
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 137, Number 3, March 2009, Pages 937–944
S 0002-9939(08)09725-6
Article electronically published on October 10, 2008

A SIMPLIFIED CALCULATION FOR
THE FUNDAMENTAL SOLUTION TO THE HEAT EQUATION

ON THE HEISENBERG GROUP
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(Communicated by Mei-Chi Shaw)

Abstract. Let Lγ = − 1
4

(∑n
j=1(X

2
j + Y 2

j ) + iγT
)

where γ ∈ C, and Xj ,

Yj and T are the left-invariant vector fields of the Heisenberg group structure
for Rn × Rn × R. We explicitly compute the Fourier transform (in the spatial
variables) of the fundamental solution of the heat equation ∂sρ = −Lγρ. As
a consequence, we have a simplified computation of the Fourier transform of
the fundamental solution of the �b-heat equation on the Heisenberg group and
an explicit kernel of the heat equation associated to the weighted ∂-operator
in Cn with weight exp(−τP (z1, . . . , zn)), where P (z1, . . . , zn) = 1

2
(| Im z1|2 +

· · · + | Im zn|2) and τ ∈ R.

0. Introduction

The purpose of this note is to present a simplified calculation of the Fourier
transform of the fundmental solution of the �b-heat equation on the Heisenberg
group. The Fourier transform of the fundamental solution has been computed by
a number of authors [Gav77, Hul76, CT00, Tie06]. We use the approach of [CT00,
Tie06] and compute the heat kernel using Hermite functions but differ from the
earlier approaches by working on a different, though biholomorphically equivalent,
version of the Heisenberg group. The simplification in the computation occurs
because the differential operators on this equivalent Heisenberg group take on a
simpler form. Moreover, in the proof of Theorem 1.2, we reduce the n-dimensional
heat equation to a 1-dimensional heat equation, and this technique would also be
useful when analyzing the heat equation on the nonisotropic Heisenberg group (e.g.,
see [CT00]). We actually use the same version of the Heisenberg group as Hulanicki
[Hul76], but he computes the fundamental solution of the heat equation associated
to the sub-Laplacian and not the Kohn Laplacian acting on (0, q)-forms.

A consequence of our fundamental solution computation is that we can explic-
itly compute the heat kernel associated to the weighted ∂-problem in Cn when
the weight is given by exp(−τP (z1, . . . , zn)), where τ ∈ R and P (z1, . . . , zn) =
1
2 (| Im z1|2 + · · ·+ | Im zn|2). When n = 1 and p(z1) is a subharmonic, nonharmonic
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938 ALBERT BOGGESS AND ANDREW RAICH

polynomial, the weighted ∂-problem (with weight exp(−p(z1))) and the explicit con-
struction of Bergman and Szegö kernels have been studied by a number of authors
in different contexts (for example, see [Chr91, Has94, Has95, Has98, FS91, Ber92]).
In addition, Raich has estimated the heat kernel and its derivatives [Rai06b, Rai06a,
Rai07, Rai].

1. The Heisenberg group and the �b-heat equation

Definition 1.1. The Heisenberg group is the set Hn = Rn × Rn × R with the
following group structure:

g ∗ g′ = (x, y, t) ∗ (x′, y′, t′) = (x + x′, y + y′, t + t′ + x · y′),

where (x, y, t), (x′, y′, t′) ∈ R
n × R

n × R and · denotes the standard dot product in
Rn.

The left-invariant vector fields for this group structure are:

Xg
j =

∂

∂xj
+ yj

∂

∂t
and Y g

j =
∂

∂yj
, 1 ≤ j ≤ n, and T g =

∂

∂t
.

The Heisenberg group can also be identified with the following hypersurface in
Cn+1: Hn = {(z1, . . . , zn+1) ∈ Cn+1 : Im zn+1 = (1/2)

∑n
j=1(Im zj)2}, where we

identify (z1, . . . , zn, t + i(1/2)
∑n

j=1(Im zj)2) ∈ Hn with (z1, . . . , zn, t) = (x1, . . . ,

xn, y1, . . . , yn, t) where zj = xj +iyj ∈ C. With this identification, the left-invariant
vector fields of types (0, 1) and (1, 0), respectively, are:

Z
g

j =
1
2
(Xj + iYj) =

∂

∂zj
+

yj

2
∂

∂t
, Zg

j =
1
2
(Xj − iYj) =

∂

∂zj
+

yj

2
∂

∂t

for g = (x, y, t) ∈ Hn and 1 ≤ j ≤ n.

