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ABSTRACT. The distortion of a curve measures the maximum arc/chord length
ratio. Gromov showed that any closed curve has distortion at least w/2 and
asked about the distortion of knots. Here, we prove that any nontrivial tame
knot has distortion at least 57/3; examples show that distortion under 7.16
suffices to build a trefoil knot. Our argument uses the existence of a shortest
essential secant and a characterization of borderline-essential arcs.

Gromov introduced the notion of distortion for curves as the supremal ratio of
arclength to chord length. (See [Gro78], [Gro83, p. 114] and [GLP81] pp. 6-9].) He
showed that any closed curve has distortion § > 7 /o, with equality only for a circle.
He then asked whether every knot type can be built with, say, 6 < 100.

As Gromov knew, there are infinite families with such a uniform bound. For
instance, an open trefoil (a long knot with straight ends) can be built with § < 10.7,
as follows from an explicit computation for a simple shape. Then connect sums of
arbitrarily many trefoils—even infinitely many, as in Figure [[I--can be built with
this same distortion. (O’Hara [O’H92| exhibited a similar family of prime knots.)

Despite such examples, many people expect a negative answer to Gromov’s ques-
tion. We provide a first step in this direction, namely a lower bound depending on
knottedness: we prove that any nontrivial tame knot has § > 57 /3, more than three
times the minimum for an unknot.

To make further progress on the original question, one should try to bound
distortion in terms of some measure of knot complexity. Examples such as Figure[Il
show that crossing number and even bridge number are too strong: distortion can
stay bounded as they go to infinity. Perhaps it is worth investigating hull number
[CKKS03, Tzm06].

Our bound 0 > 57 /5 arises from considering essential secants of the knot, a notion
introduced by Kuperberg [Kup94] and developed further in [DDS06]. There, we
used the essential alternating quadrisecants of [Den04] to give a good lower bound
for the ropelength [GM99] [CKS02] of nontrivial knots.

The main tool in [DDS06] was a geometric characterization of a borderline-
essential arc (quoted here as Theorem [[I]), showing that its endpoints are part
of an essential trisecant. This result captures the intuition that in order for an
arc to become essential, it must wrap around some other point of the knot; but it
also demonstrates that secants to that other point are themselves essential. This
theorem will be important for our distortion bounds as well.
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FIGURE 1. A wild knot, the connect sum of infinitely many tre-
foils, can be built with distortion less than 10.7 by repeating scaled
copies of a low-distortion open trefoil. To ensure that the distor-
tion will be realized within one trefoil, we merely need to make
the copies sufficiently small compared to the overall loop of the
knot and sufficiently distant from each other. This knot is smooth
except at the one point pg.

Our main new technical tool is Corollary [2.6] which guarantees the existence of
a shortest essential secant. While this is obvious for smooth or polygonal knots,
we are not free to make any such assumption about the geometry of knots of
low distortion. Thus it is important that Corollary holds merely under the
topological assumption of tameness.

With these two tools, the intuition behind our main result is clear. Let ab be
a shortest essential secant for a nontrivial tame knot and scale the knot so that
la — b = 1. We prove the knot has distortion § > 57 /3 by showing that each of
the two arcs v between a and b has length at least 57/3. Indeed, for v to become
essential, by Theorem [[.I] it must wrap around some other point O of the knot. If
20 is essential for all points = € +, then ~ stays outside the unit ball around O,
and thus must wrap around 5/5 of a circle, as in Figure [[l(left). The other cases,
where some 0 is inessential, take longer to analyze but turn out to need even more
length.

Note that a wild knot, even if its distortion is low, can have arbitrarily short
essential arcs, as in the example of Figure [[l For this technical reason, our main
theorem applies only to tame knots, even though we expect wild knots must have
even greater distortion. Every wild knot has infinite total curvature, and thus infi-
nite bridge number and infinite crossing number. Thus it is initially surprising how
many wild knots can be built with finite distortion. Even some standard examples
with uncountably many wild points (on a Cantor set) can be constructed with finite
distortion. An interesting question is whether there is some (necessarily wild) knot
type which requires infinite distortion. (A knot requiring infinite length would be
an example.) Perhaps a knot with no tame points would have this property, or per-
haps even the knot described by J.W. Alexander [Ale24] (and later by G.Ya. Zuev,
see [Sos02] p. 12]), whose wild set is Antoine’s necklace.

