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DYNAMICS OF TUPLES OF MATRICES

G. COSTAKIS, D. HADJILOUCAS, AND A. MANOUSSOS

(Communicated by Nigel J. Kalton)

Abstract. In this article we answer a question raised by N. Feldman in 2008
concerning the dynamics of tuples of operators on Rn. In particular, we prove
that for every positive integer n ≥ 2 there exist n-tuples (A1, A2, . . . , An)
of n × n matrices over R such that (A1, A2, . . . , An) is hypercyclic. We also
establish related results for tuples of 2×2 matrices over R or C being in Jordan
form.

1. Introduction

Following the recent work of Feldman in [4] an n-tuple of operators is a finite
sequence of length n of commuting continuous linear operators T1, T2, . . . , Tn acting
on a locally convex space X. The tuple (T1, T2, . . . , Tn) is hypercyclic if there exists
a vector x ∈ X such that the set

{T k1
1 T k2

2 · · ·T kn
n x : k1, k2, . . . , kn ≥ 0}

is dense in X. Such a vector x is called hypercyclic for (T1, T2, . . . , Tn) and the set
of hypercyclic vectors for (T1, T2, . . . , Tn) will be denoted by HC((T1, T2, . . . , Tn)).
The above definition generalizes the notion of hypercyclicity to tuples of operators.
For an account of results, comments and an extensive bibliography on hypercyclicity
we refer to [1], [5], [6] and [7]. For results concerning the dynamics of tuples of
operators see [2], [3], [4] and [9].

In [4] Feldman showed, among other things, that in Cn there exist diagonalizable
(n + 1)-tuples of matrices having dense orbits. In addition he proved that there
is no n-tuple of diagonalizable matrices on Rn or Cn that has a somewhere dense
orbit. Therefore the following question arose naturally.

Question (Feldman [4]). Are there non-diagonalizable n-tuples on Rk that have
somewhere dense orbits?

We give a positive answer to this question in a very strong form, as the next
theorem shows.
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Theorem 1.1. For every positive integer n ≥ 2 there exist n-tuples (A1, . . . , An) of
n × n non-(simultaneously) diagonalizable matrices over R such that (A1, . . . , An)
is hypercyclic.

Restricting ourselves to tuples of 2 × 2 matrices in Jordan form either on R2 or
C2, we prove the following.

Theorem 1.2. There exist 2× 2 matrices Aj , j = 1, 2, 3, 4, in Jordan form over R

such that (A1, A2, A3, A4) is hypercyclic. In particular

HC((A1, A2, A3, A4)) =
{(

x1

x2

)
∈ R2 : x2 �= 0

}
.

Theorem 1.3. There exist 2 × 2 matrices Aj , j = 1, 2, . . . , 8, in Jordan form over
C such that (A1, A2, . . . , A8) is hypercyclic.

2. Products of 2 × 2 matrices

Lemma 2.1. Let m be a positive integer and for each j = 1, 2, . . . , m let Aj be a

2 × 2 matrix in Jordan form over a field F = C or R , i.e. Aj =
(

aj 1
0 aj

)
for

a1, a2, . . . , am ∈ F. Then (A1, A2, . . . , Am) over C (respectively R) is hypercyclic if
and only if the sequence{(

k1
a1

+ k2
a2

+ . . . + km

am

a1
k1a2

k2 . . . am
km

)
: k1, k2, . . . , km ∈ N

}

is dense in C2 (respectively R2).

Proof. We prove the above in the case F = C, since the other case is similar.
Observe that

Aj
l =

(
aj

l laj
l−1

0 aj
l

)
for l ∈ N. As a result we have

A1
k1A2

k2 . . . Am
km =

⎛
⎜⎜⎝

m∏
j=1

aj
kj

m∏
j=1

aj
kj

m∑
s=1

ks

as

0
m∏

j=1

aj
kj

⎞
⎟⎟⎠ .