The heat equation. The Kohn Laplacian �b acting on (0, q)-forms on Hn ≈
Hn can be easily described in terms of these left-invariant vector fields. Suppose
f =

∑
J∈Iq

fJdzJ is a (0, q)-form where Iq is the set of all increasing q-tuples
J = (j1, . . . , jq), 1 ≤ jk ≤ n. Then

�bf =
∑
J∈Iq

Ln−2qfJ dzJ ,

where

(1) Lγ = −1
4

⎛⎝ n∑
j=1

(X2
j + Y 2

j ) + iγT

⎞⎠ .

See Stein ([Ste93], XIII §2) for details on computing �b. For comparison, the box
operator (or Laplacian) in Hulanicki ([Hul76]) is −1

2

∑n
j=1(X

2
j + Y 2

j ).
The heat equation is defined on (0, q)-forms ρ on Hn with coefficient functions

that depend on s ∈ (0,∞) and (x, y, t) ∈ H
n. It is

∂ρ

∂s
= −�bρ

(note that here s is the “time” variable and t is a spatial variable). Since �b acts di-
agonally, we can restrict ourselves to a fixed component and look for a fundamental
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solution ρ that satisfies

(2)

⎧⎪⎨⎪⎩
∂ρ

∂s
= −Lγρ for s > 0, (x, y, t) ∈ H

n,

ρ(s = 0, x, y, t) = δ0(x, y, t)

(i.e., the delta function at the origin in the spatial variables).

Fourier transformed variables. We will use a Fourier transform in the spatial
(x, y, t) variables (i.e., not the s-variable): let (α, β, τ) be the transform variables
corresponding to (x, y, t), and define:

f̂(α, β, τ) =
∫

Hn

f(x, y, t) e−i(α·x+β·y+τt) dx dy dt.

Our main result is the following:

Theorem 1.2. For any γ ∈ C, the spatial Fourier transform of the fundamental
solution to the heat equation (2) is given by

(3) ρ̂γ(s, α, β, τ) =
e−γsτ/4

(cosh(sτ/2))n/2
e−A(|α|2+|β|2)/2+iBα·β ,

where

A =
sinh(sτ/2)

τ cosh(sτ/2)
, B =

2 sinh2(sτ/4)
τ cosh(sτ/2)

.

Note that γ may be any complex number, but γ = n− 2q is the value where Lγ

corresponds to �b on (0, q)-forms.
We also seek the fundamental solution to the heat equation associated to the

weighted ∂ operator in (s, x, y)-space. Given a function f on R
n × R

n × R, let

f̃τ (x, y) =
∫

R

e−iτtf(x, y, t) dt

be the partial Fourier transform in t. Define

Lj =
∂

∂zj
+

i

2
yjτ =

1
2
(

∂

∂xj
+i

∂

∂yj
+iyτ ), Lj =

∂

∂zj
+

i

2
yjτ =

1
2
(

∂

∂xj
−i

∂

∂yj
+iyτ ).

Note that these operators are just the Fourier transform of Zj and Zj in the t-
direction. If �x,y is the Laplacian in both the x and y variables, the partial t-Fourier
transform of Lγ is

L̃γ = −1
4
(
�x,y + 2iτ y · ∇x − (τ2y · y + γτ )

)
.

The operator L̃γ acts on functions, but it can be extended to (0, q)-forms by acting
on each component function of the form. If γ = n − 2q, then L̃γ is the higher
dimensional analog of the �τp-operator from [Rai06a, Rai07, Rai] associated to the
weighted ∂ operator in Cn with weight exp(−τP (z1, . . . , zn)), where P (z1, . . . , zn) =
1
2 (| Im z1|2 + · · · + | Im zn|2) and τ ∈ R. As a corollary to our main theorem, we
compute the fundamental solution to the heat operator associated to this weighted
∂.
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Corollary 1.3. For any γ ∈ C, τ ∈ R, the function

ρ̃γ
τ (s, x, y) =

e−γsτ/4

(2π)n(cosh(sτ/2))n/2(A2 + B2)n/2
e
− A

2(A2+B2)
(|x|2+|y|2)−i B

A2+B2 x·y

is the fundamental solution to the weighted ∂ heat equation: ( ∂
∂s +L̃γ)ρ̃γ

τ (s, x, y) = 0
with ρ̃γ

τ (s = 0, x, y) = δ(0,0)(x, y).

Finally, we use ρ̃γ
τ to derive the heat kernel, as studied in [Rai06a, Rai07, Rai,

NS01].

Corollary 1.4. For any γ ∈ C, τ ∈ R, let

Hγ
τ (s, x, y, x′, y′) =

τne−γsτ/4

(4π)n sinhn(sτ/4)
e−

τ
4 coth(sτ/4)(|x−x′|2+|y−y′|2)−i τ

2 (x−x′)·(y+y′).