Our bound § > 57 /3 is of course not sharp, but numerical simulations [Mul06]
have found a trefoil knot with distortion less than 7.16, so we are not too far off.
We expect the true minimum distortion for a trefoil is closer to that upper bound
than to our lower bound. A sharp bound (characterizing that minimum value)
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would presumably require a criticality theory for distortion minimizers. Perhaps
this could be developed along the lines of the balance criterion for (Gehring) rope-
length [CFK™06], but the technical difficulties seem formidable.

On the other hand, it is easy to see how to slightly improve our bound § > 57/3.
Indeed, the circular arc shown in Figure [(left) must actually spiral out in the
middle (to avoid greater distortion between ¢ and 0). In the first version [DS04]
of this paper, our bounds considered a shortest essential arc; we used logarithmic
spirals to improve an initial bound 6 > 7 to § > 3.99. Bereznyak and Svetlov [BS06]
then obtained § > 4.76 by focusing on a shortest borderline-essential secant and
making further use of spirals. We expect that such spirals could improve our bound
here by only a few percent, at the cost of tripling the length of this paper; thus we
have not pursued this idea.

There are easy upper bounds for distortion in terms of other geometric quantities
for space curves. For instance, an arc of total curvature o < m has distortion at most
sec @/y. (See [Sul08|, §7].) Similarly, a closed curve of ropelength R has distortion
at most /5. (This was [LSDR99, Thm. 3] and also follows easily from [DDS06,
Lem. 3.1].) But there are no useful bounds the other way: the example in Figure[ll
has bounded distortion but infinite total curvature and ropelength, while a steep
logarithmic spiral shows that arcs of infinite total curvature can have distortion
arbitrarily close to 1.

This means that a lower bound like ours for the distortion of a nontrivial knot
cannot be based on the known lower bounds for total curvature [Mil50] or rope-
length [DDS06]. Indeed, before our work here, it remained conceivable that the
infimal distortion of knotted curves was 7 /5.

An alternative approach might be to consider explicitly the geometry of curves of
small distortion. A closed plane curve with distortion close to 7 /5 must be pointwise
close to a round circle [DEGT07]; we have modified that argument to apply to space
curves [DS04]. Being close to a circle, of course, does not preclude being knotted.
We note that the proof looks only at distortion between opposite points on the
curve, and, indeed, any knot type can be realized so that this restricted distortion
is arbitrarily close to 7 /5.

1. DEFINITIONS AND BACKGROUND

We deal with oriented, compact, connected curves embedded in R3. Such a
curve is either an arc homeomorphic to an interval, or a knot (a simple closed
curve) homeomorphic to a circle.

Two points p, ¢ along a knot K separate K into two complementary arcs, ypq
(from p to ¢) and 4. We let £,, denote the length of v,,. Distortion contrasts the
shorter arclength distance d(p, q) := min({pq, yp) < #(K) /5 with the straight-line
(chord) distance |p — q| in R3. (For an arc v, if p,q lie in order along -, then
d(q,p) = d(p, q) := £pq is the length of the subarc 7,,.)

Definition. The distortion between distinct points p and ¢ on a curve +y is

o(p,q) :== d(p,q) > 1.

Clp—al T
The distortion of « is the supremum () := supd(p, ¢), taken over all pairs of
distinct points.
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FIGURE 2. The arc 7,4 is essential in the knot K: the parallel b,
whose linking number with K is zero, is homotopically nontrivial
in the knot complement. This shows there is no disk spanning
Ypq U pq while avoiding K. In this example, v, is also essential,
SO Pq is essential.

Our distortion bound for knots uses the notion of essential arcs, introduced
in [DDS06] as an extension of ideas of Kuperberg [Kup94]. Note that generically
a knot K together with a chord pg forms a #-graph in space; being essential is a
topological feature of this knotted graph, as shown in Figure

Definition. Suppose «, 8 and « are interior-disjoint arcs from p to ¢, forming a
knotted f-graph in R3. We say the ordered triple (c, 3,7) is essential if the loop
a U B bounds no (singular) disk whose interior is disjoint from the knot o U~.

