$\left(\mathcal{C}_{p}, \alpha\right)$-HYPONORMAL OPERATORS AND TRACE-CLASS SELF-COMMUTATORS WITH TRACE ZERO

VASILE LAURIC

(Communicated by Nigel J. Kalton)
This paper is dedicated to the memory of my grandparents.

Abstract

We define the class of $\left(\mathcal{C}_{p}, \alpha\right)$-hyponormal operators and study the inclusion between such classes under various hypotheses for p and α, and then obtain some sufficient conditions for the self-commutator of the Aluthge transform $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ of $\left(\mathcal{C}_{p}, \alpha\right)$-hyponormal operators to be in the traceclass and have trace zero.

1. Introduction

In this section we define some classes of operators. Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space, and denote by $\mathcal{L}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H}. For $\alpha>0$ and $T \in \mathcal{L}(\mathcal{H})$, we call $\left(T^{*} T\right)^{\alpha}-\left(T T^{*}\right)^{\alpha}$ the α-self-commutator of T and denote it by D_{T}^{α}. Also, we will write $|T|$ for $\left(T^{*} T\right)^{1 / 2}$, $\sigma(T), \sigma_{e}(T)$, and $\sigma_{w}(T)$ for the spectrum, essential spectrum, and Weyl spectrum of T, respectively. For a selfadjoint operator A in $\mathcal{L}(\mathcal{H})$ we write A_{+}, A_{-}for the positive and negative parts of A, that is, $(|A|+A) / 2$, and $(|A|-A) / 2$, respectively. We denote by \mathbb{K} the ideal of all compact operators in $\mathcal{L}(\mathcal{H})$, and by $\mathcal{C}_{p}(\mathcal{H}), \quad 1 \leq p<$ $+\infty$, the ideal of operators in the Schatten p-class (cf. [9]). Although for $0<p<1$, the usual definition of $\|\cdot\|_{p}$ does not satisfy the triangle inequality, nevertheless $\left(\mathcal{C}_{p},\|\cdot\|_{p}\right)$ is closed and $\|T K\|_{p} \leq\|T\| \cdot\|K\|_{p}$, when $T \in \mathcal{L}(\mathcal{H})$ and $K \in \mathcal{C}_{p}(\mathcal{H})$. Recall that $\mathcal{C}_{1}(\mathcal{H})$ is the trace-class and that $\mathcal{C}_{2}(\mathcal{H})$ is the Hilbert-Schmidt class. We write $\operatorname{tr}(T)$ for the canonical scalar-valued trace of an operator T in $\mathcal{C}_{1}(\mathcal{H})$. We denote by π the natural surjection from $\mathcal{L}(\mathcal{H})$ onto the Calkin algebra, $\mathcal{L}(\mathcal{H}) / \mathbb{K}$, and by μ the planar Lebesgue measure. We say that an operator T in $\mathcal{L}(\mathcal{H})$ is $\left(\mathcal{C}_{p}, \alpha\right)$ normal if $D_{T}^{\alpha} \in \mathcal{C}_{p}(\mathcal{H})$, and denote the class of $\left(\mathcal{C}_{p}, \alpha\right)$-normal operators by $\mathcal{N}_{p}^{\alpha}(\mathcal{H})$. Moreover, an operator T in $\mathcal{L}(\mathcal{H})$ will be called $\left(\mathcal{C}_{p}, \alpha\right)$-hyponormal if $D_{T}^{\alpha}=P+K$, where P is a positive semidefinite operator $(P \geq 0)$ and $K \in \mathcal{C}_{p}(\mathcal{H})$. The class of $\left(\mathcal{C}_{p}, \alpha\right)$-hyponormal operators will be denoted by $\mathcal{H}_{p}^{\alpha}(\mathcal{H})$. In particular, an operator T in $\mathcal{H}_{1}^{1}(\mathcal{H})$ will be called almost hyponormal. Furthermore, an operator $T \in \mathcal{L}(\mathcal{H})$ whose D_{T}^{α} is positive semidefinite is called α-hyponormal (notation: $T \in \mathcal{H}_{0}^{\alpha}(\mathcal{H})$).

