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INCLUSIONS AND COINCIDENCES
FOR MULTIPLE SUMMING MULTILINEAR MAPPINGS

G. BOTELHO, H.-A. BRAUNSS, H. JUNEK, AND D. PELLEGRINO

(Communicated by Nigel J. Kalton)

ABSTRACT. Using complex interpolation we prove new inclusion and coinci-
dence theorems for multiple (fully) summing multilinear and holomorphic map-
pings. Among several other results we show that continuous n-linear forms on
cotype 2 spaces are multiple (2;qy, ..., gk )-summing, where 2k=1 <« n < 2k,

go =2 and qp41 = 12f¢)1€k for k > 0.

1. INTRODUCTION AND NOTATION

The essence of the theory of absolutely summing linear operators can be traced
back to Grothendieck’s celebrated Resumé [I4] and further fundamental works by
Pietsch [32] and Lindenstrauss and Pelczynski [I9]. For the linear theory of abso-
lutely summing operators the reader is referred to the excellent monograph [11]. In
1983 Pietsch [33] sketched an n-linear approach to the theory of absolutely sum-
ming operators and since then a vast number of papers has followed this line (e.g.,
[, 15, 61, 8, [0, 12}, (13}, (175, [18, 21} 22, 27, 28], 30, 26}, 29, 311 [35]). In this direction, mul-
tiple summing (also called fully summing) multilinear mappings were introduced by
Matos [21I] and, independently, by Bombal, Pérez-Garcia and Villanueva [5]. This
class has proved to be one of the most useful and fruitful multilinear generalizations
of the concept of an absolutely summing linear operator. It is worth mentioning
that the bilinear case was first treated in 1985 by Ramanujan and Schock [34]. The
case of holomorphic mappings is treated in [27]. For the theory of multiple (fully)
summing n-linear mappings we refer to [5 2] 2§].

In the following, N denotes the set of all positive integers, E, E1, ..., E,, F denote
Banach spaces over K = R or C. By E’ we mean the topological dual of E' and Bp
represents its closed unit ball.

Given n € N, the space of all continuous n-linear mappings from F; x --- x E,
to F' endowed with the sup norm is denoted by L(E,...,E,; F) (L("E; F) if E =
E,=---=E, and L(E;F) if n = 1). The space of all continuous n-homogeneous
polynomials with the sup norm will be represented by P("E; F). For p > 1, the
vector space of all sequences (2;)52; in E such that [|(z;)32,]l, = (3272, ijHp)% <
oo is denoted by £,(E). We represent by £/(E) the linear space of the sequences
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(zj)32; in E such that (¢(7;))32; € £, for every ¢ € E’. The expression

1(25)521 [l p = sup [[((2))721 1l
pEBg

defines a norm on £} (E). For the corresponding m-dimensional spaces we write 5
and /7', instead of £, and £ respectively.

pw
Given 1 < ¢; <p, j=1,...,n, an n-linear mapping 17": £y x --- X E, — F is
multiple (or fully) (p;q1,. .., qn)-summing if there exists C' > 0 such that
1/p
m n
1 k
DR FACTRNSRE LN =Y | [ [[C a0 vy s
j17-~7jn=1 k=1

for every m € N and every x§-k) € Ex,j=1,....,mand k=1,....n. The space com-

posed by all multiple (p; g1, .., gn)-summing n-linear mappings from E; X -+ x E,
into F' is denoted by Lis(piqy,....qn)(E1, .., En; F), and the infimum of the con-

stants C' for which the inequality always holds defines a norm || - [|s(pigy,....q) O
Linspiqrsan) By By F). If g = -+ = ¢, = q, we sometimes write ms(p; q)
instead of ms(p;q, ...,q) and if p=qg=¢q; = --- = g, we simply write ms, p instead
of ms(p;p).