Assume that (A1, A2, . . . , Am) is hypercyclic and let ( z1
z2 ) ∈ C2 be a hypercyclic

vector for (A1, A2, . . . , Am). Then the sequence{
A1

k1A2
k2 . . . Am

km

(
z1

z2

)
: k1, k2, . . . , km ∈ N

}

=

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

z1

m∏
j=1

aj
kj + z2

m∏
j=1

aj
kj

m∑
s=1

ks

as

z2

m∏
j=1

aj
kj

⎞
⎟⎟⎠ : k1, k2, . . . , km ∈ N

⎫⎪⎪⎬
⎪⎪⎭

is dense in C2. This implies that z2 �= 0. Dividing the element in the first row by
that in the second, it can easily be shown that the sequence{(

k1
a1

+ k2
a2

+ . . . + km

am

a1
k1a2

k2 . . . am
km

)
: k1, k2, . . . , km ∈ N

}

is dense in C2. The converse can easily be shown. �
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Remark 2.2. Let m be a positive integer and for each j = 1, 2, . . . , m let Aj be a
2×2 matrix in Jordan form over a field F = C or R. By the proof of Lemma 2.1 it is
immediate that whenever (A1, A2, . . . , Am) over C (respectively R) is hypercyclic,
one can completely describe the set of hypercyclic vectors as{(

z1

z2

)
∈ C2 : z2 �= 0

} (
respectively

{(
x1

x2

)
∈ R2 : x2 �= 0

})
.

2.1. The real case. The one-dimensional version of Kronecker’s theorem stated
below (see for example [8, Theorem 438, p. 375]) will be used repeatedly throughout
this work.

Theorem 2.3. If x is a positive irrational number, then the sequence {kx − s :
k, s ∈ N} is dense in R.

Remark 2.4. If x is a positive irrational number, then the sequence {s− kx : k, s ∈
N} is also dense in R. Likewise, if x is a negative irrational number, then the
sequence {s + kx : k, s ∈ N} is dense in R.

We shall need the following well-known result; see for example [4].

Theorem 2.5. If a, b > 1 and ln a
ln b is irrational, then the sequence { an

bm : n, m ∈ N}
is dense in R+.

Lemma 2.6. Let a, b ∈ R such that −1 < a < 0, b > 1 and ln |a|
ln b is irrational.

Then the sequence {anbm : n, m ∈ N} is dense in R.

Proof. Since ln |a|
ln b is irrational it follows that ln b/ ln 1

a2 is irrational as well. Ap-
plying Theorem 2.5 we conclude that the sequence {a2nbm : n, m ∈ N} is dense
in R+. On the other hand the fact that a is negative implies that the sequence
{a2n+1bm : n, m ∈ N} is dense in R−. This completes the proof of the lemma. �

Proposition 2.7. There exist a1, a2, a3, a4 ∈ R such that the sequence{(
k1
a1

+ k2
a2

+ k3
a3

+ k4
a4

a1
k1a2

k2a3
k3a4

k4

)
: k1, k2, k3, k4 ∈ N

}

is dense in R2.

Proof. By the lemma above fix a, b ∈ R such that −1 < a < 0, a + 1
a ∈ R \ Q and

{anbm : n, m ∈ N} is dense in R. Let x1, x2 ∈ R and ε > 0 be given. Then there
exist n, m ∈ N such that |anbm − x2| < ε. Note that anbm = an+kbm 1

ak 1s for every
k, s ∈ N. Note also that a + 1

a < 0. Hence, by Remark 2.4, the sequence{
s + k

(
a +

1
a

)
: k, s ∈ N

}
is dense in R; i.e. there exist k, s ∈ N such that∣∣∣∣s + k

(
a +

1
a

)
−

(
x1 −

n

a
− m

b

)∣∣∣∣ < ε,

i.e. ∣∣∣∣na +
m

b
+ k

(
a +

1
a

)
+ s − x1

∣∣∣∣ < ε.

Hence, setting a1 = a, a2 = b, a3 = 1
a , a4 = 1 we prove the result. �
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Proof of Theorem 1.2. This is an immediate consequence of Lemma 2.1, Proposi-
tion 2.7 and Remark 2.2.

Example 2.8. One may construct many concrete examples of four 2× 2 matrices,
in Jordan form over R, being hypercyclic. For example, fix a, b ∈ R such that
−1 < a < 0, b > 1 and both a+ 1

a , ln |a|
ln b are irrational. From the above we conclude

that ((
a 1
0 a

)
,

(
b 1
0 b

)
,

(
1
a 1
0 1

a

)
,

(
1 1
0 1

))
is hypercyclic.

We shall now prove Theorem 1.1 for n = 2; see Proposition 2.10 (ii). For this
we need the following result due to Feldman; see Corollary 3.2 in [4].

Proposition 2.9 (Feldman). Let D denote the open unit disk centered at 0 in the
complex plane. If b ∈ D \ {0}, then there exists a dense set ∆ ⊂ C \D such that for
every a ∈ ∆ the sequence {anbm : n, m ∈ N} is dense in C.

Proposition 2.10. (i) Every pair (A1, A2) of 2 × 2 matrices over R with Aj,
j = 1, 2, being either diagonal or in Jordan form is not hypercyclic.

