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EIGENVALUE ESTIMATES FOR SUBMANIFOLDS
WITH LOCALLY BOUNDED MEAN CURVATURE IN N × R

G. PACELLI BESSA AND M. SILVANA COSTA

(Communicated by Richard A. Wentworth)

Abstract. We give lower bounds for the fundamental tone of open sets in
submanifolds with locally bounded mean curvature in N × R, where N is an
n-dimensional complete Riemannian manifold with radial sectional curvature
KN ≤ κ. When the immersion is minimal our estimates are sharp. We also
show that cylindrically bounded minimal surfaces have a positive fundamental

tone.

1. Introduction

The fundamental tone λ∗(Ω) of an open set Ω in a smooth Riemannian manifold
M is defined by

λ∗(Ω) = inf{∫Ω |grad f |2
∫Ω f2

; f ∈ H1
0 (Ω)\{0}}.

When Ω = M is an open Riemannian manifold, the fundamental tone λ∗(M)
coincides with the greatest lower bound inf Σ of the spectrum Σ ⊂ [0,∞) of the
unique self-adjoint extension of the Laplacian � acting on C∞

0 (M), also denoted
by �. When Ω is compact with piecewise smooth boundary ∂Ω (possibly empty),
λ∗(Ω) is the first eigenvalue λ1(Ω) of Ω (Dirichlet boundary data if ∂Ω �= ∅). A
well studied problem in the geometry of the Laplacian is the relation between the
first eigenvalue/fundamental tone of open sets of a Riemannian manifold and its
geometric invariants; see [2], [3], [8] and the references therein. Another interesting
problem is to give bounds for the the first eigenvalue/fundamental tone of open sets
of minimal submanifolds of Riemannian manifolds; see [4], [5], [7], [9], [10]. There
has recently been increasing interest in the study of minimal surfaces (constant
mean curvature) in product spaces N × R, after the discovery of many beautiful
examples in those spaces; see [16], [17]. This motivates us to study the fundamental
tone of minimal submanifolds of product spaces N × R. We prove the following
theorem.

Theorem 1.1. Let ϕ : M ↪→ N × R be a complete minimal m-dimensional sub-
manifold, where N has radial sectional curvature K(γ(t))(γ′(t), v) ≤ κ, v ∈ Tγ(t)N ,
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|v| = 1, v ⊥ ∂t, along the geodesics γ(t) issuing from a point x0 ∈ N . Let
Ω ⊂ ϕ−1(BN (x0, r)×R) be a connected component, where r < min{inj(x0), π/2

√
κ}

(π/2
√

κ = ∞ if κ ≤ 0). Then

(1.1) λ∗(Ω) ≥ λ1(BNm−1(κ)(r)).

If Ω is bounded, then inequality (1.1) is strict. Here N
m−1(κ) is the (m − 1)-

dimensional simply connected space form of constant sectional curvature κ.

Theorem 1.1 can be viewed as a version of Theorem 1.10 of [5] for product spaces.
There Bessa and Montenegro gave eigenvalue estimates for pre-images of geodesic
balls in Riemannian manifolds with radial sectional curvature bounded above. Here
we give lower eigenvalue estimates for pre-images of cylinders in product spaces.

Remark 1.2. Inequality (1.1) is sharp. For if we let ϕ : H
m−1(−1)×R ↪→ H

n(−1)×R

be given by ϕ(x, t) = (i(x), t), where i : H
m−1(−1) ↪→ H

n(−1) is a totally geodesic
embedding, then for Ω = ϕ−1(BHn(−1)(r) × R) = BHm−1(−1)(r) × R we have

λ∗(Ω) = λ1(BH(−1)m−1(r)).

Corollary 1.3. Let ϕ : M ↪→ R
3 be a complete minimal surface with ϕ(M) ⊂

BR2(r) × R. Then

(1.2) λ∗(M) ≥ λ1(BR2(r)) =
c0

r2
,

where c0 is the first zero of the J0-Bessel function.

Question 1.4. The only examples of complete surfaces in R
3 with positive funda-

mental tone (to the best of our knowledge) are the Nadirashvili bounded minimal
surfaces [18], the Martin-Morales cylindrically bounded minimal surfaces [15] and
the unearthly examples of Lopez-Martin-Morales bounded minimal surfaces, [13],
[14], where they added handles to Nadirashvillli bounded minimal surfaces and
constructed complete nonorientable bounded minimal surfaces in R

3. These min-
imal surfaces have at least two bounded coordinate functions, and that is crucial
in the proof that their fundamental tones are positive. This raises the question
as to whether there are minimal surfaces in R

3 with at most one bounded coordi-
nate function with positive fundamental tone. In particular one can ask: has the
Jorge-Xavier minimal surface inside the slab [12] positive fundamental tone?