Now suppose K is a knot and p,q € K. If the secant pg has no interior inter-
sections with K, we say 7, is an essential arc of K if (vpq, DG, Vgp) 1S essential.
If pg does intersect K, we say 7pq is an essential arc if for any € > 0 there is an
e-perturbation S of pg such that (7,4, S, V4p) is essential. We say pg is an essential
secant if both 7,4, and ~y,, are essential.

Note that the e-perturbation ensures that the set of essential arcs is closed within
the set (K x K) \ A of all subarcs. We say the arc v,q is borderline-essential if it
is in the boundary of the set of essential arcs. That is, 7,4 is essential, but there
are inessential subarcs of K with endpoints arbitrarily close to p and gq.

The following theorem [DDS06, Thm. 7.1] lies at the heart of our distortion
bounds. It describes the special geometric configuration, shown in Figure Bl arising
from any borderline-essential arc.

Theorem 1.1. Suppose 7,q is a borderline-essential subarc of a knot K. Then the
interior of the segment pq must intersect K at some point x C vy, for which the
secants Tp and Tq are both essential. (I

In [DDS06l Lem. 4.3] we showed that the minimum length of an arc ~,, C R"™
staying outside the unit ball B1(0) is m(|al, |b|, Za0b), where for s > 1 and
0 € [0, 7] we set

Vr2 + 52 —2rscosf if 0 < 6,
\/’1"2—1—|—\/82—1+9—00 1f0200,

m(r,s,0) = {



THE DISTORTION OF A KNOTTED CURVE 1143

FIGURE 3. If the arc v, is borderline-essential in the knot K,
Theorem [Tl gives a point x € K N pg for which Zp and ZTq are
essential.

with 6y = 0y(r, s) := arcsecr + arcsecs. (In the case of plane curves, this can be
dated back to [Kub23].)

This bound is hard to apply since m(r, s,6) is not monotonic in r and s. Thus
we are led to define mq (s, ) := min,>1 m(r, s, §), from which we calculate

(5.0) ssin @ if 6 < arcsec s,
m s? == .
! Vs2 —14+0 —arcsecs if @ > arcsecs.

This function m; is continuous, increasing in s and in #, and concave in . We
have:

Lemma 1.2. An arc vap staying outside B1(0) has length at least my (|b\, Aaﬂb) >
Za0b. O

Remark. For § = w, we are always in the second case in the definition of m;, and
we have mi(s,m) > v/s2 + 1+ 7/y, the right-hand side being the length of a curve
that follows a quarter-circle from a and then goes straight to b (cutting into the
unit ball).

2. SHORTEST ESSENTIAL ARCS AND SECANTS

To get our lower bound on ropelength, we showed [DDS06, Lem. 8.1] that in a
knot of unit thickness, arcs of length less than 7 (and secants of length less than 1)
are inessential. Here, we show that in any tame knot, sufficiently short arcs and
secants are inessential. It follows that every nontrivial tame knot has shortest
essential arcs and secants.

If K is unknotted, any subarc is inessential. Conversely, Dehn’s lemma can be
used to show [DDS06, Thm. 5.2] that if both 7,4 and ~,, are inessential (for some
p,q € K), then K is unknotted. Equivalently, if K is a nontrivial knot, then the
complement of any inessential arc is essential.

Lemma 2.1. If v,, is a borderline-essential subarc of a knot K, then pq is an
essential secant.

Proof. Since 7,4 is borderline-essential, there are inessential arcs v, converging
to Ypq. Since K (having the essential subarc 7,,) must be nontrivial, the comple-
ments 74,y are essential. Thus their limit v, is also essential. (]

Corollary 2.2. Given any point p on a nontrivial knot K, there is some ¢ € K
such that pq is essential.
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FIGURE 4. Near a locally flat point a € K, short arcs and se-
cants pq are inessential.

Proof. Since K is nontrivial, at least some subarcs starting or ending at p are
essential. If they all are, then so are all secants from p. Otherwise there is some
borderline-essential arc starting or ending at p. By the lemma, this gives us an
essential secant pq. (I

Lemma 2.3. Suppose K is a knot and U is a topological ball such that K inter-
sects U in a single unknotted arc. Suppose p and q are two points in order along
this arc, and 8 is any arc within U from p to q, disjoint from K. Then (Ypq, 55 Vqp)
1s 1nessential.