(ii) There exist pairs (A1, A2) of 2×2 matrices over R such that A1 is diagonal,
A2 is antisymmetric (rotation matrix) and (A1, A2) is hypercyclic. In particular
every non-zero vector in R2 is hypercyclic for (A1, A2); i.e.

HC((A1, A2)) = R2 \ {(0, 0)}.
(iii) There exist pairs (A1, A2) of 2×2 matrices over R such that both A1 and A2

are antisymmetric and (A1, A2) is hypercyclic. In particular every non-zero vector
in R2 is hypercyclic for (A1, A2), i.e.

HC((A1, A2)) = R2 \ {(0, 0)}.

Proof. Let us prove assertion (i). The case of A1, A2 both diagonal is covered by
Feldman; see [4].

Assume that A1 is diagonal and A2 is in Jordan form; i.e.

A1 =
(

a 0
0 a

)
, A2 =

(
b 1
0 b

)
for a, b ∈ R.

Suppose that (A1, A2) is hypercyclic and let ( x1
x2 ) ∈ R2 be a hypercyclic vector for

(A1, A2). Then the sequence{
A1

nA2
m

(
x1

x2

)
: n, m ∈ N

}
=

{(
anbmx1 + manbm−1x2

anbmx2

)
: n, m ∈ N

}

is dense in R2. Therefore b cannot be zero. Observe that x2 cannot be zero either.
Take any y1 ∈ R and y2 ∈ R \ {0}. Then there exist sequences of positive integers
{nk}, {mk} such that mk → +∞ and

ankbmkx1 + mkankbmk−1x2 → y1,

ankbmkx2 → y2

as k → +∞. Since b �= 0, y2 �= 0 and x2 �= 0 we get that

ankbmkx1 → y2x1

x2
and |mkankbmk−1x2| =

mk

|b| |a
nkbmkx2| → +∞
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as k → +∞. From the last, it clearly follows that

|ankbmkx1 + mkankbmk−1x2| → +∞,

which is a contradiction.
Assume now that both A1, A2 are in Jordan form; i.e.

A1 =
(

a 1
0 a

)
, A2 =

(
b 1
0 b

)
,

for a, b ∈ R and (A1, A2) is hypercyclic. Lemma 2.1 implies that the sequence{(
n
a + m

b
anbm

)
: n, m ∈ N

}

is dense in R2. Observe that neither |a| nor |b| is equal to 1. By taking the absolute
value in the second coordinate and then applying the logarithmic function, we find
that the sequence {(

n
a + m

b
n ln |a| + m ln |b|

)
: n, m ∈ N

}
is dense in R2. Hence the sequence{(

n ln |a|
a + m ln |a|

b

n ln |a|
a + m ln |b|

a

)
: n, m ∈ N

}

is dense in R2. Subtracting the second coordinate from the first one, we conclude
that the sequence {

m

(
ln |a|

b
− ln |b|

a

)
: m ∈ N

}
is dense in R, which is absurd. We proceed with the proof of assertion (ii). By
Proposition 2.9 there exist a ∈ R \ Q and b ∈ C such that the sequence {anbm :
n, m ∈ N} is dense in C. Write b = |b|eiθ and set

A1 =
(

a 0
0 a

)
, A2 =

(
|b| cos θ −|b| sin θ
|b| sin θ |b| cos θ

)
.

Then we have

A1
nA2

m =
(

an|b|m cos mθ −an|b|m sin mθ
an|b|m sin mθ an|b|m cos mθ

)
.

Applying in the above relation the vector ( 1
0 ) and taking into account that the

sequence {anbm : n, m ∈ N} is dense in C, we conclude that the sequence{
A1

nA2
m

(
1
0

)
: n, m ∈ N

}
=

{(
an|b|m cos mθ
an|b|m sin mθ

)
: n, m ∈ N

}

is dense in R2. Hence (A1, A2) is hypercyclic. It is now easy to show that every
non-zero vector in R2 is hypercyclic for (A1, A2).

In order to prove the last assertion we follow a similar line of reasoning as above.
That is, by Proposition 2.9 there exist a, b ∈ C such that the sequence {anbm :
n, m ∈ N} is dense in C. Write a = |a|eiφ, b = |b|eiθ and set

A1 =
(

|a| cos φ −|a| sin φ
|a| sin φ |a| cos φ

)
, A2 =

(
|b| cos θ −|b| sin θ
|b| sin θ |b| cos θ

)
.
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A direct computation gives that
{

A1
nA2

m

(
1
0

)
: n, m ∈ N

}
is equal to

{(
|a|n|b|m cos(nφ + mθ)
|a|n|b|m sin(nφ + mθ)

)
: n, m ∈ N

}
,

and by the choice of a, b we conclude that the vector ( 1
0 ) is hypercyclic for (A1, A2).

