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(Cp, α)-HYPONORMAL OPERATORS
AND TRACE-CLASS SELF-COMMUTATORS

WITH TRACE ZERO

VASILE LAURIC

(Communicated by Nigel J. Kalton)

This paper is dedicated to the memory of my grandparents.

Abstract. We define the class of (Cp, α)-hyponormal operators and study
the inclusion between such classes under various hypotheses for p and α, and
then obtain some sufficient conditions for the self-commutator of the Aluthge

transform T̃ = |T |
1
2 U |T |

1
2 of (Cp, α)-hyponormal operators to be in the trace-

class and have trace zero.

1. Introduction

In this section we define some classes of operators. Let H be a separable, infinite
dimensional, complex Hilbert space, and denote by L(H) the algebra of all bounded
linear operators on H. For α > 0 and T ∈ L(H), we call (T ∗T )α − (TT ∗)α the
α-self-commutator of T and denote it by Dα

T . Also, we will write |T | for (T ∗T )1/2,
σ(T ), σe(T ), and σw(T ) for the spectrum, essential spectrum, and Weyl spectrum
of T, respectively. For a selfadjoint operator A in L(H) we write A+, A− for the
positive and negative parts of A, that is, (|A|+A)/2, and (|A|−A)/2, respectively.
We denote by K the ideal of all compact operators in L(H), and by Cp(H), 1 ≤ p <
+∞, the ideal of operators in the Schatten p-class (cf. [9]). Although for 0 < p < 1,
the usual definition of || · ||p does not satisfy the triangle inequality, nevertheless
(Cp, || · ||p) is closed and ||TK||p ≤ ||T || · ||K||p, when T ∈ L(H) and K ∈ Cp(H).
Recall that C1(H) is the trace-class and that C2(H) is the Hilbert-Schmidt class.
We write tr (T ) for the canonical scalar-valued trace of an operator T in C1(H). We
denote by π the natural surjection from L(H) onto the Calkin algebra, L(H)/K, and
by µ the planar Lebesgue measure. We say that an operator T in L(H) is (Cp, α)-
normal if Dα

T ∈ Cp(H), and denote the class of (Cp, α)-normal operators by Nα
p (H).

Moreover, an operator T in L(H) will be called (Cp, α)-hyponormal if Dα
T = P +K,

where P is a positive semidefinite operator (P ≥ 0) and K ∈ Cp(H). The class of
(Cp, α)-hyponormal operators will be denoted by Hα

p (H). In particular, an operator
T in H1

1(H) will be called almost hyponormal. Furthermore, an operator T ∈ L(H)
whose Dα

T is positive semidefinite is called α-hyponormal (notation: T ∈ Hα
0 (H)).
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With only minor changes to the proof of Proposition 1.1 from [7], one can easily
prove the following.

Proposition 1. Let A ∈ L(H) be a selfadjoint operator and let p > 0. Then A can
be written as P + K with P ≥ 0 and K ∈ Cp(H) if and only if A− ∈ Cp(H).

Consequently, an operator T belongs to Hα
p (H) if and only if (Dα

T )− ∈ Cp(H).

2. Some inclusions

We will examine various inclusions between these classes of operators. Accord-
ing to Lowner’s inequality (A, B ∈ L(H), 0 ≤ A ≤ B, 0 < r ≤ 1 ⇒ Ar ≤ Br),
we have the following inclusion, Hα

0 (H) ⊇ Hβ
0 (H), when α ≤ β. In the case of

(Cp, α)-normal operators, and moreover, for (Cp, α)-hyponormal operators, the sim-
ilar inclusion for such classes is less obvious. We will give some sufficient conditions
when such an inclusion holds for (Cp, α)-normal operators and then for (Cp, α)-
hyponormal operators. We will make use of the following.

Lemma 2. Let α ≥ 1, p ≥ 1, and A, B ∈ L(H) be positive semidefinite operators
such that A − B ∈ Cp(H). Then Aα − Bα ∈ Cp(H).

The proof of Lemma 2 uses the following general fact.

