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This paper is dedicated to the memory of my grandparents.

ABSTRACT. We define the class of (Cp,a)-hyponormal operators and study
the inclusion between such classes under various hypotheses for p and «, and
then obtain some sufficient conditions for the self-commutator of the Aluthge

~ 1 1
transform T' = |T'|2U|T|2 of (Cp, a)-hyponormal operators to be in the trace-
class and have trace zero.

1. INTRODUCTION

In this section we define some classes of operators. Let H be a separable, infinite
dimensional, complex Hilbert space, and denote by £(H) the algebra of all bounded
linear operators on H. For v > 0 and T' € L(H), we call (T*T)* — (TT*)* the
a-self-commutator of T and denote it by D$. Also, we will write |T| for (T*T)'/2,
o(T), 0o(T), and 0, (T) for the spectrum, essential spectrum, and Weyl spectrum
of T, respectively. For a selfadjoint operator A in £(H) we write Ay, A_ for the
positive and negative parts of A, that is, (JA| + A)/2, and (|A| — A)/2, respectively.
We denote by K the ideal of all compact operators in £(H), and by C,(H), 1 <p <
+00, the ideal of operators in the Schatten p-class (cf. [9]). Although for 0 < p < 1,
the usual definition of || - ||, does not satisfy the triangle inequality, nevertheless
(Cps || - Ilp) is closed and ||TK||, < ||T]| - ||K]||p, when T € L(H) and K € Cp(H).
Recall that Ci(H) is the trace-class and that Co(H) is the Hilbert-Schmidt class.
We write tr (T') for the canonical scalar-valued trace of an operator T" in C; (H). We
denote by 7 the natural surjection from £(H) onto the Calkin algebra, £(H)/K, and
by p the planar Lebesgue measure. We say that an operator T in L(H) is (Cp, a)-
normal if Dg € C,(H), and denote the class of (C,, a)-normal operators by N3*(H).
Moreover, an operator T' in £(H) will be called (C,, @)-hyponormal if D$ = P+ K,
where P is a positive semidefinite operator (P > 0) and K € C,(H). The class of
(Cp, @)-hyponormal operators will be denoted by Hy (). In particular, an operator
T in H1i(H) will be called almost hyponormal. Furthermore, an operator T € L(H)
whose D$ is positive semidefinite is called a-hyponormal (notation: T € H§ (H)).
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With only minor changes to the proof of Proposition 1.1 from [7], one can easily
prove the following.

Proposition 1. Let A € L(H) be a selfadjoint operator and let p > 0. Then A can
be written as P+ K with P >0 and K € C,(H) if and only if A_ € C,(H).

Consequently, an operator T' belongs to Hj (M) if and only if (Dg)_ € C,(H).

2. SOME INCLUSIONS

We will examine various inclusions between these classes of operators. Accord-
ing to Lowner’s inequality (A, B € L(H), 0<A<B, 0<r<1= A" < B"),
we have the following inclusion, Hg(H) 2 Hi(H), when o < 8. In the case of
(Cp, @)-normal operators, and moreover, for (Cp, o)-hyponormal operators, the sim-
ilar inclusion for such classes is less obvious. We will give some sufficient conditions
when such an inclusion holds for (C,,a)-normal operators and then for (Cp, a)-
hyponormal operators. We will make use of the following.

Lemma 2. Let a«>1, p>1, and A, B € L(H) be positive semidefinite operators
such that A — B € C,(H). Then A* — B* € C,(H).

The proof of Lemma 2 uses the following general fact.

Lemma 3. Let p > 1, T € L(H) and T,, € C,(H), for all n € N, such that
T,,~5T (i.e., weak operator topology) and such that ||T,||, < C < oo, for alln € N
and for some non-negative constant C. Then T belongs to C,(H) and ||T||, < C.