A second purpose of this paper is study the fundamental tones of domains in
submanifolds with locally bounded mean curvature in N × R. This is a stronger
notion than the locally bounded mean curvature considered in [4].

Definition 1.5. An immersed submanifold ϕ : M ↪→ N × R has locally bounded
mean curvature |H| in N × R if for any p ∈ N and r > 0, the number

h(p, r) = sup{|H(x)|; x ∈ ϕ(M) ∩ (BN (p, r) × R)}
is finite. Here BN (x0, r) is the geodesic ball of radius r and center x0 in N .

Our second result is the following theorem.

Theorem 1.6. Let ϕ : M ↪→ N×R be a complete immersed m-submanifold with lo-
cally bounded mean curvature in N×R, where N has radial sectional curvature K ≤
κ, along the geodesics issuing from a point x0 ∈ N . Let Ω(r) ⊂ ϕ−1(BN (p, r)× R)
be any connected component with r ≤ min{injN (x0), π/2

√
κ}. Suppose in addition

that
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• if |h(x0, r)| < Λ2 < ∞, then r ≤ (Cκ/Sκ)−1(Λ2/(m − 2)) or
• if limr→∞ h(x0, r) = ∞, then r ≤ (Cκ/Sκ)−1(h(x0, r0)/(m − 2)), where r0

is so that (m − 2)Cκ

Sκ
(r0) − h(x0, r0) = 0.

Then we have

λ∗(Ω(r)) ≥

⎡
⎢⎢⎣

(m − 2)
Cκ

Sκ
(r) − h(x0, r)

2

⎤
⎥⎥⎦

2

> 0·

Corollary 1.7 (Bessa-Montenegro, [6]). Let ϕ : M ↪→ N × R be a compact im-
mersed submanifold with mean curvature vector H. Let p1 : N × R → N be the
projection on the first factor. Then the extrinsic radius of p1(M) is given as

Rp1(M) = (
Cκ

Sκ
)−1(sup

M
|H|/(m − 2)).

2. Preliminaries

Let ϕ : M ↪→ W be an isometric immersion, where M and W are complete
Riemannian manifolds of dimension m and n respectively. Consider a smooth
function g : W → R and the composition f = g ◦ ϕ : M → R. Identifying X with
dϕ(X) we have at q ∈ M that the Hessian of f is given by

(2.1) Hess f(q) (X, Y ) = Hess g(ϕ(q)) (X, Y ) + 〈grad g , α(X, Y )〉ϕ(q).

Taking the trace in (2.1), with respect to an orthonormal basis {e1, . . . em} for TqM ,
we have the Laplacian of f ,

∆ f(q) =
m∑

i=1

Hess g(ϕ(q)) (ei, ei) + 〈grad g ,

m∑
i=1

α(ei, ei)〉.(2.2)

The formulas (2.1) and (2.2) are well known in the literature; see [11].
For the proof of Theorems 1.1 and 1.6 we will need a few preliminary results.

The first result we need is the Hessian Comparison Theorem; one can see [19] for a
proof.

Theorem 2.1 (Hessian Comparison Theorem). Let W be a complete Riemannian
manifold and let ρ be the distance function on W to x0. Let γ be a minimizing
geodesic starting at x0 and suppose that the radial sectional curvatures of M along
γ are bounded above Kγ ≤ κ. Then the Hessian of ρ at γ(t) satisfies

(2.3) Hess ρ(γ(t))(X, X) ≥ Cκ

Sκ
(t) · ‖X‖2, X ⊥ γ′(t),

where

(2.4) Sκ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(
√

κ · t)/
√

κ if κ > 0

1/t if κ = 0

sinh(
√
−κ · t)/

√
−κ if κ < 0

and Cκ(t) = S′
κ(t).
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The second and third results we need are eigenvalue estimates proved in [5] and
in [4]. The former is a generalization of the well known Barta’s eigenvalue theorem
[1], and the later is a generalization of a result of Cheung-Leung [10].

Theorem 2.2 ([5]). Let Ω be an open set in a Riemannian manifold M . Then

(2.5) λ∗(Ω) ≥ sup
C(Ω)

{inf
Ω

(div X − |X|2)},

where C(Ω) is the set of smooth vector fields in Ω \ F for some closed set F with
Hausdorff measure Hn−1(F ∩ Ω) = 0.