This completes the proof of the proposition. �

Question 2.11. What is the minimum number of 2× 2 matrices over R in Jordan
form so that their tuple forms a hypercyclic operator?

2.2. The complex case. In what follows we will be writing �(z) and �(z) for the
real and imaginary parts of a complex number z respectively.

Proposition 2.12. There exist aj ∈ C, j = 1, 2, . . . , 8 such that the sequence{(
k1
a1

+ k2
a2

+ . . . + k8
a8

a1
k1a2

k2 . . . a8
k8

)
: k1, k2, . . . , k8 ∈ N

}

is dense in C2.

Proof. The proof is in the same spirit as the proof of Proposition 2.7. Fix a, b ∈ C

such that −1 < a < 0, a + 1
a , a − 1

a ∈ R \ Q and {anbm : n, m ∈ N} is dense in C

(see Proposition 2.9). Let z1, z2 ∈ C and ε > 0 be given. Then there exist n, m ∈ N

such that |anbm − z2| < ε. Note that

anbm = an+kbm 1
ak

1s(ia)ξ

(
1
ia

)ξ

(4i)ρ

(
−1

4

)ρ

for every k, s, ξ ∈ N and ρ ∈ 4N. Note that a + 1
a < 0 and a − 1

a > 0. Hence, by
Theorem 2.3, the sequence{

ξ

(
a − 1

a

)
−

(ρ

4

)
: ξ ∈ N, ρ ∈ 4N

}
is dense in R. As a result, there exist ξ ∈ N and ρ ∈ 4N such that∣∣∣∣�

(
iξ

(
a − 1

a

)
− i

(ρ

4

))
−�

(
z1 −

n

a
− m

b

)∣∣∣∣ < ε;

i.e. we have that∣∣∣∣�
(

n

a
+

m

b
+ iξ

(
a − 1

a

)
− i

(ρ

4

))
−�(z1)

∣∣∣∣ < ε.

By Remark 2.4, the sequence{
k

(
a +

1
a

)
+ s : k, s ∈ N

}
is dense in R. Hence, there exist k, s ∈ N such that∣∣∣∣k

(
a +

1
a

)
+ s −

(
4ρ + �

(
z1 −

n

a
− m

b

))∣∣∣∣ < ε;

i.e. we have that∣∣∣∣�
(

n

a
+

m

b
+ k

(
a +

1
a

)
− 4ρ + s

)
− �(z1)

∣∣∣∣ < ε.
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But this means that the real and imaginary parts of the complex number
n

a
+

m

b
+ k

(
a +

1
a

)
+ s + iξ

(
a − 1

a

)
− i

ρ

4
− 4ρ

are within ε of the real and imaginary parts of z1. Hence, setting a1 = a, a2 =
b, a3 = 1

a , a4 = 1, a5 = ia, a6 = 1
ia , a7 = 4i, a8 = −1

4 , we prove the result.
�

Proof of Theorem 1.3. By Proposition 2.12, Lemma 2.1 and Remark 2.2 the asser-
tion follows.

Example 2.13. Fix a, b ∈ C such that −1 < a < 0, a + 1
a , a − 1

a ∈ R \ Q and
{anbm : n, m ∈ N} is dense in C. From the above it is evident that the 8-tuple of
2 × 2 matrices in Jordan form over C given by(

a 1
0 a

)
,

(
b 1
0 b

)
,

(
1
a 1
0 1

a

)
,

(
1 1
0 1

)
,(

ia 1
0 ia

)
,

(
1
ia 1
0 1

ia

)
,

(
4i 1
0 4i

)
,

(
−1

4 1
0 −1

4

)
is hypercyclic.

Question 2.14. What is the minimum number of 2× 2 matrices over C in Jordan
form so that their tuple forms a hypercyclic operator?

3. Products of 3 × 3 matrices

In this section we start with the following special case of Corollary 3.5 in [4], due
to Feldman, which will be of use to us in the following.

Proposition 3.1 (Feldman). If b1, b2 ∈ D \ {0}, then there exists a dense set
∆ ⊂ C \ D such that for every a1, a2 ∈ ∆ the sequence{(

a1
nb1

m

a2
nb2

l

)
: n, m, l ∈ N

}
is dense in C2.