Proof of Lemma 8. We will prove that T belongs to C,(H) by proving that
(1) sup{| tr(TK)| : rank(K) < co and ||K]||, <1} < oo,

and the above sup equals ||T||,, where ¢ is the index conjugate to p (cf. [§], p. 90).
To each T}, one can associate f,, € C,(H)" defined by f,(K) = tr(T,,K). Since
I fnll = IIThllp < C < o0, according to Alaoglu’s theorem, there exists a sub-

sequence {f,, } such that f,, ——f, where f € C,(H)". Therefore tr(T}, K) =
frn(K) — f(K), for all K € C;(H), and |f(K)| < M||K]||,, for some positive con-
stant M. On the other hand, since T},—~>T, tr(T,,K) — tr(TK) for all operators
K of finite rank. The statement follows easily from (1). O

Proof of Lemma 2. Let o, p, A, and B be as in the hypotheses of Lemma 2. For
purposes of proving that A* — B* € C,(H), we may assume that ||A|| and ||B]|
are less than 1, since otherwise we may divide the norm of each operator by a
sufficiently large constant. Put A, = A+ I, B, = B+ 11, for n > ny, where
no is sufficiently large so that ||A,,|| and ||By,|| < 1. Put T,, = A% — BS and
T = A* — B and observe that T,, — T in norm. We will prove that T, € C,(H),
and [|T,||, < C, for n > ng, for some C' < co. For an operator X = X* € L(H)
with o(X) C (0,1), we may write

X =T+ ()X =D,
k=1

where
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and the series above converges in the operator norm. Using this representation with
X = A, and X = B,, and then subtracting one from the other, we obtain

T, =" (D(An - DF = (B, — D¥].

=
=

Expressing (A, — I)* — (B, — I)* as a telescopic sum and using the inequality
IRSlp < |IR[[ - [|S]]p, for R € L(H), S € Cp(H),
we obtain that (A4, — I)* — (B, — I)* € C,(H) and
(40 = D" = (Bu = D"l < [|1A = Blly k gy,
where ¢, = max{||A, — I||,||Bn — I||} < 1. Thus

|T||p§2| |||A B||pkq

[(a—1)...(a =k+1) ,_4

=all[A=Bll[1+]a—1g+ -+ L ]
o] "
—alla- B[+ Y @ OB g
k=1
calla-lp[ 3 @Dz ladlo(ol =Y. Bl
k=[a]+1

If the integer part of «, [, is an even number written as 2k, then the above sums,
ignoring the factor a||A — Bl|,, can be written as

> (a—l)...(a—k (a—=2k—=1) 4.
[HZ 7 ) +QZ 2k+1) G
— )" 1 a—2k;—1) 2k41

Since ¢, € (0,1), we can conclude that

(a—1)...(a—2k—-1)
1Tullp < ol|A = Bl|, [1+§ @k + 1) J;

when [o] = 2kg. The case when [a] is an odd number can be easily derived from
the above case. Applying Lemma 3, the proof of Lemma 2 is complete. O

With only minor adaptations of the proof of Lemma 2, one can prove the fol-
lowing.

Corollary 4. Let a« € R, p>1, and A, B € L(H) be invertible positive definite
operators such that A — B € Cp,(H). Then A* — B* € C,(H).

In the following proposition we study how the class of (C,, @)-normal operators
varies when a changes.
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Proposition 5. Let a« >0, p>1, and let T be in N;(H).
(a) If B> a, then T belongs to NJJ(H), and therefore N5'(H) C N,

S (H).
(b) If either T*T or TT* is a semi-Fredholm operator and 0 < -~y § a, then T
belongs to NJ (H).

Denote by Qo(H) = {T € L(H) | T*T or TT* is semi-Fredholm}. An alternative
characterization of Qo(H) is Qo(H) = {T € L(H)| 0 € p1e(T) U pre(T) }, where
P1e(T), pre(T) are the left essential and right essential resolvents of the operator
T € L(H), respectively.

Corollary 6. Letp > 1 and o, 3> 0. Then N (H) N Qo(H) = NP (H) N Qo(H).

