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MAPS BETWEEN MODULI SPACES OF VECTOR BUNDLES
AND THE BASE LOCUS OF THE THETA DIVISOR

TAWANDA GWENA AND MONTSERRAT TEIXIDOR I BIGAS

(Communicated by Ted Chinburg)

Abstract. We consider maps between different spaces of vector bundles on
curves obtained by taking wedge powers, elementary transformations or kernels
of evaluation maps and studying their respective fibers. We apply the results
to construct large dimensional sets in the base locus of the generalized theta
divisor.

1. Introduction

Given a vector bundle E of rank r and degree d on a curve C of genus g ≥ 2, one
can associate to E in a natural way several other vector bundles. For example, one
can take wedge powers of E. If E is generated by global sections, the kernel of the
evaluation map of sections is again a vector bundle. Also, new vector bundles can
be produced by taking elementary transformations centered at a fixed point. Under
suitable conditions on the degree and rank, these constructions can be carried out
globally. While all these processes seem quite elementary, very little is known about
the resulting maps. The purpose of this paper is to fill in this gap. We shall start
by considering the kernel of the evaluation map of sections. If E is generated by
global sections, let ME denote the kernel of the evaluation map of sections of E.
Then ME can be defined from the exact sequence

(∗) 0 → ME → H0(E) ⊗OC → E → 0.

Our main result is

1.1. Theorem. Let d ≥ 2rg. Then the map between the moduli spaces of semistable
vector bundles of rank r and degree d and rank d − rg and degree −d given by
E → ME is generically injective.

For the following result we assume that we are in characteristic zero. It is known
then that the wedge powers of a semistable vector bundle are again semistable.
Therefore, there is a rational map between the moduli space U(r, d) of vector bun-
dles of rank r and degree d and the moduli space of vector bundles of rank

(
r
i

)
and

degree
(
r
i

)
id

r . We show

1.2. Theorem. Let C be a projective non-singular curve defined over a field of
characteristic zero. Let i be an integer with 0 < i < r. Then the map between the
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moduli space U(r, d) and the moduli space U
((

r
i

)
,
(
r
i

)
id

r

)
given by E →

∧i E has
finite fibers.

The same statement is true when replacing wedge powers by symmetric powers.

Finally consider elementary transformations. Starting with a vector bundle, one
can produce another vector bundle of degree one more (or one less) that essentially
differs from the original one only at one point. This construction can be done in
many different ways and in general one can get an r-dimensional family of such
transforms starting with a single vector bundle. We show here that if we start with
a family of vector bundles and do all possible such transforms, the dimension of the
vector bundles so obtained never goes down.

We then give an application in finding lower bounds on the dimension of the base
locus of the theta divisor in the moduli space of vector bundles (see Theorem 5.2
and Corollary 5.3). For many values of the rank, this improves known results of
Arcara ([A]), Popa ([P]) and Schneider ([S]).

2. Injectivity of the map E → ME

If E is a generic vector bundle of rank r and degree at least rg + 1, then it is
generated by global sections. The same is true for every semistable vector bundle if
the degree d satisfies d > r(2g−1). Whenever E is generated by global sections, one
can define the vector bundle ME as in (*). Our goal in this section is to prove that
the assignment E → ME is generically injective when it is globally defined (namely
d ≥ 2rg + r). What we show in fact is a little bit more, namely that M(ME)∗ = E∗.
This in turn is equivalent to h0((ME)∗) = h0(E). We shall reduce this statement
to the surjectivity of a map between spaces of sections of vector bundles and prove
the latter by induction on the rank.

Note that if E is semistable of degree at least 2rg, then ME is also semistable
(see [B], 1.2).

2.1. Lemma. Let C be a generic curve. Let L be a line bundle on C such that the
complete linear system L has no fixed points. Then, the map C → |L| is composed
with an involution if and only if L = L̄2 with L̄ a line bundle corresponding to a
g1

g+2
2

map on C.