Theorem 2.3 ([4]). Let Ω be an open set in a Riemannian manifold M and c(Ω)
a constant defined by

c(Ω) = sup
C+(Ω)

(infΩ div X)
supΩ |X|2 ,

where C+(Ω) = {X ∈ C(Ω) infΩ div X > 0 and supΩ |X| < ∞}. Then

(2.6) λ∗(Ω) ≥ c(Ω)2

4
.

Finally, the fourth result we need is the following technical lemma.

Lemma 2.4. Let v : BNn(κ)(r) → R be a first positive eigenfunction of BNn(κ)(r) ⊂
N

n(κ) associated to the first eigenvalue λ1(BNn(κ)(r)). Then

(2.7) n
Cκ(t)

Sκ(t)
v′(t) + λ1(BNn(κ)(r))v(t) < 0, t ∈ (0, r).

Proof. We are going to treat the cases κ < 0, κ = 0 and κ > 0 separately. Suppose
first that κ < 0 and let us call λ = λ1(BNn(κ)(r)) for simplicity of notation. Recall
that v(t) satisfies the following differential equation:

(2.8) v′′(t) + (n − 1)
Cκ

Sκ
(t)v′(t) + λv(t) = 0, t ∈ (0, r).

Consider the function µ(t) = Cκ(t)
λ

nκ . Thus µ′(t) = −λ
n Sκ(t) Cκ(t)

λ
nκ−1 and

(2.9)
v′(t)µ(t) − µ′(t)v(t) = v′(t) Cκ(t)

λ
nk + λ

nSκ(t) Cκ(t)
λ

nκ−1v(t)

= 1
n Cκ(t)

λ
nκ−1 Sκ(t)

(
nCκ(t)

Sκ(t) v
′(t) + λv(t)

)
.

From (2.9) we see that to prove that n
Cκ(t)
Sκ(t)

v′(t)+λv(t) < 0 we only need to prove

v′(t)µ(t) − µ′(t)v(t) < 0.

Multiplying equation (2.8) by Sn−1
κ , we obtain the following differential equation:

(2.10)
(
Sn−1

κ v′
)′

(t) + λSn−1
κ (t) v(t) = 0, t ∈ (0, r).

The function µ(t) = Cκ(t)
λ

nκ satisfies the differential equation

(2.11) µ′′(t) = −λ

(
1

nC2
κ(t)

− λ

n2

S2
κ(t)

C2
κ(t)

)
µ(t).

Multiplying equation (2.11) by Sn−1
κ (t) we obtain

(2.12) Sn−1
κ (t)µ′′(t) + λSn−1

κ (t)
(

1
n C2

κ(t)
− λ

n2

S2
κ(t)

C2
κ(t)

)
µ(t) = 0.
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Adding and subtracting the term (n − 1)µ′(t)Sn−2
κ (t)Cκ(t) we obtain

(2.13) (Sn−1
κ µ′)′(t) + λSn−1

κ (t)
(

n − 1
n

+
1

nC2
κ(t)

− λ

n2

S2
κ(t)

C2
κ(t)

)
µ(t) = 0.

The functions v and µ then satisfy the follow identities:

(2.14)

(
Sn−1

κ v′
)′ (t) + λSn−1

κ (t) v(t) = 0,

(Sn−1
κ µ′)′(t) + λSn−1

κ (t)
(

n − 1
n

+
1

n C2
κ(t)

− λ

n2

S2
κ(t)

C2
κ(t)

)
µ(t) = 0.

Multiply the first identity of (2.14) by µ(t) and the second identity by −v(t). Adding
them and integrating from 0 to t we obtain
(2.15)

Sn−1
κ (v′µ − µ′v) (t) = −

∫ t

0

λSn−1
κ (t)

(
1
n
− 1

nC2
κ(t)

+
λ

n2

S2
κ(t)

C2
κ(t)

)
µ(t)v(t)dt.

Clearly

λSn−1
κ (t)

(
1
n
− 1

nC2
κ(t)

+
λ

n2

S2
κ(t)

C2
κ(t)

)
µ(t)v(t) > 0.

Therefore we have v′(t)µ(t)−µ′(t)v(t) < 0 for t ∈ (0, r). This settles the case κ < 0.
Suppose that κ > 0. We have Sκ(t) = 1√

κ
sin

√
κt for t ∈ (0, r) with r < π√

κ
.