Proof of Proposition 5. Let «, p, and T be as in the hypotheses and let T = U|T|
be the polar decomposition of T, and set S := U|T|*. Then obviously, S*S =
|T|** = (T*T)* and SS* = U|T|**U* = (T'T*)*, and therefore, [S*,S] = D% =
K € Cy(H). On the other hand,

Let 8> aand putr = g > 1 and apply Lemma 2 to conclude (a). To prove (b), we
assume that T*7T is semi-Fredholm; the proof when TT* is semi-Fredholm is similar.
Indeed, when T*T is semi-Fredholm, obviously T*T is Fredholm; i.e., w(T*T) is
invertible in the Calkin algebra. Let 7(X) be the inverse of 7(7*T) in the Calkin
algebra; then 7(X) is a positive element and 7(X)*7(T*T)* = n(T*T)*n(X)*® =
Icaikin, for any s > 0. In particular, for s = 2a, m(T*T)?* = 7(S*S9) is invertible
in the Calkin algebra. Thus, for any r > 0, there exist some operators A, and B,
in £L(H) so that

(2) (S*S)"- A, =T+ K} and B, - (S*S)" = I + K2,
with K}, K? of finite rank, thus in C; (H). Since [S*, S] = K € C,(H), according to
the argument used above, D¢ € C,(H), for any ¢ > 1. We prove that D{q} belongs

to Cp(H), for any g > 1, where ¢ = [g] + {¢} is the decomposition of g into its
integer and fractional part. Indeed,

DY = (§*5)7 — (55*)[q]+{q}

= (5*9)1 — (55 — K)[q](SS*){‘I}

= (578)7 = [(§"5) + K'|(55%) 17}
= (s"5)D{" + K,

where K, K', K" are in C,(H). Multiplying the equality
D% = (5*9) DI + K

by B, and using the fact that D§ € C,(H), we obtain according to (2) that Déq}
belongs to C,,(H) for any g > 1; therefore, D% belongs to C,(H), for any 0 < r < 1.
Therefore, for r = 1, we have DS Dgr = D“Y € Cp(H), and (b) is established. O

Next we study the class of (C,, a)-hyponormal operators. Since the class H§ (H)
is monotone decreasing (as a subset) in terms of «, we can only expect that the
class My (‘H) will be monotone decreasing.
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Proposition 7. Let « >0, p > 1, and let T € Hy(H) with D = P+ K, P >0,
K eCy(H). If 0< 8 <a and if one of the following is satisfied:

(a) either T*T or TT* is a semi-Fredholm operator or

(b) both (T*T)* and (TT*)* + P are invertible,

then T belongs to HY (H).

Proof. Let o, p, and T be as in the hypotheses and let T' = U|T| be the polar
decomposition of T, and put S = U|T|*. The calculations used in the proof of
Proposition 5 show that S belongs to 7-(11)(7—[)7 and according to Proposition 1,
S*S — (858* + P) = K, with P > 0 and K € C,(H). If either T*T or TT* is
a semi-Fredholm operator, then using the same circle of ideas as in the proof of
Proposition 5, one can conclude that

(S*S)* — (SS* + P)o = K,
with K’ € C,(H). On the other hand, using Lowner’s inequality, one can write
(SS* + P)a = (SS*)a + P,

with P’ > 0. These two equalities can be written in terms of operators 7' and T*
as

(T*T)° — (TT*)? = P' + K',
which, according to Proposition 1, implies that T € Hg (H). This ends the proof

under assumption (a). The proof with assumption (b) makes use of Corollary 4
and is left for the reader. O

Corollary 8. Let o > 3> 0, p> 1. Then HZ(H) N Qo(H) C Hi(H) N Qo(H).
Proof. Apply part (a) of Proposition 7. O

In section 3 we will use the lemmas below, one of them being a consequence of
the following corollary. This corollary is a consequence of Theorem 3.4 of [5].