Proof. Assume that the map associated to the line bundle L is composed with an
involution. As the curve C is generic, it is not a covering of any curve of genus at
least one. Therefore the map corresponding to the linear system |L| factors through

C → C ′ → |L|
where C ′ is a rational curve and the first map is given by a g1

k. Because of the
genericity of C, this implies that the corresponding Brill-Noether number ρ =
g − 2(g − k + 1) ≥ 0 is positive. Equivalently, k ≥ g+2

2 . Moreover, L = rg1
k with

h0(L) = r + 1.
Note now that h1(rg1

k) = h0(K − rg1
k) = 0. This is because

H0(K − rg1
k) ⊂ H0(K − 2g1

k) ⊂ Ker(H0(g1
k) ⊗ H0(K − g1

k) → H0(K))

and this kernel is zero by the injectivity of the Petri map for the generic curve.
Hence,

r + 1 = h0(L) = h0(rg1
k) = rk + 1 − g ≥ r

g + 2
2

+ 1 − g ≥ g + r + 1 − g = r + 1.
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Here the last inequality comes from the fact that r ≥ 2. Hence, all inequalities
must be equalities and then r = 2, k = g+2

2 as stated. �

2.2. Proposition. Let L be a line bundle generated by global sections on a generic
curve. Assume L �= L̄2, where L̄ is a line bundle corresponding to a g1

g+2
2

map on
C. Then, the map

ψ : H0(L) ⊗ H0(K) → H0(K ⊗ L)
is onto. The result is also true on any curve if L is generic.

Proof. From Lemma 2.1, the map corresponding to the complete linear system |L|
is not composed with an involution and by assumption it has no fixed points. The
same is true on any curve if L is taken to be generic. By Riemann-Roch

k = h0(L) = d + 1 − g + h,

where h = h1(L) = h0(K ⊗L−1). Choose P1, . . . , Pk−2 generic points on C. Then,

h0(L(−P1 − · · · − Pk−2)) = 2, h0(K ⊗ L−1(P1 + · · · + Pk−2)) = h0(K ⊗ L−1) = h.

Moreover L(−P1 − · · · − Pk−2) has no fixed points and is therefore generated by
global sections. Consider the map

ψ̄ : H0(L(−P1 − · · · − Pk−2)) ⊗ H0(K) → H0(K ⊗ L(−P1 − · · · − Pk−2)).

By the base point free pencil trick, the kernel of ψ̄ is H0(K⊗L−1(P1+· · ·+Pk−2))
and by our choice this space has dimension h. Therefore, the image of the above
map has dimension 2g − h.

Now, the Pi have been chosen to impose independent conditions on the linear
system |L|. Hence, they impose independent conditions on the image of the map
ψ. Then,

dim(Imψ) ≥ dim(Imψ̄)+k−2 = (2g−h)+(d+1−g+h)−2 = d+g−1 = h0(K⊗L).
�

The next result is not needed in the following. For the sake of completeness, we
show that the restriction in Proposition 2.2 is not arbitrary.

2.3. Lemma. Assume that L = L̄2, where L̄ is a line bundle corresponding to a
g1

g+2
2

map on C. Then the morphism

ψ : H0(L) ⊗ H0(K) → H0(K ⊗ L)

is not onto.

Proof. Let s0, s1 be a basis of a section of |L̄|. Then s2
0, s0s1, s

2
1 are sections of |L|.

From the base-point-free pencil trick, the map

ψ̄ : 〈s2
0, s

2
1〉 ⊗ H0(K) → H0(K ⊗ L)

has kernel H0(K ⊗ L−1) = H0(K ⊗ L̄−2), and as in the proof of Lemma 2.1, the
latter is zero. Hence, the image has dimension 2g. As h0(K ⊗L) = 2g +1, the map
is not onto. In order to prove the claim, it suffices to show now that the image of
the map ψ is the same as the image of the map ψ̄. This is equivalent to proving
that the elements of the form s0s1t, t ∈ H0(K) are in the image of ψ.

We show first that the map

〈s0, s1〉 ⊗ H0(K ⊗ L̄−1) → H0(K)
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is onto. In fact, the kernel of this map is zero because this is a Petri map for a
generic curve. Therefore the image has dimension

2h0(K ⊗ L̄−1) = 2(h0(L̄) + g − 1 − deg(L̄)) = g

as stated.
Then, given t ∈ H0(K), we can write

t = as0 + bs1, a, b ∈ H0(K ⊗ L̄−1).

Then,
s0s1t = (as1)s2

0 + (bs0)s2
1

as needed. �

2.4. Theorem. Let C be a generic curve. Let L be a line bundle on C generated by
global sections. Assume L �= L̄2, where L̄ is a line bundle corresponding to a g1

g+2
2

map on C. Consider the vector bundle ML defined by the exact sequence

0 → ML → H0(L) ⊗OC → L → 0.