Lemma 3. Let p ≥ 1, T ∈ L(H) and Tn ∈ Cp(H), for all n ∈ N, such that
Tn

wo−→T (i.e., weak operator topology) and such that ||Tn||p ≤ C < ∞, for all n ∈ N

and for some non-negative constant C. Then T belongs to Cp(H) and ||T ||p ≤ C.

Proof of Lemma 3. We will prove that T belongs to Cp(H) by proving that

(1) sup{| tr(TK)| : rank(K) < ∞ and ||K||q ≤ 1} < ∞,

and the above sup equals ||T ||p, where q is the index conjugate to p (cf. [8], p. 90).
To each Tn one can associate fn ∈ Cq(H)∗ defined by fn(K) = tr(TnK). Since

||fn|| = ||Tn||p ≤ C < ∞, according to Alaoglu’s theorem, there exists a sub-

sequence {fnk
} such that fnk

w∗
−→f, where f ∈ Cq(H)∗. Therefore tr(Tnk

K) =
fnk

(K) −→ f(K), for all K ∈ Cq(H), and |f(K)| ≤ M ||K||q, for some positive con-
stant M. On the other hand, since Tn

wo−→T, tr(TnK) −→ tr(TK) for all operators
K of finite rank. The statement follows easily from (1). �

Proof of Lemma 2. Let α, p, A, and B be as in the hypotheses of Lemma 2. For
purposes of proving that Aα − Bα ∈ Cp(H), we may assume that ||A|| and ||B||
are less than 1, since otherwise we may divide the norm of each operator by a
sufficiently large constant. Put An = A + 1

nI, Bn = B + 1
nI, for n ≥ n0, where

n0 is sufficiently large so that ||An0 || and ||Bn0 || < 1. Put Tn = Aα
n − Bα

n and
T = Aα − Bα and observe that Tn → T in norm. We will prove that Tn ∈ Cp(H),
and ||Tn||p ≤ C, for n ≥ n0, for some C < ∞. For an operator X = X∗ ∈ L(H)
with σ(X) ⊆ (0, 1), we may write

Xα = I +
∞∑

k=1

(α
k

)
(X − I)k,

where

(α
k
) =

α(α − 1) . . . (α − k + 1)
k!

,
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and the series above converges in the operator norm. Using this representation with
X = An and X = Bn and then subtracting one from the other, we obtain

Tn =
∞∑

k=1

(α
k

)
[(An − I)k − (Bn − I)k].

Expressing (An − I)k − (Bn − I)k as a telescopic sum and using the inequality

||RS||p ≤ ||R|| · ||S||p, for R ∈ L(H), S ∈ Cp(H),

we obtain that (An − I)k − (Bn − I)k ∈ Cp(H) and

||(An − I)k − (Bn − I)k||p ≤ ||A − B||p k qk−1
n ,

where qn = max{||An − I||, ||Bn − I||} < 1. Thus

||Tn||p ≤
∞∑

k=1

|
(α
k

)
| ||A − B||p k qk−1

n

= α ||A − B||p
[
1 + |α − 1| qn + · · · + |(α − 1) . . . (α − k + 1)|

(k − 1)!
qk−1
n + . . .

]

= α ||A − B||p
[
1 +

[α]∑
k=1

(α − 1) . . . (α − k)
k!

qk
n

]

+ α ||A − B||p
[ ∞∑

k=[α]+1

(α − 1) . . . (α − [α])|(α − [α] − 1) . . . (α − k)|
k!

qk
n

]
.

If the integer part of α, [α], is an even number written as 2k0, then the above sums,
ignoring the factor α ||A − B||p, can be written as

[
1 +

∞∑
k=1

(α − 1) . . . (α − k)
k!

(−qn)k + 2
k0∑

k=0

(α − 1) . . . (α − 2k − 1)
(2k + 1)!

q2k+1
n

]

=
[
(1 − qn)α−1 + 2

k0∑
k=0

(α − 1) . . . (α − 2k − 1)
(2k + 1)!

q2k+1
n

]
.

Since qn ∈ (0, 1), we can conclude that

||Tn||p ≤ α||A − B||p
[
1 +

k0∑
k=0

(α − 1) . . . (α − 2k − 1)
(2k + 1)!