[^0]With only minor changes to the proof of Proposition 1.1 from [7], one can easily prove the following.

Proposition 1. Let $A \in \mathcal{L}(\mathcal{H})$ be a selfadjoint operator and let $p>0$. Then A can be written as $P+K$ with $P \geq 0$ and $K \in \mathcal{C}_{p}(\mathcal{H})$ if and only if $A_{-} \in \mathcal{C}_{p}(\mathcal{H})$.

Consequently, an operator T belongs to $\mathcal{H}_{p}^{\alpha}(\mathcal{H})$ if and only if $\left(D_{T}^{\alpha}\right)_{-} \in \mathcal{C}_{p}(\mathcal{H})$.

2. Some inclusions

We will examine various inclusions between these classes of operators. According to Lowner's inequality $\left(A, B \in \mathcal{L}(\mathcal{H}), \quad 0 \leq A \leq B, \quad 0<r \leq 1 \Rightarrow A^{r} \leq B^{r}\right)$, we have the following inclusion, $\mathcal{H}_{0}^{\alpha}(\mathcal{H}) \supseteq \mathcal{H}_{0}^{\beta}(\mathcal{H})$, when $\alpha \leq \beta$. In the case of $\left(\mathcal{C}_{p}, \alpha\right)$-normal operators, and moreover, for $\left(\mathcal{C}_{p}, \alpha\right)$-hyponormal operators, the similar inclusion for such classes is less obvious. We will give some sufficient conditions when such an inclusion holds for $\left(\mathcal{C}_{p}, \alpha\right)$-normal operators and then for $\left(\mathcal{C}_{p}, \alpha\right)$ hyponormal operators. We will make use of the following.

Lemma 2. Let $\alpha \geq 1, \quad p \geq 1$, and $A, B \in \mathcal{L}(\mathcal{H})$ be positive semidefinite operators such that $A-B \in \mathcal{C}_{p}(\mathcal{H})$. Then $A^{\alpha}-B^{\alpha} \in \mathcal{C}_{p}(\mathcal{H})$.

The proof of Lemma 2 uses the following general fact.
Lemma 3. Let $p \geq 1, T \in \mathcal{L}(\mathcal{H})$ and $T_{n} \in \mathcal{C}_{p}(\mathcal{H})$, for all $n \in \mathbb{N}$, such that $T_{n} \xrightarrow{w o} T$ (i.e., weak operator topology) and such that $\left\|T_{n}\right\|_{p} \leq C<\infty$, for all $n \in \mathbb{N}$ and for some non-negative constant C. Then T belongs to $\mathcal{C}_{p}(\mathcal{H})$ and $\|T\|_{p} \leq C$.
Proof of Lemma 3. We will prove that T belongs to $\mathcal{C}_{p}(\mathcal{H})$ by proving that

$$
\begin{equation*}
\sup \left\{|\operatorname{tr}(T K)|: \operatorname{rank}(K)<\infty \text { and }\|K\|_{q} \leq 1\right\}<\infty \tag{1}
\end{equation*}
$$

and the above sup equals $\|T\|_{p}$, where q is the index conjugate to p (cf. [8], p. 90).
To each T_{n} one can associate $f_{n} \in \mathcal{C}_{q}(\mathcal{H})^{*}$ defined by $f_{n}(K)=\operatorname{tr}\left(T_{n} K\right)$. Since $\left\|f_{n}\right\|=\left\|T_{n}\right\|_{p} \leq C<\infty$, according to Alaoglu's theorem, there exists a subsequence $\left\{f_{n_{k}}\right\}$ such that $f_{n_{k}} \xrightarrow{w^{*}} f$, where $f \in \mathcal{C}_{q}(\mathcal{H})^{*}$. Therefore $\operatorname{tr}\left(T_{n_{k}} K\right)=$ $f_{n_{k}}(K) \longrightarrow f(K)$, for all $K \in \mathcal{C}_{q}(\mathcal{H})$, and $|f(K)| \leq M\|K\|_{q}$, for some positive constant M. On the other hand, since $T_{n} \xrightarrow{w o} T, \operatorname{tr}\left(T_{n} K\right) \longrightarrow \operatorname{tr}(T K)$ for all operators K of finite rank. The statement follows easily from (1).