Then, h0((ML)∗) = h0(L). The same is true for every curve if L is taken to be
generic.

Proof. Dualizing the sequence above and taking global sections, one obtains

0 = H0(L∗) → H0(L)∗ → H0((ML)∗) → H1(L∗) → H0(L)∗ ⊗ H1(O).

Therefore, the statement of the proposition is equivalent to the injectivity of the
map

H1(L∗) → H0(L)∗ ⊗ H1(O).

This in turn is the dual of the map

ψ : H0(L) ⊗ H0(K) → H0(K ⊗ L),

which has been proved to be onto in Proposition 2.2. �

2.5. Proposition. Let E be a generic vector bundle of rank r and degree d ≥
(2r − 1)g + 1. Then, the map

ψ : H0(E) ⊗ H0(K) → H0(K ⊗ E)

is onto.

Proof. By Lange’s Conjecture (proved in [RT], Thms. 0.2 and 0.1), a generic vector
bundle can be written as an extension of generic stable bundles

0 → E1 → E → E2 → 0

so long as the slopes satisfy

µ(E2) − µ(E1) ≥ g − 1.

We prove the result by induction on the rank r. The case r = 1 has been proved
in Proposition 2.2. Assume now that r ≥ 2 and write E as an extension

0 → L → E → E2 → 0,

where L is a generic line bundle of degree g +1 and E2 is a generic vector bundle of
degree at least (2r−2)g ≥ (2(r−1)−1)g+1. Then both L and E2 are generated by
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global sections and by the induction assumption the corresponding maps ψL, ψE2

are onto. Consider the exact diagram

0 → H0(L) ⊗ H0(K) → H0(E) ⊗ H0(K) → H0(E2) ⊗ H0(K) → 0
↓ ↓ ↓

0 → H0(L ⊗ K) → H0(E ⊗ K) → H0(E2 ⊗ K) → 0

The zeros on the right are obtained because h1(L) = 0 as L is generic of degree
g + 1 and also h1(K ⊗ L) = 0.

As the left and right vertical maps are onto, so is the middle one. �

2.6. Theorem. Let C be a generic curve. Let E be a generic semistable vector
bundle on C of degree at least (2r−1)g+1. Consider the vector bundle ME defined
by the exact sequence

0 → ME → H0(E) ⊗OC → E → 0.

Then, h0(M∗
E) = h0(E).

Proof. The proof is now identical to the one in the line bundle case, replacing
Proposition 2.2 by Proposition 2.5. �

The proof of Theorem 1.1 immediately follows from the above as E = M∗
(ME)∗ .

The condition d ≥ 2rg in Theorem 1.1 has been included in order to ensure that
at the level of moduli spaces, the map is globally defined. It is likely though that
ME is semistable for generic E with the weaker condition d ≥ rg + 1.

3. Elementary transformations

Given a vector bundle E, a point P and a linear map of the fiber EP of E at P
to the base field C, one has an exact sequence

0 → E′ → E → CP → 0.

Then, E′ is said to be obtained from E by a (direct) elementary transformation.
Dualizing the above sequence, one obtains

0 → E∗ → E
′∗ → CP → 0.

So, E∗ is obtained from E
′∗ by a direct elementary transformation and E is said

to be obtained from E′ by an inverse transformation.

3.1. Lemma. Let C be a curve, A a parameter space for a family of semistable vec-
tor bundles in U(r, d). Let B be a parameter space containing all bundles obtained
from bundles in A by doing an elementary transformation. Let

fA : A → U(r, d), fB : B → U(r, d − 1)

be the rational maps induced by the families. Then dim fB(B) ≥ dim fA(A).

Proof. Assume that E is a vector bundle on C ×A such that E|C×{a} = fA(a). One
can then construct a B as follows: Denote by

π12 : C × A × C → C × A, π13 : C × A × C → C × C

the natural projections. Let � be the diagonal in C × C. Take

B = P(π23∗(π∗
12(E) ⊗ π∗

13(O�))).
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It parameterizes triples

(a, Q, s), a ∈ A, Q ∈ C, s : Ea → CQ,

where s is determined up to a scalar and CQ is a one-dimensional skyscraper sheaf
with support on Q.