Define µ(t) = Cκ(t)
−λ
nκ . Thus µ′(t) =

λ

n
Sκ(t)Cκ(t)

−λ
nκ −1. With a similar procedure

we obtain that v and µ satisfy the following differential identities:

(2.16)

(
Sn−1

κ v′
)′ (t) + λSn−1

κ (t) v(t) = 0,

(Sn−1
κ µ′)′(t) − λSn−1

κ (t)
(

n − 1
n

+
1

nC2
κ(t)

+
λ

n2

S2
κ(t)

C2
κ(t)

)
µ(t) = 0.

In (28) we multiply the first identity by µ and the second by −v. Adding them and
integrating from 0 to t the resulting identity we obtain
(2.17)

Sn−1
κ (v′µ − µ′(t)v)(t)=−

∫ t

0

λ1S
n−1
κ (t)

(
2 − 1

n
+

1
nC2

κ(t)
+

λ

n2

S2
κ(t)

C2
κ(t)

)
µ(t)v(t)dt.

The term λSn−1
κ (t)

(
2 − 1

n
+

1
nC2

κ(t)
+

λ

n2

S2
κ(t)

C2
κ(t)

)
µ(t)v(t) > 0 is positive for t ∈

(0, r), r < π/2
√

κ. Therefore we have that v′(t)µ(t) − µ′(t)v(t) < 0 for t ∈ (0, r),
r < π/2

√
κ.

For the case κ = 0 we proceed similarly. Define µ(t) = e−
λt2
2n . The functions v

and µ satisfy the following identities:

(2.18)

(tn−1v′(t))′ + λtn−1v(t) = 0,

(tn−1µ′(t))′ + λtn−1(1 − λ t2

n2
)µ(t) = 0.
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In (2.18) we multiply the first identity by µ and the second by −v. Adding them
and integrating from 0 to t the resulting identity we obtain

tn−1(v′(t) µ(t) − v(t) µ′(t)) = −λ2

n2

∫ t

0

µ(t) v(t) < 0, ∀t ∈ (0, r).

Then µ(t)v′(t) − µ′(t)v(t) < 0. This proves the lemma. �

3. Proof of the results

3.1. Proof of Theorem 1.1.

Proof. Let ϕ : M ↪→ N × R be a minimal immersion of an m-dimensional Rie-
mannian manifold M , where N is a complete Riemannian n-manifold with ra-
dial sectional curvature along the geodesics γ(t) issuing from a point x0 ∈ N
bounded from above K(γ′(t), v) ≤ κ, v ∈ Tγ(t)N , |v| = 1, v ⊥ ∂t . Let Ω ⊂
ϕ−1(BN (x0, r) × R), r < min{inj(x0), π/2

√
κ}(π/2

√
κ = ∞ if κ ≤ 0) be a con-

nected component. Let ρN (x) = distN (x0, x) be the distance function in N to
x0 and let v : BNm−1(κ)(r) → R be a first positive eigenfunction associated with
the first eigenvalue λ1(BNm−1(κ)(r)) of the geodesic ball of radius r in the simply
connected (m−1)-dimensional space form N

m−1(κ) of constant sectional curvature
κ. The eigenfunction v is radial, i.e. v(x) = v(|x|), and we can look at v as it was
defined in [0, r] satisfying the equation

(3.1) v′′(t) + (m − 2)
Cκ

Sκ
(t)v′(t) + λ1(BNm−1(κ)(r))v(t) = 0, t ∈ (0, r).

Choose the first eigenfunction that satisfies the initial conditions v(0) = 1 and
v′(0) = 0. Define g : BN (r)×R → R by g = v ◦ ρN ◦ p and f : Ω → R by f = g ◦ϕ,
where p : N × R → N is the projection in the first factor. Setting X = grad log f
we have that div X − |X|2 = �f/f . Thus by Theorem 2.2 we have that

λ∗(Ω) ≥ inf
Ω

(−�f

f
).

We are going to give the lower bound −�f/f . Let x ∈ Ω and {e1, . . . , em} be any
orthonormal basis for TxΩ. The Laplacian of f at x is given by

(3.2) �M f(x) =
m∑

i=1

Hess(N×R) g(ϕ(x)) (ei, ei) =
m∑

i=1

HessN v ◦ ρN (q)(ei, ei).