Then Hγ
τ is the heat kernel which satisfies the following property: if f ∈ L2(C),

then
Hγ

τ [f ](s, x, y) =
∫

Rn×Rn

Hγ
τ (s, x, y, x′, y′)f(x′, y′) dx′dy′

is a solution to the following initial value problem for the heat equation:

(4)

⎧⎪⎨⎪⎩
( ∂

∂s
+ L̃γ

)
Hγ

τ [f ] = 0

Hγ
τ [f ](s = 0, x, y) = f(x, y).

Note that Hγ
τ is conjugate symmetric in z = x + iy and z′ = x′ + iy′ (i.e.,

switching z with z′ results in a conjugate).

2. Proof of Theorem 1.2

It is easy to verify the following calculations. Recall that ̂ refers to the spatial
Fourier transform

X̂2
j f(α, β, τ) = (−α2

j − 2iαjτ
∂

∂βj
+ τ2 ∂2

∂β2
j

)f̂

Ŷ 2
j f(α, β, τ) = −β2

j f̂

T̂ f(α, β, τ) = iτ f̂ .

We first reduce the problem down to dimension one. Define ρ̂γ,1 by the same
formula as given in (3), but for dimension one (i.e., n = 1 and α, β ∈ R). From
(3), note that
(5)

ρ̂γ(s, α, β, τ) =
n∏

j=1

ρ̂γ/n,1(s, αj , βj , τ ), α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ R
n

(note the γ on the left and the γ/n on the right). Once we show that ργ,1 satisfies
the transformed heat equation in dimension one, i.e.,

(6)
(

∂

∂s
− (1/4)(X̂2 + Ŷ 2 + iγT̂ )

)
{ρ̂γ,1(s, ·, ·)} = 0

with initial condition ρ̂γ,1(s = 0, ·, ·, ·) = 1 (the Fourier transform of the delta
function), then by using (5), it is an easy exercise to show that ρ̂γ in dimension n
satisfies Theorem 1.2.
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From now on, we assume the dimension n is one and so x, y, α and β are all real
variables. Also, γ will be suppressed as a superscript. Define

(7) u(s, α, β, τ) = ρ̂(s, α, β, τ)e−i αβ
τ .

Then, the following equations are easily verified:

u(s = 0, α, β, τ) = e−i αβ
τ(8)

∂u

∂s
=

1
4
(τ2 ∂2

∂β2
− β2 − γτ )u.(9)

The first equation follows from the fact that the Fourier transform of the delta
function is the constant one. The second equation follows from the heat equation
for ρ̂ (from (6)) and the above formulas for the transformed differential operators
X̂, Ŷ and T̂ . We will refer to the above differential equation as the transformed
heat equation.

Solution of heat equation using Hermite special functions. For m=0, 1, 2,
. . . and x ∈ R, let

ψm(x) =
(−1)m√
2mm!

√
π

ex2/2 dm

dxm
{e−x2

}.

For τ ∈ R, let

Ψτ
m(x) = |τ |−1/4ψm(x/

√
|τ |).

It is a fact that ψm and hence Ψτ
m form an orthonormal system for L2(R) (see

[Tha93], pp. 1-7). It is also a fact (again see [Tha93], (1.1.28)) that

ψ′′
m(x) = x2ψm(x) − (2m + 1)ψm(x).

We first assume that τ > 0 and later indicate the minor changes needed in the
case that τ ≤ 0. Replacing x by β/

√
τ in the previous equation yields:

(10) (τ2 ∂2

∂β2
− β2 − γτ ){Ψτ

m}(β) = −(2m + 1 + γ)τΨτ
m(β).

In other words, Ψτ
m is an eigenfunction of the differential operator on the right side

of (9) with eigenvalue −1
4 (2m + 1 + γ)τ .

Since {Ψτ
m} are an orthonormal basis for L2(R), u can be expressed as

u(s, α, β, τ) =
∞∑

m=0

am(α, τ)e−
1
4 (2m+1+γ)sτΨτ

m(β),

where am(α, τ) will be determined later. Differentiating this with respect to s and
using (10) gives

∂

∂s
u(s, α, β, τ) =

∞∑
m=0

am(α, τ)e−
1
4 (2m+1+γ)sτ (−1

4
(2m + 1 + γ))τΨτ

m(β)

=
1
4

(
τ2 ∂2

∂β2
− β2 − γτ

)
{u(t, α, β, τ)}.
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So, u satisfies the transformed heat equation (9). To satisfy the initial condition
(8), we must have

e−iαβ/τ = u(s = 0, α, β, τ) =
∞∑

m=0

am(α, τ)Ψτ
m(β).

Using the fact that the Ψτ
m(β) form an orthonormal system, we have

am(α, τ) =
∫

R

e−iαβ/τΨτ
m(β) dβ = τ1/4

∫
R

e
−i α√

τ
β
ψm(β) dβ.