Given a ∈ A, one obtains elements in B by considering extensions of the form

0 → E∗ → E
′∗ → CP → 0,

where P ∈ C is a point. Equivalently, one has an exact sequence

0 → E
′∗ → E∗ → CP → 0.

Given E, one can choose a point P in C and a map from the fiber of E∗ at P to
CP up to multiplication with a constant. This then determines E′. Assume that
dim fB(B) < dim fA(A). As every element in A gives rise to an r-dimensional
family of elements in B, this would imply that every element in B comes from a
family of elements in A that is at least (r + 1)-dimensional. From the first exact
sequence a fixed E′ in B comes from a family of dimension at most r in A. Hence,
this is impossible. �

4. Symmetric and wedge maps

In this section, we need to work over a field of characteristic zero, as otherwise the
wedge and symmetric powers of semistable bundles are not necessarily semistable.
We prove Theorem 1.2:

Proof. The proof that follows was suggested to the authors by S. Ramanan.
Note first that

det(
i∧

E) = (detE)⊗(r−1
i−1).

The map
Picd(C) → Picd(r−1

i−1)

L → L⊗(r−1
i−1)

is a finite map. Hence it suffices to prove the result for moduli spaces of vector
bundles with fixed determinant.

The Picard group of the moduli spaces of vector bundles of given rank and
determinant is Z generated by an ample divisor θ (see [DN]). Consider the map

U(r, L) → U(
(
r
i

)
, L(r−1

i−1))

E →
∧(r

i) E.

It is easy to check that this is well defined too for equivalence classes of semistable
bundles. This map is not constant. This can be proved for instance by deforming
E to a direct sum of line bundles for which the result is obvious.

The result follows now from the following (well-known) lemma:

4.1. Lemma. Let f : X → Y be a morphism of projective varieties with Pic(X) =
Z. Then, either the map is constant or the fibers are finite.

Proof. Let L be an element of Pic(Y ) such that f∗(L) is non-trivial. By the as-
sumption on Pic(X), this implies that f∗(L) is either ample or antiample. On the
other hand, f∗(L) is trivial on the fibers of f . Therefore, these fibers must be
finite. �
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The proof for symmetric powers is carried out in the same way. �

5. A lower bound for the base locus of the theta divisor

in moduli spaces of vector bundles

Denote by U(r, L) the moduli space of vector bundles of rank r and fixed deter-
minant L of degree r(g− 1). The Picard group of the moduli space is generated by
the theta divisor that can be described as

{E ∈ U(r, L) | h0(E) ≥ 1}.
Consider the linear system in U(r, L) associated to the theta divisor. Its base

locus consists of those vector bundles E such that h0(E ⊗ L′) > 0 for every L′

of degree zero. It was proved first by Raynaud (see [R]) that this base locus is
non-empty. Later Popa showed in [P] that it is in fact of positive dimension. He
used vector bundles of the form

∧α ML, where L is a line bundle and α = g+1
2 and

suggested that maybe the ME for E of rank higher than one might also work. We
carry on this suggestion here. We need some preliminary results on properties of
ME that are analogous to known properties for ML when L is a line bundle.

5.1. Proposition (Compare with [GL], section 2). Let E be a generic vector bundle
of rank r and degree d. Let ME be the dual of the kernel of the evaluation map of
E. If j ≤ d − rg − 1 and P1, . . . , Pj are generic points on C, then there exists an
exact sequence

0 → O(P1) ⊕ . . . ⊕O(Pj) → M∗
E → F → 0,

where F is a vector bundle of rank d − rg − j.

Proof. Choose generic points P1, . . . , Pj and consider generic one-dimensional quo-
tients CP1 , . . .CPj

of EP1 , . . . , EPj
respectively. Let E1 be the elementary transform

of E associated to these quotients; namely, E1 is defined by the exact sequence

0 → E1 → E → CP1 ⊕ . . . ⊕ CPj
→ 0.

As E is generic, so is E1 (from section 3). By the assumption on the degree, it
then follows that it is generated by global sections.