Consider the orthonormal basis {grad ρN , ∂/∂θ1, . . . , ∂/∂θn−1, ∂/∂s} for
T(q,s)(N × R), where {grad ρN , ∂/∂θ1, . . . , ∂/∂θn−1} is an orthonormal basis for
TqN (polar coordinates). Let {e1, . . . , em} be an orthonormal basis for TxΩ and
write

(3.3) ei = ai · grad ρN + bi · ∂/∂s +
n−1∑
j=1

cj
i · ∂/∂θj ,
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where ai, bi, c
j
i are constants satisfying a2

i + b2
i +

∑n−1
j=1 (cj

i )
2 = 1, i = 1, . . . , m.

Computing �Mf(x) we have (recall that ϕ(x) = (q, s), and we let t = ρN (q))

�f(x) =
m∑

i=1

[ei(v′(t))〈grad ρN , ei〉 + v′(t)HessNρN (ei, ei)]

= v′′(t)
m∑

i=1

a2
i + v′(t)

m∑
i=1

n−1∑
j=1

(cj
i )

2HessρN (∂/∂θj , ∂/∂θj).

Since v′(t) ≤ 0 we have by the Hessian Comparison Theorem that

−�f(x) ≥ −v′′(t)
m∑

i=1

a2
i − v′(t)

Cκ

Sκ
(t)

m∑
i=1

n−1∑
j=1

(cj
i )

2

= −v′′(t)
m∑

i=1

a2
i − v′(t)

Cκ

Sκ
(t)

[
m −

m∑
i=1

a2
i −

m∑
i=1

b2
i

]

= −v′′(t) − (m − 2)v′(t)
Cκ

Sκ
(t)(3.4)

+v′′(t)

[
1 −

m∑
i=1

a2
i

]
− v′(t)

Cκ

Sκ
(t)

[
1 −

m∑
i=1

a2
i + 1 −

m∑
i=1

b2
i

]

= λ1(BNm−1(κ)(r))v(t)

+v′′(t)

[
1 −

m∑
i=1

a2
i

]
− v′(t)

Cκ

Sκ
(t)

[
1 −

m∑
i=1

a2
i + 1 −

m∑
i=1

b2
i

]
.

We will show that the last line of (3.4) is nonnegative; this is

(3.5) v′′(t)

[
1 −

m∑
i=1

a2
i

]
− v′(t)

Cκ

Sκ
(t)

[
1 −

m∑
i=1

a2
i + 1 −

m∑
i=1

b2
i

]
≥ 0.

Substituting v′′(t) = −(m−2)v′(t)
Cκ

Sκ
(t)−λ1(BNm−1(κ)(r))v(t) in (3.5) we obtain

v′′(t)

[
1 −

m∑
i=1

a2
i

]
− v′(t)

Cκ

Sκ
(t)

[
1 −

m∑
i=1

a2
i + 1 −

m∑
i=1

b2
i

]

= −
[
(m − 1)v′(t)

Cκ

Sκ
(t) + λ1(BNm−1(κ)(r))v(t)

][
1 −

m∑
i=1

a2
i

]

− v′(t)
Cκ

Sκ
(t)

[
1 −

m∑
i=1

b2
i

]
≥ 0

(3.6)
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since we have that (m − 1)v′(t)
Cκ

Sκ
(t) + λ1(BNm−1(κ)(r))v(t) < 0 by Lemma (2.4)

and
[
1 −

∑m
i=1 a2

i

]
≥ 0 and

[
1 −

∑m
i=1 b2

i

]
≥ 0. From (3.4) we have −�f

f
(x) ≥

λ1(BNm−1(κ)(r)). Therefore,

λ∗(Ω) ≥ inf
Ω

(−�f/f) ≥ λ1(BNm−1(κ)(r)).

To prove the last assertion of Theorem 1.1 we need the following proposition
proved in [5].

Proposition 3.1. Let Ω be a bounded domain in a smooth Riemannian manifold.
Let v ∈ C2(Ω) ∩ C0(Ω), v > 0 in Ω and v|∂Ω = 0. Then

(3.7) λ∗(Ω) ≥ inf
Ω

(−�v

v
).

Moreover, λ∗(Ω) = infΩ(−�v

v
) if and only if v = u, where u is a positive eigen-

function of Ω, i.e. �u + λ∗(Ω)u = 0.

If we have equality λ1(Ω) = λ1(BNm−1(κ)(r)), we have that f is an eigenfunction
and the expression (3.6) is zero (at each point of Ω). This happens if and only if

1 =
m∑

i=1

α2
i =

m∑
i=1

β2
i .