The integral on the right is just the Fourier transform of ψm at the point α/
√

τ .
From Thangavelu ([Tha93], Lemma 1.1.3), the Fourier transform of ψm equals ψm

up to a constant factor of (−i)m
√

2π. Therefore,

am(α, τ) = (−i)m(2π)
1
2 τ

1
4 ψm(α/

√
τ ).

Substituting this value of am into the expression for u and rearranging gives:

u(s, α, β, τ) = (2π)1/2e−
1
4 (1+γ)sτ

∞∑
m=0

(−i)mψm(
α√
τ

)ψm(
β√
τ

)e−
1
2msτ .

Now solving for ρ̂ (see equation (7)) yields

ρ̂(s, α, β, τ) = eiαβ/τu(s, α, β, τ)

= (2π)
1
2 e−

1
4 (1+γ)sτ

∞∑
m=0

(−i)mψm( α√
τ
)ψm( β√

τ
)e−

1
2msτeiαβ/τ .

Now let S = e−sτ/2, x = α/
√

τ , y = β/
√

τ . Since |iS| < 1, we obtain (see [Tha93],
(1.1.36))

ρ̂(s, α, β, τ) = (2π)
1
2 S

1
2 (1+γ)

( ∞∑
m=0

(−iS)mψm(x)ψm(y)

)
eixy

=
√

2S
1
2 (1+γ)

(1 + S2)
1
2

e
− 1

2
1−S2

1+S2 (x2+y2)
e
ixy( −2S

1+S2 +1)
.

Now substituting in for S, x and y, a short calculation finishes the proof for τ > 0.
Note that ρ̂(s = 0, α, β, τ) = 1 (the Fourier transform of the delta function at the
origin).

When τ = 0, the solution in (3) becomes ρ̂(s, α, β) = e−s(α2+β2)/4, which is
easily shown to satisfy (6).

If τ < 0, then τ is replaced by |τ | on the right side of (10), which slightly
changes the subsequent calculations. However the formula for the solution given
Theorem 1.2 remains valid for τ < 0.

3. Proof of the corollaries

Proof of Corollary 1.3. Again, we assume the dimension is n = 1. The fundamental
solution to this heat operator must satisfy

∂

∂s
ρ̃τ (s, x, y) + L̃γ ρ̃τ = 0

with the initial condition ρ̃τ (s = 0, x, y) = δ0(x, y). Now since ρ̂ is the Fourier
transform of the fundamental solution to the original heat operator, clearly ρ̃τ can
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be obtained by taking the inverse Fourier transform of ρ̂ in the α, β variables.
This is a standard calculation involving Gaussian integrals and will be left to the
reader. �

Proof of Corollary 1.4. If Lj and Lj , 1 ≤ j ≤ n, had constant coefficients, then the
heat kernel would just be ρ̃τ (s, x − x′, y − y′), an ordinary convolution. However,
we must multiply by a “twist” factor e−iτ(x−x′)·y′

to account for the fact that Lj

and Lj have variable coefficients. Let

(11) Hτ (s, x, y, x′, y′, τ ) = ρ̃τ (s, x − x′, y − y′)e−iτ(x−x′)·y′
.

Note that Hτ (f) satisfies the initial condition given in (4) in view of the initial
condition satisfied by ρ̃τ and noting that the twist term is 1 at x′ = x. Showing
that Hτ satisfies the heat equation in the s, x, y variables is a short calculation
that uses the equation(

∂

∂s
− 1

4

(
�x,y + 2iτ(y − y′) · ∇x − (τ2(y − y′) · (y − y′) + γτ )

))
× {ρ̃τ (s, x − x′, y − y′)} = 0,

which is just the equation ( ∂
∂s + L̃γ)ρ̃τ = 0 at the point (s, x − x′, y − y′).

Simplification of the formula for Hτ . Note that the coefficient of the imaginary
part of the exponent of ρ̃τ is

−B

A2 + B2
where A =

sinh(sτ/2)
τ cosh(sτ/2)

, B =
2 sinh2(sτ/4)
τ cosh(sτ/2)

.

An easy calculation with cosh and sinh identities shows that

B

A2 + B2
=

τ

2
and

A

B
=

cosh(sτ/4)
sinh(sτ/4)

.

Consequently, the fundamental solution Hτ , from (11) and Corollary 1.3, can be
rewritten

Hτ (s, x, y, x′, y′) =
τne−γsτ/4

(4π)n sinhn(sτ/4)
e−

τ
4 coth(sτ/4)(|x−x′|2+|y−y′|2)−i τ

2 (x−x′)·(y+y′).

�
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