An important result due to Bohnenblust and Hille [4] asserts that for each posi-
tive integer n, there is a constant ¢, so that

nt1
oo 2n

(1.1) ST JA(ejy, ey, )T < ¢ || Al

Jiseejn=1

for all A € L(™cg;K). With a simple reformulation of (IIl) one can obtain the
“coincidence result”

(1.2) E(El, ey ETL) K) = Lms(v?ill ;1’”.’1)(E1, ey En, K)
for every n > 2 and every Banach spaces Ej,..., E, (this result appears in [2§]).
As nQ—fl — 2, it is natural to wonder if multilinear forms are multiple (2;g,...,q)-

summing for some ¢ > 1. Surprisingly enough we will show that this is true for
n-linear forms on cotype 2 spaces but with a ¢ depending on n. More precisely, in
Section 2 we will show that

‘C(Ela ey ETL»K) = Ems(Z;qk,...,qk)(Ela e 7E’n7K)7

whenever E1, ..., E, have cotype 2, 287! < n < 2F, ¢y = 2 and g4 = 124?;@

k > 0. Using interpolation techniques, intermediate results are also obtained: if
6 € [0,1], then

for

L(E1,...,EpK) = (Ey, ..., By K)

2n ay
ms (2 (@ —1)0+F1 )

for Fy, ..., Ey,, k,n and ¢ as above. These results will be firstly proved for complex
Banach spaces and the real case will follow by complexification. As far as we know,
this interpolation-complexification argument was first applied to multiple summing
mappings by Pérez-Garcia [28]. In Section 3 we obtain new inclusions between
spaces of multiple summing multilinear, polynomial and holomorphic mappings.
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2. COINCIDENCE RESULTS FOR MULTIPLE SUMMING FORMS

Recall that a Banach space E has cotype g > 2 if there exists a constant K > 0

such that, no matter how we choose k € N and x1,...,x; € F,
. : T 2 3
Sl <k | [ ) d)
=1 o ||li=1

where r; are the Rademacher functions. The infimum of the constants K is denoted
by Cy(E).

Since {5 has cotype 2, a particular case of a result obtained (independently) by
Pérez-Garcia [28, Teorema 5.2] and Souza [35, Teorema 1.7.3] gives us the following:
Lemma 2.1. For any n-tuple (E1, ..., E,) of Banach spaces we have

£(E17 e 7E’n7 62) = ﬁms(Q;l,...,l) (Elv ey ETH 62)

Another useful and well-known result that will be useful in the next theorem is
the following (the proof is simple, and we omit it):

Lemma 2.2. If m>1, Ey,...,E,,, F are Banach spaces and
L(Ey,...,Ep; F) = Logpig)(E1, ..., B F),

then
L(E1,...,BEp; F) = /Jms(p;q)(El, Y Y

for every 1 <n <m.
Henceforth (gx)52,, will be the sequence of real numbers given by

2qy
=2 and =
4o dk+1 1+ qr

Theorem 2.3. Letn > 1 and let Eq,...,E, be Banach spaces of cotype 2. If k is
the natural number such that 251 < n < 2%, then

L(E1, ... En;K) = Lo@genar)(Bis - o Bni K).

for £ > 0.

Proof. First we prove the complex case K = C. We can assume that n = 2* for
some natural k£ > 0, because otherwise we could choose a natural k such that n < ok
and extend the n-tuple (Ey, ..., E,) to the 2F-tuple (Fy,..., E,,C,...,C) and use
Lemma 221 We are going to prove the claim by induction over k. For k = 0 there
is nothing left to do. Suppose now that the claim is true for n = 2*. Let us consider
any 2n-linear form T' € L(E1, ..., Ey,, F1, ..., F,;C) with spaces E;, F; of cotype 2
(2+1 = 2n). In a first step we are going to show that

(21) T S Lms(2;1,...,1,qk,...,qk)(E17 o ,En, Fl, o e 7F7L; (C)
For fixed m>1andalll1 <r,s<n= 2k let any m-tuples
(@) € B, and (y$)7_, € Fy

be given. For the sake of abbreviation we put
1) (n))

i Ty,

for i = (i1,...,4,) and y; = (y(-ll),..., ](:)) for j=(j1,---,Jn)-

Xi:(I j

For fixed y; we define
Ty, € L(Ey, ..., Eny;C) by Ty, (w1,...,20) = T(21,. .., Tn, ¥j)-
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By the induction assumption we have that Ty, € Lig2,q,.....00) (E1, - - - s En; C). Now
define
S e E(El, RN Engﬂg) by Sx = (T(X, yj)j€{17.__7m}n,7 0,.. ) € ls.