In order to handle products of 3 × 3 matrices, we establish the following:

Corollary 3.2. There exist a ∈ C and b, c, d ∈ R such that the sequence{(
anbm

cndl

)
: n, m, l ∈ N

}
is dense in C × R.

Proof. Fix two real numbers b1, b2 with b1, b2 ∈ (0, 1). By Proposition 3.1 there
exist a1, a2 ∈ C \ D such that the sequence{(

a1
nb1

m

a2
nb2

l

)
: n, m, l ∈ N

}

is dense in C2. Define a = a1, b = b1, c = |a2| and d = −
√

b2. Observe that the
sequence {(

anbm

cnb2
l

)
: n, m, l ∈ N

}
is dense in C × [0, +∞). Take z ∈ C and x ∈ R.
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Case I. x ≥ 0.

Then there exist sequences of positive integers {nk}, {mk}, {lk} such that

ankbmk → z and cnkb2
lk → x.

Since b2
lk = d2lk we get cnkd2lk → x.

Case II. x < 0.

Then there exist sequences of positive integers {nk}, {mk}, {lk} such that

ankbmk → z and cnkb2
lk → x

d
.

The last implies that cnkd2lk+1 → x. This completes the proof of the corollary. �

The main result of this section is to prove Theorem 1.1 for n = 3. This is stated
and proved below.

Proposition 3.3. There exist 3 tuples (A1, A2, A3) of 3 × 3 matrices over R such
that (A1, A2, A3) is hypercyclic.

Proof. By Corollary 3.2 there exist a ∈ C and b, c, d ∈ R such that the sequence{(
anbm

cndl

)
: n, m, l ∈ N

}

is dense in C × R. Write a = |a|eiθ and set

A1 =

⎛
⎝ |a| cos θ −|a| sin θ 0

|a| sin θ |a| cos θ 0
0 0 c

⎞
⎠ , A2 =

⎛
⎝ b 0 0

0 b 0
0 0 1

⎞
⎠ and

A3 =

⎛
⎝ 1 0 0

0 1 0
0 0 d

⎞
⎠ .

Then we have

A1
nA2

mA3
l =

⎛
⎝ |a|nbm cos nθ −|a|nbm sin nθ 0

|a|nbm sin nθ |a|nbm cos nθ 0
0 0 cndl

⎞
⎠ ,

which in turn gives

A1
nA2

mA3
l

⎛
⎝ 1

0
1

⎞
⎠ =

⎛
⎝ |a|nbm cos nθ

|a|nbm sin nθ
cndl

⎞
⎠ .

The last and the choice of a, b, c, d imply that (A1, A2, A3) is hypercyclic with
(

1
0
1

)
being a hypercyclic vector for (A1, A2, A3). �
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4. Proof of Theorem 1.1

By Proposition 2.10, there exist 2× 2 matrices B1 and B2 such that (B1, B2) is
hypercyclic.

Case I. n = 2k for some positive integer k. For k = 1 the result follows by
Proposition 2.10. Assume that k > 1. Each Aj will be constructed by blocks
of 2 × 2 matrices. Let I2 be the 2 × 2 identity matrix. We will be using the
notation diag(D1, D2, . . . , Dn) to denote the diagonal matrix with diagonal en-
tries the block matrices D1, D2, . . . , Dn. Define A1 = diag(B1, I2, . . . , I2), A2 =
diag(B2, I2, . . . , I2), A3 = diag(I2, B1, I2, . . . , I2), A4 = diag(I2, B2, I2, . . . , I2) and
so on up to An−1 = diag(I2, . . . , I2, B1), An = diag(I2, . . . , I2, B2).

It is now easy to check that (A1, A2, . . . , An) is hypercyclic and furthermore that
the set HC((A1, A2, . . . , An)) is

{(x1, x2, . . . , xn) ∈ Rn : x2
2j−1 + x2

2j �= 0, ∀j = 1, 2, . . . , k}.

Case II. n = 2k + 1 for some positive integer k. If k = 1 the result follows
by Proposition 3.3. Suppose k > 1. For simplicity we treat the case k = 2,
since the general case follows by similar arguments. By Proposition 3.3 there exist
C1, C2, C3, 3× 3 matrices such that (C1, C2, C3) is hypercyclic. Let I3 be the 3× 3
identity matrix. Define A1 = diag(B1, I3), A2 = diag(B2, I3), A3 = diag(I2, C1),
A4 = diag(I2, C2) and A5 = diag(I2, C3).

It can easily be shown that (A1, A2, . . . , A5) is hypercyclic. The details are left
to the reader.
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