]
,

when [α] = 2k0. The case when [α] is an odd number can be easily derived from
the above case. Applying Lemma 3, the proof of Lemma 2 is complete. �

With only minor adaptations of the proof of Lemma 2, one can prove the fol-
lowing.

Corollary 4. Let α ∈ R, p ≥ 1, and A, B ∈ L(H) be invertible positive definite
operators such that A − B ∈ Cp(H). Then Aα − Bα ∈ Cp(H).

In the following proposition we study how the class of (Cp, α)-normal operators
varies when α changes.



948 VASILE LAURIC

Proposition 5. Let α > 0, p ≥ 1, and let T be in Nα
p (H).

(a) If β ≥ α, then T belongs to N β
p (H), and therefore Nα

p (H) ⊆ N β
p (H).

(b) If either T ∗T or TT ∗ is a semi-Fredholm operator and 0 < γ ≤ α, then T
belongs to N γ

p (H).

Denote by Q0(H) = {T ∈ L(H) | T ∗T or TT ∗ is semi-Fredholm}. An alternative
characterization of Q0(H) is Q0(H) = {T ∈ L(H) | 0 ∈ ρle(T ) ∪ ρre(T ) }, where
ρle(T ), ρre(T ) are the left essential and right essential resolvents of the operator
T ∈ L(H), respectively.

Corollary 6. Let p ≥ 1 and α, β > 0. Then Nα
p (H) ∩ Q0(H) = N β

p (H) ∩ Q0(H).

Proof of Proposition 5. Let α, p, and T be as in the hypotheses and let T = U |T |
be the polar decomposition of T , and set S := U |T |α. Then obviously, S∗S =
|T |2α = (T ∗T )α and SS∗ = U |T |2αU∗ = (TT ∗)α, and therefore, [S∗, S] = Dα

T =
K ∈ Cp(H). On the other hand,

Dr
S = (S∗S)r − (SS∗)r = (T ∗T )αr − (TT ∗)αr = Dαr

T .

Let β ≥ α and put r = β
α ≥ 1 and apply Lemma 2 to conclude (a). To prove (b), we

assume that T ∗T is semi-Fredholm; the proof when TT ∗ is semi-Fredholm is similar.
Indeed, when T ∗T is semi-Fredholm, obviously T ∗T is Fredholm; i.e., π(T ∗T ) is
invertible in the Calkin algebra. Let π(X) be the inverse of π(T ∗T ) in the Calkin
algebra; then π(X) is a positive element and π(X)sπ(T ∗T )s = π(T ∗T )sπ(X)s =
ICalkin, for any s ≥ 0. In particular, for s = 2α, π(T ∗T )2α = π(S∗S) is invertible
in the Calkin algebra. Thus, for any r ≥ 0, there exist some operators Ar and Br

in L(H) so that

(2) (S∗S)r · Ar = I + K1
r and Br · (S∗S)r = I + K2

r ,

with K1
r , K2

r of finite rank, thus in C1(H). Since [S∗, S] = K ∈ Cp(H), according to
the argument used above, Dq

S ∈ Cp(H), for any q ≥ 1. We prove that D
{q}
S belongs

to Cp(H), for any q ≥ 1, where q = [q] + {q} is the decomposition of q into its
integer and fractional part. Indeed,

Dq
S = (S∗S)q − (SS∗)[q]+{q}

= (S∗S)q − (S∗S − K)[q](SS∗){q}

= (S∗S)q − [(S∗S)[q] + K ′](SS∗){q}

= (S∗S)[q]D{q}
S + K ′′,

where K, K ′, K ′′ are in Cp(H). Multiplying the equality

Dq
S = (S∗S)[q]D{q}

S + K ′′

by B[q] and using the fact that Dq
S ∈ Cp(H), we obtain according to (2) that D

{q}
S

belongs to Cp(H), for any q ≥ 1; therefore, Dr
S belongs to Cp(H), for any 0 ≤ r ≤ 1.