Corollary 9. Let A, B € L(H) be positive semidefinite operators. If a € (0,1]
and 1 < p < oo, then

1B = A%, < [[[B = A |-

Lemma 10. Let A € L(H), A >0, a € (0,1], p > a, K € C,(H), such that
A+ K >0. Then (A+ K)® = A%+ Ky, where K1 € C» (H). If in addition K > 0,
then K1 > 0.

Proof. Set K1 := (A+ K)* — A% From Corollary 9 one obtains
2 <[] 1K

which implies K € Cz (H).
If K > 0, then we can apply Lowner’s inequality to A + K and A and obtain
(A4 K)* > A®. Therefore K1 > 0.

2 = ||K][; <o,

O

Lemma 11. Let A€ L(H), A>0, p>1, K € C,(H), such that A+ K >0, and
let a € [1,400). Then (A+ K)* = A* 4+ Ky, where K; € C,(H).

Proof. Apply Lemma 2. O
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3. APPLICATION

In [4] the following sufficient condition for an almost hyponormal operator to
have trace-class self-commutator with trace zero was obtained.

Theorem A ([]). If T € HI(H) and p(o,(T)) =0, then T € N} (H) and
tr (D}) = 0.
In [1] the following was obtained.

Theorem B ([1]). If T € H§(H) for some o € (0,1], then

IDg < @ // 2oL dr dg.

An obvious consequence of Theorem B is the following.

Corollary 12. If T € HS(H) for some a > 0 and p(oy(T)) = 0, then T is
normal.

The above results naturally lead to the following.

Question. Let 7' be in H; (H) for some a > 0, p > 0, and such that p(0., (7)) =
Does this imply that T or some transform of T, say ¢(T), belongs to ./\/'B(H) for
some [, and tr(DZ(T)) =07

This question is also justified by Theorem C below. For a subset E of C, let

g//pp‘ldpd&
E

and for T' € L(H), let m(T') be the rational cyclicity of T' that is, the least cardinal
number of a set M CH such that \/{r(T)z: r € Rat(o(T)), x € M} = H.

Theorem C ([2]). Let T € L(H) and 3 < a < co.
(a) If $<a<land T €HS(H), and K € Con(H), then

tr (Dg) < %m(T%— K)wao(o(T + K)).

(b) If 1<a<oo and T € H§(H), then
tr (DS < %m(T) waa(o(T)).

Part (b) of Theorem C with the additional hypotheses that p(o,(T)) = 0 and
m(T) < oo holds the same conclusion as Corollary 12. Indeed, if T € Hg(H) for
some « > 1, then T is a hyponormal operator. It is now well known that for some
class of operators, including the hyponormal ones, Weyl’s theorem holds; that is,

o(T)\ 0u(T) = moo(T),
where moo(T) is the set of isolated points of o(T') which are eigenvalues of finite
multiplicity. Therefore, (o, (T)) = 0 implies that u(co(7T)) = 0, and thus tr(D31.) =
0, that is, D} = 0.
On the other hand, concerning part (a) of Theorem C, J. Stampfli in [I0] proved
that for T € L(H), there exists a compact operator K such that o(T + K) \ 0, (T)
consists of a countable set. In fact, the proof that was provided in [I0] says more.
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Lemma D ([10]). Let T € L(H) and p > 1. Then for any € > 0, there exists
K € Cy(H) such that ||K||, <e and o(T + K) \ 0,(T) consists of a countable set
which clusters only on 0., (T).

Consequently, for an operator T' € H$(H), for some o € [%, 1], and the operator
K of Lemma D, we have wa,(o(T + K)) = 0, provided that u(o,(T)) = 0. If in
addition m(T + K) < oo, then according to part (a) of Theorem C, T € N (H)
and tr (Dg) = 0.

We make a modest contribution towards answering the above question. Let T
belong to Hg (H), for some o > 0, p > 0, such that DF = P + K with P > 0 and
K eCy(H).Since K =K*=K;—K_and K., K_ >0 areC,-class operators, in
what follows we will assume that D¢ = P— K with P > 0 and K > 0, K € C,(H).
For T € L(H), let T = U|T| be the polar decomposition of 7" and write 7" for the
Aluthge transform of T', that is, |T|%U|T|%.

