCP∞

is the rationally non-trivial indecomposable generator in π2n(ΩΣCP∞), n = 1, 2,
3, · · · , as mentioned earlier. Equivalently, under the same letter,

L = π∗(ΣCP∞)/torsion (= L < x1, x2, · · · , xn, · · · >),

where xn is also the rationally non-trivial indecomposable generator in
π2n+1(ΣCP∞), and the operation in this case is the Whitehead product on
π∗(ΣCP∞)/torsion. We note that the torsion generators can be ignored in the SNT-
computations. Throughout this paper we write the rationally non-trivial indecom-
posable generators in π≤2n(ΩΣCP∞)/torsion by the same letter (x1, x2, · · · , xn, · · · )
in π≤2n+1(ΣCP∞)/torsion for each n.

We recall that H̃∗(CP∞; Z) ∼= Z{b1, b2, · · · , bn, · · · } as a Z-module, where bn ∈
H2n(CP∞; Z) is the standard generator. The rational homology of ΩΣCP∞ is a
tensor algebra T < b1, b2, · · · , bn, · · · > generated by {b1, b2, · · · , bn, · · · }, where
bn is a generator of H2n(ΩΣCP∞; Q) with diagonal ∆(bk) =

∑
i+j=k bi ⊗ bj and

bn = E∗(bn). Here, E is the inclusion map E : CP∞ → ΩΣCP∞ defined by
E(x)(t) = (x, t) ∈ ΣCP∞, and b0 means 1 ∈ H0(ΩΣCP∞).
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Let h : π∗(ΩΣCP∞) → H∗(ΩΣCP∞) be the Hurewicz homomorphism and let
χ : ΩΣCP∞ → ΩΣCP∞ be the map of loop inverse. Then, in [13] we have

h(xn) =

{
b1 if n = 1,

(n − 1)!
∑n

i=1 χ∗(bn−i)(ibi − b1bi−1) = n!bn + decomposables if n ≥ 2,

where the product in the above equations is the one in the tensor algebra.

3. Proof of the conjecture

From now on, let P denote the infinite complex projective space CP∞ for brevity.

Proof. Let An = Aut(π≤2n+1(ΣP )/torsion). Then we can verify that A1 = Aut(Z)
∼= {±1} ∼= Z2, and A2

∼= {±1} ⊕ {±1} ∼= Z2 ⊕ Z2, and that An(n ≥ 3) has a
different group structure which is infinite (see [7]). Note that if γ0 ∈ πm(ΩX) and
γ1 ∈ πn(ΩX), then [h(γ0), h(γ1)] = h(< γ0, γ1 >). Let [ϕ̂m, ϕ̂n] = ̂[ϕm, ϕn] : P →
ΩΣP be the adjoint of [ϕm, ϕn] : ΣP → ΣP . Then we have

Proposition 3.1. [ϕ̂m, ϕ̂n]∗(bm+n) = [h(xm), h(xn)], where bm+n is a generator
of H2m+2n(P ), [h(xm), h(xn)] = h(xm)h(xn) − (−1)|h(xm)||h(xn)|h(xn)h(xm), and
xm and xn are rationally non-trivial indecomposable generators.

In the particular case, we are able to see that [ϕ̂1, ϕ̂2]∗(b3) = 2(b1b2 − b2b1) =
[b1, 2b2 − b2

1] = [h(x1), h(x2)]. The following is the general case:

Proof. Let q : CPm+n → S2m+2n be the projection map and let < , > be the
Samelson product in π∗(ΩΣP ). Theorem 2 says that the following diagram is
commutative:

CPm+n i−−−−→ P
[ϕ̂m,ϕ̂n]−−−−−→ ΩΣP⏐⏐�q

⏐⏐�=

S2m+2n =−−−−→ S2m+2n s−−−−→ ΩΣP

where s =< xm, xn >. Considering CPm+n−1 ↪→ CPm+n q−→ CPm+n/CPm+n−1

= S2m+2n, and applying the homology to the above diagram, we have

[ϕ̂m, ϕ̂n]∗(bm+n) = [ϕ̂m, ϕ̂n]∗i∗(bm+n) = s∗q∗(bm+n)

= s∗(b′m+n) = h(< xm, xn >) (Hurewicz homomorphism)

= [h(xm), h(xn)].

Here, bm+n is also used as a generator of H2m+2n(CPm+n)(∼= H2m+2n(P ), i∗(bm+n)
= bm+n), q∗ : H2m+2n(CPm+n) → H2m+2n(S2m+2n) is an isomorphism (by using a
homology sequence) sending the generator bm+n to the fundamental homology class
b′m+n, and xm and xn are rationally non-trivial indecomposable generators. �

What will happen in the homomorphism induced by the self-maps I + [ϕm, ϕn]
in the homotopy groups? The answer to this query can be found as follows:

Lemma 3.2. Let p = 2m+2n+1, and let xm+n be the indecomposable generator in
πp(ΣP )/torsion. Then (I + [ϕm, ϕn])�(xm+n) = xm+n + [ϕm, ϕn]�(xm+n), where
the first + is the addition of maps induced by the suspension structure on ΣP ,
while the second + refers to the one of homotopy groups, and f� denotes an induced
homomorphism in homotopy groups.
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Proof. We must show that the diagram