Therefore, for r = γ
α , we have Dr

S = Dαr
T = Dγ

T ∈ Cp(H), and (b) is established. �

Next we study the class of (Cp, α)-hyponormal operators. Since the class Hα
0 (H)

is monotone decreasing (as a subset) in terms of α, we can only expect that the
class Hα

p (H) will be monotone decreasing.
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Proposition 7. Let α > 0, p ≥ 1, and let T ∈ Hα
p (H) with Dα

T = P + K, P ≥ 0,
K ∈ Cp(H). If 0 < β ≤ α and if one of the following is satisfied:
(a) either T ∗T or TT ∗ is a semi-Fredholm operator or
(b) both (T ∗T )α and (TT ∗)α + P are invertible,
then T belongs to Hβ

p (H).

Proof. Let α, p, and T be as in the hypotheses and let T = U |T | be the polar
decomposition of T , and put S = U |T |α. The calculations used in the proof of
Proposition 5 show that S belongs to H1

p(H), and according to Proposition 1,
S∗S − (SS∗ + P ) = K, with P ≥ 0 and K ∈ Cp(H). If either T ∗T or TT ∗ is
a semi-Fredholm operator, then using the same circle of ideas as in the proof of
Proposition 5, one can conclude that

(S∗S)
β
α − (SS∗ + P )

β
α = K ′,

with K ′ ∈ Cp(H). On the other hand, using Lowner’s inequality, one can write

(SS∗ + P )
β
α = (SS∗)

β
α + P ′,

with P ′ ≥ 0. These two equalities can be written in terms of operators T and T ∗

as
(T ∗T )β − (TT ∗)β = P ′ + K ′,

which, according to Proposition 1, implies that T ∈ Hβ
p (H). This ends the proof

under assumption (a). The proof with assumption (b) makes use of Corollary 4
and is left for the reader. �

Corollary 8. Let α ≥ β > 0, p ≥ 1. Then Hα
p (H) ∩ Q0(H) ⊆ Hβ

p (H) ∩ Q0(H).

Proof. Apply part (a) of Proposition 7. �

In section 3 we will use the lemmas below, one of them being a consequence of
the following corollary. This corollary is a consequence of Theorem 3.4 of [5].

Corollary 9. Let A, B ∈ L(H) be positive semidefinite operators. If α ∈ (0, 1]
and 1 ≤ p < ∞, then

||Bα − Aα||p ≤ || |B − A|α ||p.

Lemma 10. Let A ∈ L(H), A ≥ 0, α ∈ (0, 1], p ≥ α, K ∈ Cp(H), such that
A+K ≥ 0. Then (A+K)α = Aα +K1, where K1 ∈ C p

α
(H). If in addition K ≥ 0,

then K1 ≥ 0.

Proof. Set K1 := (A + K)α − Aα. From Corollary 9 one obtains

||K1|| p
α
≤ || |K|α|| p

α
= ||K||αp < ∞,

which implies K1 ∈ C p
α
(H).

If K ≥ 0, then we can apply Lowner’s inequality to A + K and A and obtain
(A + K)α ≥ Aα. Therefore K1 ≥ 0.

�

Lemma 11. Let A ∈ L(H), A ≥ 0, p ≥ 1, K ∈ Cp(H), such that A + K ≥ 0, and
let α ∈ [1, +∞). Then (A + K)α = Aα + K1, where K1 ∈ Cp(H).

Proof. Apply Lemma 2. �
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3. Application

In [4] the following sufficient condition for an almost hyponormal operator to
have trace-class self-commutator with trace zero was obtained.

Theorem A ([4]). If T ∈ H1
1(H) and µ(σw(T )) = 0, then T ∈ N 1

1 (H) and

tr (D1
T ) = 0.

In [1] the following was obtained.

Theorem B ([1]). If T ∈ Hα
0 (H) for some α ∈ (0, 1], then

||Dα
T || ≤

α

π

∫∫
σw(T )

r2α−1 dr dθ.

An obvious consequence of Theorem B is the following.

Corollary 12. If T ∈ Hα
0 (H) for some α > 0 and µ(σw(T )) = 0, then T is

normal.

The above results naturally lead to the following.

Question. Let T be in Hα
p (H) for some α > 0, p > 0, and such that µ(σw(T )) = 0.

Does this imply that T or some transform of T, say φ(T ), belongs to N β
1 (H), for

some β, and tr(Dβ
φ(T )) = 0?