Lemma 2Tl gives that S € Lyg2:1,....1)(E1, ..., En;la), ie

1/2
(2.2) (ZIISXiF) <c||S] - HII NIl

Further, from the induction assumption there is ¢; such that ||7(x, ) [lms(2;qy.....q0) <
a||T(x,)|| for every x € Ey x -+ x E,. So,

1/2
ISI= s ISxlb= s [ STyl
XEBE1><'“><BE7L x€BE1><-“><BEn .
<o oswp|T(x ||H 1SV g < eall | H [y e
XEBEIX-“XBE"
Plugging this into (Z2) we end up with

1/2

Y Ty
i
1/2 n
- (z ninn?) <r- TPl - H .
i r=1

which proves ([20). By symmetry we also have
(23) TeLl )(Eh...,En,Fl,...,Fn;(C).

ms(2;qk,- Gk, 15051

We proceed by complex interpolation. It follows from (ZI) and (Z3) that the
2n-linear mappings

\I/(O).em (Ey) x Xe;nw( )xquw( 1) X - Xé;r;w(F)ﬁégl”((C),
\I/(l) fg,i w( ) X - Xég,z w(En)Xfl,w(Fl)X"'Xfl,w( n)_’égnn((c)
given by

1 n 1 n
(@)oo @i )50 ()

) 2™ O
(T( 7,1 P 7,,” 7y]1 A 7y.jn ))’L‘l,..w’in,jl,...,j"il

are bounded independently of m by

(2 B e =Ko and [0 < 17,5 =,

2;1,0,1,qk 501 qk) 1k s Qhs 1,01

respectively. Remember that for any Banach space G and any 1 < s < oo there is a
natural linear isometry between (7, (G) and the injective tensor product /' ®. G.

Therefore, \1139 ) and \Ilgpl ) can also be considered as mappings on the Cartesian
product of the associated tensor products with the same operator norm. Using



MULTIPLE SUMMING MULTILINEAR MAPPINGS 995

complex multilinear interpolation [2, Theorem 4.4.1] for § = 1/2, we obtain a 2n-
multilinear operator

\If’(Tl/Q) : [27171 Qe E17€Z; e El} X [(Z; ®e F1,€71n ®e Fl]

12 % 172 %

- lg" .57 0],

with ||\I!(T1 /2) | < Ké/ ’K 11 /2 Now the interpolation result due to Defant and Michels
[9] for e-tensor products comes into play. Since ¢, is g-concave for 1 < ¢ < 2, we
conclude by [9, Theorem, p. 441] (which is an extension of a classical result due to
Kouba [I7, Theorem 4.2.11]) that

(' ®:G, ' @G1yo = (] 47 ]1/20:G = €)' @G

with isomorphism constants not depending on m, provided that G has cotype 2,

1<¢g<2and % = % + ﬂ. So, \Ilg}/m can also be considered as a map
1 2 2n
Pl @ Byx e x | @ By

with ||\IJ(T1/2)H < ¢3 ~K1/2K1/2 for some constant cs not depending on m and

1 12 | 1/2
—=L+q/7le Qot1 =

- T . In terms of T this means that

1/2

ZZ |T(Xi7yj)|2 < Cq - H || ]r—1||w’(ﬂ+1 H H yjs ]S_1||w,CIk+1
i

with some constant ¢4 not depending on m, and so the complex case is done. To
prove the real case we proceed by complexification. Given real Banach spaces
Eq,...,E, of cotype 2 and T € L(En,...,E, R) by El,...,En we mean their
respective complexifications (see [23, 24]) and by T € E(El, . By C) the exten-
sion of T' according to [3, Theorem 3]. By [28, Proposicién 4.30(ii)] we know that

E‘V E have cotype 2, so the first part of the proof yields that 7' is multiple
(2; gk, - - -, qr)-summing. It follows from (an easy adaptation of) |28, Proposicién
4.30(i)] that T is multiple (2; g, - . ., g )-summing as well. O

Now we obtain a scale of coincidences from ([2]) to Theorem [Z3t

Theorem 2.4. Letn > 1 and let Eq, ..., E, be Banach spaces of cotype 2. If k is
the natural number such that 2871 < n < 2%, then

‘C(El,7En7K):‘C (E1,7E’n.7K)

for every 6 € [0,1].
Proof. By ([L2) and Theorem 23] we know that
L(Ey,...,En;C) = /_’,mb( 2n1, 1)(E1, ..., E,;C) and

£(E1, ey En; (C) = ‘Cms(Z;qk,A..,qk)(Elv ey En; (C)

Since
1 1-6 n 0 4 1 1-6 n 0
on 2n an = R
nte 2 nid @yt w1

the same interpolation-complexification argument furnishes the result. ([l
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3. INCLUSION RESULTS

Given 1 < p < ¢ < oo, it is well known that absolutely p-summing linear
operators are absolutely g-summing. For multiple summing mappings, Pérez-Garcia
[28, Teorema 4.13] has shown that Ly p(E1,...,En;F) C Linsg(Er, ..., By F)
whenever 1 <p<q¢<2(1<p<gqg<2if Ey,...,E, have cotype 2). However,
in [28, Teorema 4.13] it is also shown that there is no general inclusion theorem
for multiple summing multilinear mappings. Some surprising inclusion results for
absolutely summing polynomials and holomorphic mappings were recently obtained
n [16]. In this section we obtain new inclusions for multiple summing multilinear
mappings, polynomials and holomorphic mappings.