Proof of Lemma 2. Let α, p, A, and B be as in the hypotheses of Lemma 2. For purposes of proving that $A^{\alpha}-B^{\alpha} \in \mathcal{C}_{p}(\mathcal{H})$, we may assume that $\|A\|$ and $\|B\|$ are less than 1 , since otherwise we may divide the norm of each operator by a sufficiently large constant. Put $A_{n}=A+\frac{1}{n} I, B_{n}=B+\frac{1}{n} I$, for $n \geq n_{0}$, where n_{0} is sufficiently large so that $\left\|A_{n_{0}}\right\|$ and $\left\|B_{n_{0}}\right\|<1$. Put $T_{n}=A_{n}^{\alpha}-B_{n}^{\alpha}$ and $T=A^{\alpha}-B^{\alpha}$ and observe that $T_{n} \rightarrow T$ in norm. We will prove that $T_{n} \in \mathcal{C}_{p}(\mathcal{H})$, and $\left\|T_{n}\right\|_{p} \leq C$, for $n \geq n_{0}$, for some $C<\infty$. For an operator $X=X^{*} \in \mathcal{L}(\mathcal{H})$ with $\sigma(X) \subseteq(0,1)$, we may write

$$
X^{\alpha}=I+\sum_{k=1}^{\infty}\binom{\alpha}{k}(X-I)^{k}
$$

where

$$
\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k!}
$$

and the series above converges in the operator norm. Using this representation with $X=A_{n}$ and $X=B_{n}$ and then subtracting one from the other, we obtain

$$
T_{n}=\sum_{k=1}^{\infty}\binom{\alpha}{k}\left[\left(A_{n}-I\right)^{k}-\left(B_{n}-I\right)^{k}\right]
$$

Expressing $\left(A_{n}-I\right)^{k}-\left(B_{n}-I\right)^{k}$ as a telescopic sum and using the inequality

$$
\|R S\|_{p} \leq\|R\| \cdot\|S\|_{p}, \text { for } R \in \mathcal{L}(\mathcal{H}), S \in \mathcal{C}_{p}(\mathcal{H})
$$

we obtain that $\left(A_{n}-I\right)^{k}-\left(B_{n}-I\right)^{k} \in \mathcal{C}_{p}(\mathcal{H})$ and

$$
\left\|\left(A_{n}-I\right)^{k}-\left(B_{n}-I\right)^{k}\right\|_{p} \leq\|A-B\|_{p} k q_{n}^{k-1}
$$

where $q_{n}=\max \left\{\left\|A_{n}-I\right\|,\left\|B_{n}-I\right\|\right\}<1$. Thus

$$
\begin{aligned}
\left\|T_{n}\right\|_{p} & \leq \sum_{k=1}^{\infty}\left|\binom{\alpha}{k}\right|\|A-B\|_{p} k q_{n}^{k-1} \\
& =\alpha\|A-B\|_{p}\left[1+|\alpha-1| q_{n}+\cdots+\frac{|(\alpha-1) \ldots(\alpha-k+1)|}{(k-1)!} q_{n}^{k-1}+\ldots\right] \\
& =\alpha\|A-B\|_{p}\left[1+\sum_{k=1}^{[\alpha]} \frac{(\alpha-1) \ldots(\alpha-k)}{k!} q_{n}^{k}\right] \\
& +\alpha\|A-B\|_{p}\left[\sum_{k=[\alpha]+1}^{\infty} \frac{(\alpha-1) \ldots(\alpha-[\alpha])|(\alpha-[\alpha]-1) \ldots(\alpha-k)|}{k!} q_{n}^{k}\right] .
\end{aligned}
$$