This question is also justified by Theorem C below. For a subset E of C, let

ωp(E) =
p

2

∫ ∫
E

ρp−1 dρ dθ,

and for T ∈ L(H), let m(T ) be the rational cyclicity of T, that is, the least cardinal
number of a set M ⊆ H such that

∨
{r(T )x : r ∈ Rat(σ(T )), x ∈ M} = H.

Theorem C ([2]). Let T ∈ L(H) and 1
2 ≤ α < ∞.

(a) If 1
2 ≤ α ≤ 1 and T ∈ Hα

1 (H), and K ∈ C2α(H), then

tr (Dα
T ) ≤ 1

π
m(T + K) ω2α(σ(T + K)).

(b) If 1 ≤ α < ∞ and T ∈ Hα
0 (H), then

tr (Dα
T ) ≤ 1

π
m(T ) ω2α(σ(T )).

Part (b) of Theorem C with the additional hypotheses that µ(σw(T )) = 0 and
m(T ) < ∞ holds the same conclusion as Corollary 12. Indeed, if T ∈ Hα

0 (H) for
some α ≥ 1, then T is a hyponormal operator. It is now well known that for some
class of operators, including the hyponormal ones, Weyl’s theorem holds; that is,

σ(T ) \ σw(T ) = π00(T ),

where π00(T ) is the set of isolated points of σ(T ) which are eigenvalues of finite
multiplicity. Therefore, µ(σw(T )) = 0 implies that µ(σ(T )) = 0, and thus tr(D1

T ) =
0, that is, D1

T = 0.
On the other hand, concerning part (a) of Theorem C, J. Stampfli in [10] proved

that for T ∈ L(H), there exists a compact operator K such that σ(T + K) \ σw(T )
consists of a countable set. In fact, the proof that was provided in [10] says more.
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Lemma D ([10]). Let T ∈ L(H) and p ≥ 1. Then for any ε > 0, there exists
K ∈ Cp(H) such that ||K||p < ε and σ(T + K) \ σw(T ) consists of a countable set
which clusters only on σw(T ).

Consequently, for an operator T ∈ Hα
1 (H), for some α ∈ [12 , 1], and the operator

K of Lemma D, we have ω2α(σ(T + K)) = 0, provided that µ(σw(T )) = 0. If in
addition m(T + K) < ∞, then according to part (a) of Theorem C, T ∈ N 1

1 (H)
and tr (Dα

T ) = 0.
We make a modest contribution towards answering the above question. Let T

belong to Hα
p (H), for some α > 0, p > 0, such that Dα

T = P + K with P ≥ 0 and
K ∈ Cp(H). Since K = K∗ = K+−K− and K+, K− ≥ 0 are Cp-class operators, in
what follows we will assume that Dα

T = P −K with P ≥ 0 and K ≥ 0, K ∈ Cp(H).
For T ∈ L(H), let T = U |T | be the polar decomposition of T and write T̃ for the
Aluthge transform of T , that is, |T | 12 U |T | 12 .

Theorem 13. Let p > 0, α ∈ [12 , 1], and T ∈ Hα
p (H) such that Dα

T = P −K with
P, K ≥ 0, K ∈ Cp(H), and let ε ∈ (0, 1

2 ] such that α+ε ≤ 1. Then T̃ ∈ H(α+ε)

( 4αp
ε+α )

(H).

In proving Theorem 13 we will make use of an elementary lemma (Lemma 14,
whose proof is omitted) and of Furuta’s inequalities [3].

Lemma 14. For T ∈ L(H) there exists a Hilbert space K that includes H and an
operator A ∈ L(K) such that Dα

T ⊕ 0K�H = Dα
A, for any α > 0, and σ(T ) \ {0} =

σ(A) \ {0}, where A = U |A| with U unitary.

Theorem E ([3]). For operators E ≥ F ≥ 0 in L(H) and r ≥ 0, p ≥ 0, q ≥ 1
with (1 + 2r)q ≥ p + 2r, we have

(F1) (F rEpF r)
1
q ≥ (F p+2r)

1
q ,

(F2) (Ep+2r)
1
q ≥ (ErF pEr)

1
q .