On the other hand, we can write at each point x ∈ Ω

grad N =
m∑

i=1

αiei + (grad N )⊥,

where (grad N )⊥ is normal to the tangent space of TxΩ. Likewise we can write

∂/∂s =
m∑

i=1

βiei + (∂/∂s)⊥.

Since ‖grad N‖2 =
∑m

i=1 α2
i + ‖(grad N )⊥‖ and ‖∂/∂s‖2 =

∑m
i=1 β2

i + ‖(∂/∂s)⊥‖2,
we conclude that (grad N )⊥ = 0 = (∂/∂s)⊥. Thus the tangent space TxΩ contains
the vectors grad ρN and ∂/∂s for each x ∈ Ω. Thus, we could have chosen in (3.3)
an orthonormal basis for TxΩ in the following way: e1 = grad ρN , e2 = ∂/∂s and
{e3, . . . , em} ⊂ {∂/∂θ1, . . . , ∂/∂θn−1}. Clearly the set of vectors grad N and ∂/∂s
form smooth vector fields on Ω since they are the restrictions of smooth vector fields
on N × R to a smooth immersed submanifold. The integral curves of the vector
field ∂/∂s in Ω are {x} × R contained in ϕ(M), and Ω = ϕ−1(BN (r) × R) is not
bounded. This proves Theorem 1.1. �

3.2. Proof of Theorem 1.6. Let ϕ : M ↪→ N × R be a complete immersed
m-submanifold with locally bounded mean curvature in N × R, where N has ra-
dial sectional curvature bounded above KN ≤ κ along the geodesics issuing from
x0. Define ρ̃N : N × R → R by ρ̃N (x, t) = ρN (x), ρN (x) = distN (x0, x). Let
Ω(r) = ϕ−1 (BN (x0, r) × R), f = ρ̃N ◦ ϕ and X = grad f . The idea is to choose
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r < min{injN (x0), π/2
√

κ}, π/2
√

κ = ∞ if κ ≤ 0, properly such that infΩ(r) div X >
0. Then by Theorem 2.3 we have that

λ∗(Ω(r)) ≥
(

inf div X

2 sup |X|

)2

·

Observe that div X = �Mf , and as in (2.2) we have

�Mf(x) =

[
m∑

i=1

HessN×Rρ̃N (ei, ei) + 〈grad N×Rρ̃N ,
→
H〉

]
(ϕ(x)),

where
→
H=

∑m
i=1 α(ei, ei) is the mean curvature vector of ϕ(M) at ϕ(x) and

{e1, . . . , em} is an orthonormal basis of TxM as in (3.3) identified with {dϕ ·e1,
. . . , dϕ · em}. Now

m∑
i=1

HessN×Rρ̃N (ei, ei) =
m∑

i=1

HessNρN (ei, ei)

=
m∑

i=1

n−1∑
j=1

(ci
j)

2HessNρN (∂/∂θj , ∂/∂θj)(3.8)

≥
m∑

i=1

(1 − a2
i − b2

i )
Cκ

Sκ
(r).

On the other hand 〈grad N×Rρ̃N ,
→
H〉 = 〈grad NρN ,

→
H〉 and

〈grad NρN ,
→
H〉 = 〈(grad NρN )⊥,

→
H〉

≤ |H|

√√√√1 −
m∑

i=1

a2
i(3.9)

≤ h(x0, r)

√√√√1 −
m∑

i=1

a2
i ,

since |grad NρN )⊥|2 = (1 −
∑m

i=1 a2
i ). Therefore from (3.8) and (3.9) we have

�Mf(x) ≥ (m − 2)
Cκ

Sκ
(r) − h(x0, r) > 0.

We have two cases to consider. First is the case that |h(x0, r)| < Λ2 < ∞
and we choose r ≤ min{injN (x0), π/2

√
κ, (Cκ/Sκ)−1(Λ2/(m − 2))}. In case that

limr→∞ h(x0, r) = ∞ there is r0 so that (m − 2)Cκ

Sκ
(r0) − h(x0, r0) = 0, since we

can assume without loss of generality that h(x0, r) is a continuous nondecreasing
function in r. Then we choose

r ≤ min{injN (x0), π/2
√

κ, (Cκ/Sκ)−1(h(x0, r0)/(m − 2))}.
In both cases we have

λ∗(Ω(r)) ≥
[

(m − 2)Cκ

Sκ
(r) − h(x0, r)
2

]2

·

To prove Corollary 1.7 just see that Ω(Rp1(M)) = M and λ∗(M) = 0.
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