If the integer part of $\alpha,[\alpha]$, is an even number written as $2 k_{0}$, then the above sums, ignoring the factor $\alpha\|A-B\|_{p}$, can be written as

$$
\begin{aligned}
& {\left[1+\sum_{k=1}^{\infty} \frac{(\alpha-1) \ldots(\alpha-k)}{k!}\left(-q_{n}\right)^{k}+2 \sum_{k=0}^{k_{0}} \frac{(\alpha-1) \ldots(\alpha-2 k-1)}{(2 k+1)!} q_{n}^{2 k+1}\right]} \\
& =\left[\left(1-q_{n}\right)^{\alpha-1}+2 \sum_{k=0}^{k_{0}} \frac{(\alpha-1) \ldots(\alpha-2 k-1)}{(2 k+1)!} q_{n}^{2 k+1}\right]
\end{aligned}
$$

Since $q_{n} \in(0,1)$, we can conclude that

$$
\left\|T_{n}\right\|_{p} \leq \alpha\|A-B\|_{p}\left[1+\sum_{k=0}^{k_{0}} \frac{(\alpha-1) \ldots(\alpha-2 k-1)}{(2 k+1)!}\right]
$$

when $[\alpha]=2 k_{0}$. The case when $[\alpha]$ is an odd number can be easily derived from the above case. Applying Lemma 3, the proof of Lemma 2 is complete.

With only minor adaptations of the proof of Lemma 2, one can prove the following.

Corollary 4. Let $\alpha \in \mathbb{R}, \quad p \geq 1$, and $A, B \in \mathcal{L}(\mathcal{H})$ be invertible positive definite operators such that $A-B \in \mathcal{C}_{p}(\mathcal{H})$. Then $A^{\alpha}-B^{\alpha} \in \mathcal{C}_{p}(\mathcal{H})$.

In the following proposition we study how the class of $\left(\mathcal{C}_{p}, \alpha\right)$-normal operators varies when α changes.

Proposition 5. Let $\alpha>0, p \geq 1$, and let T be in $\mathcal{N}_{p}^{\alpha}(\mathcal{H})$.
(a) If $\beta \geq \alpha$, then T belongs to $\mathcal{N}_{p}^{\beta}(\mathcal{H})$, and therefore $\mathcal{N}_{p}^{\alpha}(\mathcal{H}) \subseteq \mathcal{N}_{p}^{\beta}(\mathcal{H})$.
(b) If either $T^{*} T$ or $T T^{*}$ is a semi-Fredholm operator and $0<\gamma \leq \alpha$, then T belongs to $\mathcal{N}_{p}^{\gamma}(\mathcal{H})$.

Denote by $Q_{0}(\mathcal{H})=\left\{T \in \mathcal{L}(\mathcal{H}) \mid T^{*} T\right.$ or $T T^{*}$ is semi-Fredholm $\}$. An alternative characterization of $Q_{0}(\mathcal{H})$ is $Q_{0}(\mathcal{H})=\left\{T \in \mathcal{L}(\mathcal{H}) \mid 0 \in \rho_{l e}(T) \cup \rho_{r e}(T)\right\}$, where $\rho_{l e}(T), \rho_{r e}(T)$ are the left essential and right essential resolvents of the operator $T \in \mathcal{L}(\mathcal{H})$, respectively.

Corollary 6. Let $p \geq 1$ and $\alpha, \beta>0$. Then $\mathcal{N}_{p}^{\alpha}(\mathcal{H}) \cap Q_{0}(\mathcal{H})=\mathcal{N}_{p}^{\beta}(\mathcal{H}) \cap Q_{0}(\mathcal{H})$.
Proof of Proposition 5. Let α, p, and T be as in the hypotheses and let $T=U|T|$ be the polar decomposition of T, and set $S:=U|T|^{\alpha}$. Then obviously, $S^{*} S=$ $|T|^{2 \alpha}=\left(T^{*} T\right)^{\alpha}$ and $S S^{*}=U|T|^{2 \alpha} U^{*}=\left(T T^{*}\right)^{\alpha}$, and therefore, $\left[S^{*}, S\right]=D_{T}^{\alpha}=$ $K \in \mathcal{C}_{p}(\mathcal{H})$. On the other hand,

$$
D_{S}^{r}=\left(S^{*} S\right)^{r}-\left(S S^{*}\right)^{r}=\left(T^{*} T\right)^{\alpha r}-\left(T T^{*}\right)^{\alpha r}=D_{T}^{\alpha r}
$$