Proof of Theorem 13. Let T be as in the hypotheses of Theorem 13. According to
Lemma 14, we may assume that T = U |T | with U unitary. The equality Dα

T =
P − K with P, K ≥ 0 implies |T |2α + K ≥ U |T |2αU∗. Multiplying this inequality
by U∗ to the left and by U to the right, one obtains

A := U∗|T |2αU + U∗KU ≥ |T |2α =: B.

According to Lemma 10,

A
1
2α = [U∗(|T |2α + K)U ]

1
2α = U∗(|T |2α + K)

1
2α U = U∗(|T | + K1)U,

with K1 ∈ C+
2αp(H). Setting K2 := |T | 12 U∗K1U |T | 12 , we have
(
T̃ ∗ T̃ + K2

)α+ε

=
{
|T | 12 [U∗(|T | + K1)U ] |T | 12

}α+ε

=
{
|T | 12

[
U∗(|T |2α + K)U

] 1
2α |T | 12

}α+ε

=
(
B

1
4α A

1
2α B

1
4α

)α+ε

(F1)

≥ (B
1
α )α+ε = |T |2(α+ε).
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On the other hand, according to Lemma 10,

(T̃ ∗ T̃ + K2)α+ε = (T̃ ∗ T̃ )α+ε + K3,

with K3 ∈ C+
2αp
α+ε

(H) since K2 ∈ C+
2αp(H). Thus we have obtained the inequality

(*) (T̃ ∗ T̃ )α+ε + K3 ≥ |T |2(α+ε), K3 ∈ C+
2αp
α+ε

(H).

On the other hand, the inequality

D := U |T |2αU∗ ≤ |T |2α + K =: C

can be used in conjunction with (F2) to obtain a similar inequality to (*). Indeed,
we have

(C
1
4α D

1
2α C

1
4α )α+ε

(F2)

≤ (C
1
α )α+ε.

Next, we compute each side of the above inequality. Again, according to Lemma 10,

C
1
4α = (|T |2α + K)

1
4α = |T | 12 + K4,

with K4 ∈ C+
4αp(H). Obviously, D

1
2α = U |T |U∗. Therefore, the left-hand side of the

above inequality becomes

(C
1
4α D

1
2α C

1
4α )α+ε =

[
(|T | 12 + K4)(U |T |U∗)(|T | 12 + K4)

]α+ε

=
(
|T | 12 U |T |U∗|T | 12 + K5

)α+ε

, K5 ∈ C4αp(H)

=
(
T̃ T̃ ∗ + K5

)α+ε

= (T̃ T̃ ∗)α+ε + K6, K6 ∈ C 4αp
α+ε

(H).

The right-hand side of the above inequality can be handled with Lemmas 10 and
11 as follows:

(C
1
α )α+ε L11= (|T |2 + K7)α+ε L10= |T |2(α+ε) + K8,

with K7 ∈ Cp(H) and K8 ∈ C p
α+ε

(H). Thus

|T |2(α+ε) + K8 ≥ (T̃ T̃ ∗)α+ε + K6,

where K6 ∈ C 4αp
α+ε

(H) and K8 ∈ C p
α+ε

(H), which implies

(**) |T |2(α+ε) ≥ (T̃ T̃ ∗)α+ε + K9, K9 = K6 − K8 ∈ C 4αp
α+ε

(H).

Combining (*) and (**) we obtain

(T̃ ∗ T̃ )α+ε − (T̃ T̃ ∗)α+ε ≥ K10,

where K10 = K9 − K3 ∈ C 4αp
α+ε

(H), and the proof is finished. �

Corollary 15. Let T ∈ H(1/2)
(1/2)(H) such that D

1
2
T = P − K with P, K ≥ 0, K ∈

C 1
2
(H). Then T̃ ∈ H1

1(H).

Theorem 16. Let T ∈ H(1/2)
(1/2)(H) such that D

1
2
T = P − K with P, K ≥ 0, K ∈

C 1
2
(H). If µ(σw(T )) = 0, then T̃ ∈ N 1

1 (H) and tr(D1
T̃
) = 0.
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Proof. Let T be as in the hypotheses. According to Corollary 15, the operator
T̃ is in N 1

1 (H). Furthermore, according to Theorem 1.8 of [6], we obtain that
µ(σw(T̃ )) = 0. Then apply Theorem A to finish the proof. �
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