Sp xm+n−−−−→ ΣP
∇−−−−→ ΣP ∨ ΣP

∇
⏐⏐� (I,[ϕm,ϕn])

⏐⏐�
Sp ∨ Sp xm+n∨xm+n−−−−−−−−→ ΣP ∨ ΣP

(I,[ϕm,ϕn])−−−−−−−→ ΣP

is commutative. Consider the following diagram:

Sp xm+n−−−−→ ΣP

∇
⏐⏐� ∇

⏐⏐�
Sp ∨ Sp xm+n∨xm+n−−−−−−−−→ ΣP ∨ ΣP

Note that the diagram is not commutative, because xm+n is not a suspension.
However, if we consider a quotient map q : ΣP → ΣP/(ΣP )p−1, then the following
two diagrams are commutative:

ΣP
[ϕm,ϕn]−−−−−→ ΣP

q

⏐⏐� =

⏐⏐�
ΣP/(ΣP )p−1

[ϕm,ϕn]′−−−−−−→ ΣP

and
Sp xm+n−−−−→ ΣP

∆

⏐⏐� ∆′
⏐⏐�

Sp × Sp
xm+n×x′

m+n−−−−−−−−−→ ΣP × ΣP/(ΣP )p−1

where [ϕm, ϕn]′ is a map induced by the commutator [ϕm, ϕn] making the above
diagram commutative (this map could be guaranteed since the restriction
[ϕm, ϕn]|(ΣP )2m+2n

to the skeleton is inessential), and ∆(x) = (x, x), ∆′(x) =
(x, q(x)) and x′

m+n = q(xm+n). Also note that since ΣP/(ΣP )p−1 is p − 1 con-
nected,

[Sp, ΣP ∨ ΣP/(ΣP )p−1] ∼= [Sp, ΣP × ΣP/(ΣP )p−1].
This isomorphism takes (xm+n ∨ x′

m+n) ◦ ∇ 
→ (xm+n × x′
m+n) ◦ ∆, and it also

takes ∆′(xm+n) to ∇′(xm+n). Therefore the diagram

Sp xm+n−−−−→ ΣP

∇
⏐⏐� ∇′

⏐⏐�
Sp ∨ Sp

xm+n∨x′
m+n−−−−−−−−→ ΣP ∨ ΣP/(ΣP )p−1

(I,[ϕm,ϕn]′)−−−−−−−−→ ΣP

commutes. Thus we complete the proof. �

It is not difficult to show that the above lemma still holds for the iterated com-
mutators from the fact that [ϕik

, [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]]|(ΣP )2(i1+i2+···+ik)
� ∗.

Moreover, it can be seen that there are many rationally non-trivial indecompos-
able and decomposable generators on π2n+1(ΣP ) ⊗ Q (or π2n(ΩΣP ) ⊗ Q). For
example, {x1} in dimension 3, {x2} in dimension 5, {x3, [x1, x2]} in dimension 7,
{x4, [x1, x3], [x1, [x1, x2]]} in dimension 9, {x5, [x1, x4], [x1, [x1, x3]], [x1, [x1[x1, x2]]],
[x2, x3], [x2, [x1, x2]]} in dimension 11, and so on. Indeed, we can show that the
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above (iterated) Whitehead products are rationally non-trivial by using the coho-
mology cup products.

Lemma 3.3. For each Whitehead product [xik
, [xik−1 , · · · , [xi1 , xi2 ], · · · ]] in π∗(ΣP ),

there exists an iterated commutator [ϕik
, [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]] in the group

[ΣP, ΣP ] such that

(I + [ϕik
, [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]])�(xn) = xn + n![xik

, [xik−1 , · · · , [xi1 , xi2 ], · · · ]],
where xn and xij

are rationally non-trivial indecomposable generators and n =
i1 + i2 + · · · + ik.

Remark 3.4. We note that the phenomena of the iterated commutators completely
depend on those of iterated Whitehead products. What is even more interesting is
that the map [ϕik

, [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]]� sends the indecomposable generators
to the (iterated) Whitehead products which are rationally non-trivial decomposable.
This fact is just what we need in the proof of the conjecture!