A result obtained independently by Pérez-Garcia [28, Teorema 5.2] and Souza
[35, Teorema 1.7.3] asserts that if F' has finite cotype ¢, then

(3.1) Lins(qy("E; F) = L("E; F) and |- < Co(E)" 1] -

ms(q;1) =

Next we will show how ([BI) can be explored in order to obtain surprising inclusion
results. For the complexification argument to work we need the following extension
of |28 Proposicién 4.30(ii)]:

Lemma 3.1. A real Banach space E has cotype q > 2 if and only if its complexi-
fication E has cotype q > 2. Also, if E has cotype 2, then E has cotype 2.

Proof. The cotype 2 case is done in [28, Proposicién 4.30(ii)]. Assume ¢ > 2. A
celebrated result due to Talagrand [36] asserts that a Banach space E has cotype
q if and only if idg is absolutely (g;1)-summing. So, from the linear case of [28|
Proposicién 4.30(ii)] we have that

E has cotype q < idg is (¢; 1)-summing

& idg is (¢; 1)-summing < E has cotype q.

Remember that whenever we write ms(r; s) we are assuming 1 < s <r.

Theorem 3.2. If Fy, ..., E, have cotype 2, F has finite cotype ¢ and 1 < s < 2,
then
‘Cms(r;s)(Elv SERE) E’n’ F) - ‘Cms(tl;tz)(Ela R En; F)
for everyn € N, 0 < 0 <1 and tq,ts satisfying
1 1—-6 6 1 1-0
— = + —and — =
11 r q to S

Moreover, if T € Lyg(ris)(E1, .., En; F), then

+6.

(3-2) 17| <16" (Ca(Bn) -+ Ca(En))? Co(B)" | TY o2 T

ms(tq;ta) ms(r s

Proof. As before, using [28, Proposicién 4.30(ii)] and Lemma Bl the real case
follows from the complex case. Assume K = C.

Claim. Under the assumptions of the theorem, if T € Lygri6)(E1, ..., Ep; F) N
Linspsh) (E1, ..., En; ) for some 1 < h <2, then T' € Lyg(¢,52,)(E1, .. ., Ep; F) and

||THms (t15t2) = < 16™ (CQ(El) CZ(ETL))Z HT”ms(f’ s) HTHHIS (p;h) >
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where 0 € [0, 1] and t1, t satisfy
1 1-6 n 0 q 1 1-6 n 0
— = —and — = .
tq r P to s h
Proof of the claim: We proceed by complex interpolation. For each positive integer
m the map 7T induces natural (uniformly) bounded n-linear mappings

W 0m (B x - x 00 (En) — €7 (F) and

U (By) X - x 0 (E) — 07 (F).

Applying the complex interpolation method [2, Theorem 4.4.1] to these n-linear
operators we get an n-linear mapping

U [0 () 5 ()] X o [0, (B, 50, ()], — [ 6 (), 65 (F)

(3.3)

[%
1-6
with o] < e

‘IIE,E’)H . By [2| Theorem 5.1.2] we have the isometry

et E) g ), = ),

with ¢; as in (33)). Using the natural isometric identification £7", (Ex) = {7'®. E,
k=1,...,n, as a particular case of [9, Lemma 2 and Proposmon 8] (remember that
ls and ¢, are 2-concave with constant 1 because s,h € [1,2]), we obtain natural

isomorphisms

T U0 (Be) = [50(Ex). O (Ex)]
with ¢y as in 3) and [|Jx|| < 16C(Ex)2. Up to these isomorphisms the mapping
\Ilgw) can be identified with the multilinear mapping

‘IIT etz w( ) X X gm (En> - em"(F‘)7

t2w
1 1
\IJT (( ( ))] 1?"'3( (n))] 1) - (T( §1)7"" ;:?))J n=1

for all sequences (x;k));” L in 67 (By) = {é;’fw(Ek),ﬂ’gfw(Ek)L, 1 <k <n. This

gives us that T' € Lygt:t,) (E1, - - -, Ens F) and

o

—0 6
b
I7) < Il |2

T>H < 16" (Cy(Ey) -+~ Co(E)) HW)

ms(t1,t2)
< 16" (Co(Br) -+ Ca(En))? HTHms (r;5) ||THms (pih)
which proves the claim.
To get the result just make p = ¢ and h = 1 in the claim and call on 31I). O
Remark 3.3. Theorem is interesting for r > ¢g. The case r < ¢ is trivial.