Proof. By definition of an unknotted ball/arc pair, after applying an ambient ho-
meomorphism we may assume that U is a round ball and KNU a diameter. Pick any
homeomorphism between 7,, and 5 (fixing p and ¢). Join all pairs of corresponding
points by straight segments; these fill out a (singular) disk with boundary v, U 3,
which by convexity stays entirely within U. The disk avoids K (except of course for
the segment endpoints along 7,,) because § avoids the straight segment KNU. O

Proposition 2.4. Given a knot K and any locally flat point a € K, we can find
r > 0 such that any subarc ypq or secant pg of K which lies in the ball B,(a) is
inessential.

Proof. Locally flat means, by definition, that a has a neighborhood U in which
K NU is a single unknotted arc. Choose r such that B := B,.(a) is contained in U,
as in Figure @ For any points p,q € K N B, the segment pq is contained in B by
convexity, hence in U. So any sufficiently small perturbation S of this segment (as
in the definition of essential) stays in U. Since K NU is a single arc, after switching
the labels p and ¢ if necessary, we have ~y,, C U. (If we are proving the first claim,
of course, we already know ~,, C B.) By Lemma 23] (7,4, 5, V4p) is inessential,
implying by definition that the subarc v,, and the secant pg are inessential. (Il

Theorem 2.5. Given any tame knot K, there exists € > 0 such that any subarc ypq
of length €, < € is inessential and any secant pq of length |p— q| < € is inessential.

Proof. Suppose there were sequences p,,,q, € K giving essential arcs or essential
secants with length decreasing to zero. By compactness of K x K we can extract
a convergent subsequence (pp,q,) — (a,a). But the tame knot K is by definition
locally flat at every point a € K. Choose r > 0 as in Proposition 24 and choose n
large enough so that 7,, 4. C Br(a). Then the proposition says 7,, 4, and pnq, are
inessential, contradicting our choice of p,, g,. (I
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Corollary 2.6. Any nontrivial tame knot K has a shortest essential secant and a
shortest essential subarc.

Proof. Being nontrivial, K does have essential subarcs and secants by Corollary 2.2
By compactness, a length-minimizing sequence (py,g,) for either case has a sub-
sequence converging to some (p,q) € K x K, and p # ¢ by Theorem Since
being essential is a closed condition, this limit arc or secant is still essential, with
minimum length. O

3. DISTORTION BOUNDS

The key to our distortion bounds will be to focus on a shortest essential secant,
as guaranteed by Corollary we usually rescale so this secant has length 1. Then
Theorem [[LT] implies that any borderline-essential secant has length at least 2.

Remark. We can immeditately deduce that the distortion of the knot is at least 4.
Indeed, if ab is a shortest essential secant, scaled so that |a —b] = 1, then each arc
between a and b (in particular the shorter one) must include a point x at distance 2
from a as well as a point y at distance 2 from b. The shortest possibility has length 4
with = y as in Figure

r=y

FIGURE 5. If ab is a shortest essential secant with |a—b| = 1, then
each arc between a and b must leave both circles of radius 2 shown.
It thus has length at least 4.

Of course, this crude bound does not account for the fact that, while a borderline-
essential secant can have |p — ¢| = 2, a borderline essential arc ~,, must be sig-
nificantly longer, since it wraps around the point z guaranteed by Theorem [l
As with the main theorem, our intuition is guided by the case where all points
along v, give essential secants to x. Here clearly £,, > 7; the following proposition
confirms that this is indeed the critical case.

Proposition 3.1. Let K be a nontrivial tame knot, scaled so that a shortest es-
sential secant has length 1. Suppose arc vpq is borderline-essential, and x € pgN K
18 a point as guaranteed by Theorem [L1] with Tp and Tq essential. If we set
s :=min(|lqg — z|,2) € [1,2], we have £,; > mi(s,7) > 7.

Proof. Translate so that z is the origin 0. If y0 is essential for all y € 7,,, then by
our scaling, v, stays outside B;(0). Thus by Lemma and monotonicity of mq,
we get g > ma(|gl, ™) > mq(s, ) as desired.