Proof of Lemma 3.3. In the case of the one-fold Whitehead product, we need to
show that [ϕi1 , ϕi2 ]�(xn) = n![xi1 , xi2 ] (n = i1 + i2). The proof follows by chasing
the diagram in Proposition 3.1 (by adjointness) and the following commutative
diagram:

Sp
xi1+i2−−−−→ (ΣP )p −−−−→ ΣP

[ϕi1 ,ϕi2 ]
−−−−−−→ ΣP

=

⏐⏐� q

⏐⏐� q

⏐⏐� =

⏐⏐�
Sp (i1+i2)!−−−−−→ Sp −−−−→ ΣP/(ΣP )p−1

[ϕi1 ,ϕi2 ]′

−−−−−−→ ΣP

where p = 2n + 1, n = i1 + i2, and the q’s are the projections.
We suppose that for the iterated Whitehead products [xik−1 , · · · , [xi1 , xi2 ], · · · ]

of length greater than 2, there exist iterated commutators [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]
such that

(I + [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ])�(xm) = xm + m![xik−1 , · · · , [xi1 , xi2 ], · · · ],
where xm and xij

are rationally non-trivial indecomposable generators, and m =
i1+i2+ · · ·+ik−1. We recall that the restriction [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]|(ΣP )2m

to
the skeleton is trivial in homotopy and the map [xik−1 , · · ·, [xi1 , xi2 ], · · · ] : S2m+1 →
ΣP is a rationally non-trivial decomposable generator (when rationalized). By ap-
plying the first statement and the above results, we can find an iterated commutator
[ϕik

, [ϕik−1 , · · · , [ϕi1 , xi2 ], · · · ]] such that the desired formula is still guaranteed. �
As previously described, L and L≤n denote the Lie algebras defined by the White-

head products on π∗(ΣP )/ torsion and π≤2n+1(ΣP )/ torsion (or equivalently the
Samelson products on the quotients π∗(ΩΣP )/ torsion and π≤2n(ΩΣP )/ torsion)
respectively. We note that ΣP has the rational homotopy type of the bouquet of
spheres, i.e., ΣP �0 S3 ∨ S5 ∨ S7 ∨ · · · , where �0 means a rational homotopy.
Following McGibbon and Møller [11], we can construct a short exact sequence

0 → Hom(QnL, DnL) → Aut(L≤n) → Aut(L<n) ⊕ Aut(QnL) → 0.

Here, QnL and DnL are indecomposables and decomposables respectively, and the
maps are given in the same method (see below). Since Aut(T ) is finite, where
T is torsion in π≤2n+1(ΣP ), in order to prove the given conjecture it suffices to
show that the map Aut(ΣP ) → Aut(L≤n) has a finite cokernel for each n. Using
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the previous results of this paper, we prove the conjecture by the induction step
on n. Since A1 = Aut(L≤1) ∼= Aut(Z) ∼= Z2, the initial step is trivial. Suppose
that the map Aut(ΣP ) → Aut(L<n) has a finite cokernel. Let Dn be the set of
(iterated) Whitehead products in π2n+1(ΣP )/ torsion which are, after rationalized,
decomposable generators in π2n+1(ΣP ) ⊗ Q for each n ≥ 3 (say, D3 = {[x1, x2]},
D4 = {[x1, x3], [x1, [x1, x2]]}, D5 = {[x1, x4], [x1, [x1, x3]], [x1, [x1[x1, x2]]], [x2, x3],
[x2, [x1, x2]]}, and so on). Then, for each (iterated) Whitehead
product [xik

, [xik−1 , · · · , [xi1 , xi2 ], · · · ]] ∈ Dn (n = i1 + i2 + · · ·+ ik), by Lemmas 3.2
and 3.3, we can produce a self-map I + [ϕik

, [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]] ∈ Aut(ΣP )
such that the restriction (I + [ϕik

, [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]])�|L<n
is the identity,

and

(I + [ϕik
, [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]])�(xn) = xn + n![xik

, [xik−1 , · · · , [xi1 , xi2 ], · · · ]],
where xn is a rationally non-trivial indecomposable generator in π2n+1(ΣP )/torsion.
We now consider the diagram

Aut(ΣP ) −−−−→ Aut(L<n)⏐⏐� �⏐⏐
Hom(QnL, DnL) −−−−→ Aut(L≤n) −−−−→ Aut(L<n) ⊕ Aut(QnL)

and the composition

L≤n
q−−−−→ QnL

[ϕik
,[ϕik−1 ,··· ,[ϕi1 ,ϕi2 ],··· ]]�

−−−−−−−−−−−−−−−−−−−→ DnL
j−−−−→ L≤n

of maps. Here,
(1) q is the projection and j is the inclusion;
(2) the map Hom(QnL, DnL) → Aut(L≤n) sends [ϕik

, [ϕik−1 , · · · , [ϕi1 , ϕi2 ],
· · · ]]� to I + j ◦ [ϕik

, [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]]� ◦ q, and the map out of
Aut(L≤n) is given by restriction and projection; and

(3) the right vertical arrow is the projection.
Note that the (iterated) commutators [ϕik

, [ϕik−1 , · · · , [ϕi1 , ϕi2 ], · · · ]] completely de-
pend on the types of (iterated) Whitehead products [xik

, [xik−1 , · · · , [xi1 , xi2 ], · · · ]]
as in Lemma 3.3. We also note that the map Aut(L≤n) → Aut(L<n) ⊕ Aut(QnL)
is an epimorphism and that Aut(QnL) ∼= Aut(Z) ∼= Z2 because QnL has the only
one indecomposable generator, up to sign, for each n. Those facts and the induc-
tion hypothesis force the map Aut(ΣP ) → Aut(L≤n) to have a finite cokernel as
required. �
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