Example 3.4. Under the hypotheses of Theorem we have
[’ms(r;s) (nEa F) C Lo )(nEv F)a

(r=eyqror i T-0)70s
which can be regarded as a multilinear version (under certain additional hypotheses)
of [II, Theorem 10.4]. For instance, making r = 4,s =2,¢q =3, 0 =1/2, E = {5
and F' = /3, we obtain

Lins(a;2) ("5 l3) © Long(a,ay (Ml )

for every positive integer n.
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We finish the paper by showing how Theorem can be applied to multiple
summing homogeneous polynomials and holomorphic mappings.
Recall that an n-homogeneous polynomial P: E — F' is multiple (or fully) (r;s)-
summing (in symbols P € Ppg(ris) (" E; F')) if its associated symmetric n-linear map-
v
ping P is multiple (r;s)-summing. A natural norm on Py (" E; F') is given by

v
1Pl usrisy = P lims(rss)- Tt is well known [27, Theorem 4.3] that (Prs(piq): || lms(pig))
is a (global) holomorphy type (for the definition and further details on global holo-
morphy types the reader is referred to [7]).

From Theorem and the estimate ||}v3|| < e" || P|| we obtain:
Proposition 3.5. If E has cotype 2, F' has finite cotype q, and 1 < s < 2, then
(3.4) Pis(ris) ("E3 F) © Pras(tyst0) (" E; F)
for every 0 < 6 <1 and t1,ts satisfying
1 1-60 0 1 1-9

Moreover, if P € Prg(r,s)("E; F), then
n 5n n —0 0
(3.5) 1P| < (16e)"Co(B) % Co ()" | PSS P11

ms(t1,t2)
Definition 3.6. An entire mapping f: E — F is said to be of ms(p; ¢)-holomorphy
type at a € E (in the sense of Nachbin [25]) if

(8) 21" f(a) € Pus(pig) ("E; F) and

n!

(b) there exist C; > 0 and ¢; > 0 such that

1 ATL mn
md f(a) < Cicf

ms(p;q)

for every positive integer n. If f is of ms(p;¢)-holomorphy type at every a € E,
we say that f is of ms(p; ¢)-holomorphy type and we write f € Hyng(piq) (£; F). The
following inclusion follows immediately from [28 Teorema 4.13]:

Proposition 3.7. If 1 < p < g < 2 and E, F are complex Banach spaces, then
Humsp(E; F) C Hus o(E; F).

To holomorphic mappings of ms(p; g)-holomorphy type we have the following
extension of Proposition

Proposition 3.8. Let E, F be complex Banach spaces. If E has cotype 2, F' has
finite cotype q, and 1 < s < 2, then

Hms(r;s) (Ev F) - Hms(tl;tz)(E; F)
for every 0 < 6 <1 and t1,ts satisfying

1 1-6 0 1 1-96

— = + —and — =

0.
t1 r q to S +

Proof. Let f € Huyg(rs)(E; F) and a € E. Then %(inf(a) € Pus(ris)("E; F) and
there are positive constants Cy, ¢1, C' and ¢ so that

1 ATL n
ad f(a) <Cec

1~
< Cic} and H—'d”f(a)
n!

ms(r;s)
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for all n. From (B.4]) we conclude that %E"f(a) € Pus(t1:t) (" E; F), and from (3.5

we get
(1-6) 0
1 Th 0\n 5n né 1 Th 1 n
—d" f(a) < (16e”)"Co(E) 2 Cy(F)™ || =d" f(a) —d" f(a)
n! ms(t1;ta) n! ms(r;s) n!
< (166902(E>%cq(F)9)” (Ce) 0 (Cren)?
— 100! (16e902(E)%0q(F)9c§c1*9) :
which shows that f € Hnge,ie,) (E; F). O
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