Theorem 13. Let p>0, o € [3,1], and T € HY(H) such that D$ = P — K with
P, K >0, K € Cy(H), and let e € (0, 3] such that a+e < 1. Then T € H(‘iﬁ) (H).

(a+a

In proving Theorem 13 we will make use of an elementary lemma (Lemma 14,
whose proof is omitted) and of Furuta’s inequalities [3].

Lemma 14. For T € L(H) there exists a Hilbert space K that includes H and an
operator A € L(K) such that DS ® Oxen = D%, for any a > 0, and o(T) \ {0} =
o(A)\ {0}, where A =U|A| with U unitary.

Theorem E ([3]). For operators E > F > 0 in L(H) andr >0, p >0, ¢ > 1
with (14 2r)q > p+ 2r, we have
(F) (FTEPFT)7 > (FPH2n)s,

(Fp) (EPr)s > (BTFPET)s.

Proof of Theorem 13. Let T be as in the hypotheses of Theorem 13. According to
Lemma 14, we may assume that 7" = U|T| with U unitary. The equality D$ =
P — K with P, K > 0 implies |T|>** + K > U|T|?>*U*. Multiplying this inequality
by U* to the left and by U to the right, one obtains

A=UTP**U + U*KU > |T|** =: B.
According to Lemma 10,
Ase = [U*(|T]* + K)U]2« = U*(|T]** + K)2«U = U*(|T| + K1)U,
with K € Cg,,, (H). Setting K» := |T|2U*K1U|T|2, we have

(77 + &)™ = {1t e () + o]}
= it [ (e + yu) = )
_ (Bmigﬁ)““
(F1)

> (B%)orks _ |T‘2(a+e).
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On the other hand, according to Lemma 10,
(T + K)o+ = (1 TY* + K,
with K3 € C1,, (H) since Kj € C5,,(H). Thus we have obtained the inequality

a+e

(*) (T*T)°+e + K3 > T2 Kz ecl, (H).

a+te

On the other hand, the inequality
D :=U|TPU* <|TP“+ K = C

can be used in conjunction with (F3) to obtain a similar inequality to (*). Indeed,
we have

(O D3 o yote @ (CFyore.
Next, we compute each side of the above inequality. Again, according to Lemma 10,
Cis = (TP + K)s = |T|* + Ky,
with Ky € Cf,,(H). Obviously, Dz« = U|T|U*. Therefore, the left-hand side of the
above inequality becomes

a+te
(C#DFE ) = (1)} + K)UITI0) (71 + K9]

[
(|T| U|T|U*|T|? +K5) +5, K5 € Caap(H)
= (7

a+te
T + K5)
= (TT")** + Ko, Ko € Cacs (H).

The right-hand side of the above inequality can be handled with Lemmas 10 and
11 as follows:

(Co)ete (TP + Kyt 20 TP 4 K,
with K7 € Cp(H) and Ks € C_z_(H). Thus
T 4+ Kg > (TT*)" + K,
where Kg € C4a_p (H) and Kg € C_z_(H), which implies

(**) T+ > (TT*)** + Ky, K9 = Kg — Kg € Caop (H).

a+te

Combining (*) and (**) we obtain
(T* T)aJre _ (TT*)aJre > K107
where K19 = K9 — K3 € C«% (H), and the proof is finished. O

Corollary 15. Let T € H{/2)(H) such that D} = P — K with P, K >0, K €
CL(H). Then T € Hi(H).

Theorem 16. Let T € HE}??(H) such that D3 = P — K with P, K >0, K €

Ci(H). If pw(ow(T)) =0, then T € N} (H) and tr(D%) =0.
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Proof. Let T be as in the hypotheses. According to Corollary 15, the operator

T is in N} (H). Furthermore, according to Theorem 1.8 of [6], we obtain that
1(04(T)) = 0. Then apply Theorem A to finish the proof. O
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