Otherwise, let y, z € 4 be the first and last points making borderline-essential
secants Oy and 0z. By our choice of scaling, |y|, |z| > 2 and the arcs 7,, and 7,4
stay outside B1(0). As in Figure [0 define angles



1146 ELIZABETH DENNE AND JOHN M. SULLIVAN

FIGURE 6. In the second case in the proof of Proposition B.1],
since y and z are borderline-essential to 0, they are outside By(0).
Even though ~,, can go inside B1(0) the total length ¢,, in this
case is at least mq(2, ).

a:=Lp0y, 28:=/y0z, - := ~Lz0q,
so that o + 28 + v = m. By Lemma [[.2] we have
lpg = Loy + Ly + g = ma(2,0) + 4sin § +ma(2,7).

By concavity of my, for any given a + v, the sum of the first and last terms is
minimized for v = 0. Thus we get

lpg > my(2,m —20) +4sinj.
For B > 7/3, the first case in the definition of m; applies, so
Ly > 2sin28 +4sinf = 4sin B (1 4 cos §) > 4.
For 8 < 7/3, the second case applies, so
lpg > V3+27)3 — 26+ 4sin 3 > V34 27/ = my (2, 7).
Noting that 4 > m;(2,7) ~ 3.826, we find that in either case,

gpq Z m1(2,7T) Z ml(svﬂ-)' u

Theorem 3.2. Let K be a nontrivial tame knot, scaled so that a shortest essential
secant has length 1. Suppose ab is an essential secant with length |a —b| < 2. Then

a — bl
-

d(a,b) > 2w — 2 arcsin

Proof. Switching a and b if necessary, we may assume d(a,b) = £ < lpq. Setting
¢ := 2arcsin le = bl /y > |a — b|, we wish to show that £, > 27 — .

Let v4e C vap be the shortest initial subarc that is essential, and translate so
that the origin 0 € a¢ N K is a point as in Theorem [Tl By Proposition B
Loe > my(|e], ) > 7, so it suffices to show £ > 7 — .

For a fixed length |a — b|, consider Za0b as a function of |al,[b] > 1. Tt is
maximized when |a| = 1 = |b], with Za0b = ¢. Thus Zc0b > m — ¢. If Oz is
essential for all z € ~4, then v remains outside B;(0), as in Figure [(left), so
Loy > my (1, ZcOb) = Zc0b and we are done.
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FIGURE 7. (Left) Since a and b are outside B; (0), we have Za0b <
2arcsin [@ = bl /5. When 7. stays outside the ball, its length is at
least m — Za0b. This figure shows the case |a — b] = 1 used in
Corollary B3l (Right) If there is a point x € 7o with |z| > 2,
then v, can go inside B1(0). We use the bound £ > |z — ¢| +
(Jz —al —|a —b]).

Otherwise, let © € ~y. be the first point for which Oz is borderline-essential,
implying that |z| > 2. By the triangle inequality, £, > |z —b| > |x —a|] — |a —b|, so

bep > ey + |2 — al — |a— 0|

Now set 6 := ZcOz as in Figure [[(right) and consider two cases.
For 0 > 7/y, we get Loy > my(2,0) = V/3+ 60 — 7 /3, while |z — a| > 2sin 6 since

|z| > 2. The concave function 6 + 2 sin § is minimized at the endpoint = =, so, as
desired,
lep > 27 )5+ V3 —|a—b] > 7 — .

For 6 < 7/y, we use {., > |z — c| and consider fixed values of |c| > 1 and |z| > 2.
We want to minimize the sum |x — ¢| + | — a|. Since |z — o is increasing in |al,
we may assume |a| = 1. Then since |¢| > |a| and 6 < 7 /5, we have Zcz0 > Z0zxa.
This means that |z — ¢|+ |z — a| is an increasing function of #, minimized at 6 = 0,
where we have |z —¢| + |z —a| > 2 — |¢| + 3. Thus ¢ > 5 —|c¢| — |a — b|. Using
the remark after Lemma [[.2] we have £ > my(|c|,7) > |c| + 7/5. Thus finally, as
desired,

lap > T o +5—|a—b] > 21 — . O
Corollary 3.3. Any nontrivial tame knot has § > 57 /5.

Proof. Let ab be a shortest essential secant for the knot K, and scale so that
la — b] = 1. Applying the theorem, we get 6(a,b) = d(a,b) > 57/3. O
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