Let V be the kernel of the map of vector spaces H0(E) → CP1 ⊕ ... ⊕ CPj
and

W = H0(E)/V . Let F ∗ be the kernel of the map V ⊗ OC → E1. We then get a
commutative diagram

0 → F ∗ → V ⊗OC → E1 → 0
↓ ↓ ↓

0 → ME → H0(E) ⊗OC → E → 0
↓ ↓ ↓

0 → A → W ⊗OC → CP1 ⊕ · · · ⊕ CPj
→ 0

Here A denotes the cokernel of the map F ∗ → ME . Then, from the lower exact
row, A = O(−P1) ⊕ · · · ⊕ O(−Pj). Dualizing the left exact sequence, the result
follows. �

5.2. Theorem. Let r be an integer r ≥ 2. Let β = rg(2rg − 1) and let L be a line
bundle of degree β(g − 1). The theta linear system in the moduli space of vector
bundles of rank β and fixed determinant L has a base locus of dimension at least
(r2 − 1)(g − 1).
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Proof. Let L1 be a line bundle of degree 3g. Let E be a vector bundle of rank r and
determinant Lr

1. Note that E moves in a family of dimension r2(g − 1) + 1 − g =
(r2 − 1)(g − 1). Then ME has rank 2rg and det((ME)∗) = det(E) = L1. Then

det(
2∧

((ME)∗)) = (det(ME)∗)rM−1 = (det(ME)∗)2rg−1 = L
(2rg−1)r
1 .

From our choices, the slope of

µ(
2∧

((ME)∗)) = 2µ((ME)∗) = 2
3
2

= 3.

Let P1, . . . , Pg−2, Q1, Q2 be generic points on C. From Proposition 5.1 and the
condition on d, O(Q1) ⊕ O(Q2) is a subsheaf of (ME)∗. Hence O(Q1 + Q2) is
a subsheaf of

∧2 ME . Given a line bundle T of degree g − 4, there exist points
P1, · · · , Pg−2, Q1, Q2 in C such that T = O(P1 + . . . + Pg−2 − Q1 − Q2). Hence,

h0(
2∧

(ME)∗ ⊗ T ) �= 0.

Let L2 be a line bundle such that L
rg(2rg−1)
2 L

(2rg−1)r
1 = L. This implies that L2

has degree g − 4 and is determined up to a finite number of choices.
We claim that

∧2(ME)∗ ⊗ L2 is in the base locus of the theta divisor for
U(rg(2rg − 1), L). Note first that

det(
2∧

(ME)∗ ⊗ L2)) = L
rank(

∧2(ME)∗)
2 det(

2∧
(ME)∗)

= L
rg(2rg−1)
2 L

(2rg−1)r
1 = L.

Moreover, if L0 is a generic line bundle of degree zero, then L2⊗L0 = T is a generic
line bundle of degree g − 4. Hence, by the proof above,

h0(
2∧

(ME)∗ ⊗ L2 ⊗ L0) �= 0,

as needed.
Using Theorems 1.2 and 1.1, the dimension of the set of vector bundles E and

the dimension of the set of vector bundles
∧2(ME)∗ are the same, so the claim

follows. �

5.3. Corollary. Let j, β be defined as in the previous statement. If α > β, then
the moduli space of vector bundles of rank α and given determinant L of degree
α(g − 1) has a base locus of dimension at least ((r2 − 1) + (α − β)2)(g − 1) + 1.

Proof. Let E1 be a vector bundle of rank α − β and slope g − 1. Let E2 be a
vector bundle of rank β and determinant L ⊗ det(E1)−1 in the base locus of the
theta divisor. Then, E = E1 ⊕ E2 is in the base locus of the theta divisor as
h0(E ⊗ L0) ≥ h0(E2 ⊗ L0) > 0 for every line bundle of degree zero. Hence, our
claim follows from the previous theorem. �

Remark. It was shown in [P] that the moduli space of vector bundles of rank
(k(d−g)

g+1
2

)

for any k ≥ 2 has a base locus of dimension at least (k − 1)g. Here we show that
the moduli space of vector bundles of rank r =

(
2tg
2

)
for any t has a base locus of

dimension at least (t2 − 1)(g − 1). So our bound is basically linear on the rank.
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In [S], lower bounds on the base locus of the theta divisor in U(r, r(g − 1)) are
obtained for r ≥ 2g, a bound that grows exponentially with g while our bound on
the rank is quadratic in g.

The best bounds for the dimension are obtained in [A], but the proof there is
not constructive.
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