Let $\beta \geq \alpha$ and put $r=\frac{\beta}{\alpha} \geq 1$ and apply Lemma 2 to conclude (a). To prove (b), we assume that $T^{*} T$ is semi-Fredholm; the proof when $T T^{*}$ is semi-Fredholm is similar. Indeed, when $T^{*} T$ is semi-Fredholm, obviously $T^{*} T$ is Fredholm; i.e., $\pi\left(T^{*} T\right)$ is invertible in the Calkin algebra. Let $\pi(X)$ be the inverse of $\pi\left(T^{*} T\right)$ in the Calkin algebra; then $\pi(X)$ is a positive element and $\pi(X)^{s} \pi\left(T^{*} T\right)^{s}=\pi\left(T^{*} T\right)^{s} \pi(X)^{s}=$ $I_{\text {Calkin }}$, for any $s \geq 0$. In particular, for $s=2 \alpha, \pi\left(T^{*} T\right)^{2 \alpha}=\pi\left(S^{*} S\right)$ is invertible in the Calkin algebra. Thus, for any $r \geq 0$, there exist some operators A_{r} and B_{r} in $\mathcal{L}(\mathcal{H})$ so that

$$
\begin{equation*}
\left(S^{*} S\right)^{r} \cdot A_{r}=I+K_{r}^{1} \text { and } B_{r} \cdot\left(S^{*} S\right)^{r}=I+K_{r}^{2} \tag{2}
\end{equation*}
$$

with K_{r}^{1}, K_{r}^{2} of finite rank, thus in $\mathcal{C}_{1}(\mathcal{H})$. Since $\left[S^{*}, S\right]=K \in \mathcal{C}_{p}(\mathcal{H})$, according to the argument used above, $D_{S}^{q} \in \mathcal{C}_{p}(\mathcal{H})$, for any $q \geq 1$. We prove that $D_{S}^{\{q\}}$ belongs to $\mathcal{C}_{p}(\mathcal{H})$, for any $q \geq 1$, where $q=[q]+\{q\}$ is the decomposition of q into its integer and fractional part. Indeed,

$$
\begin{aligned}
D_{S}^{q} & =\left(S^{*} S\right)^{q}-\left(S S^{*}\right)^{[q]+\{q\}} \\
& =\left(S^{*} S\right)^{q}-\left(S^{*} S-K\right)^{[q]}\left(S S^{*}\right)^{\{q\}} \\
& =\left(S^{*} S\right)^{q}-\left[\left(S^{*} S\right)^{[q]}+K^{\prime}\right]\left(S S^{*}\right)^{\{q\}} \\
& =\left(S^{*} S\right)^{[q]} D_{S}^{\{q\}}+K^{\prime \prime},
\end{aligned}
$$

where $K, K^{\prime}, K^{\prime \prime}$ are in $\mathcal{C}_{p}(\mathcal{H})$. Multiplying the equality

$$
D_{S}^{q}=\left(S^{*} S\right)^{[q]} D_{S}^{\{q\}}+K^{\prime \prime}
$$

by $B_{[q]}$ and using the fact that $D_{S}^{q} \in \mathcal{C}_{p}(\mathcal{H})$, we obtain according to (2) that $D_{S}^{\{q\}}$ belongs to $\mathcal{C}_{p}(\mathcal{H})$, for any $q \geq 1$; therefore, D_{S}^{r} belongs to $\mathcal{C}_{p}(\mathcal{H})$, for any $0 \leq r \leq 1$. Therefore, for $r=\frac{\gamma}{\alpha}$, we have $D_{S}^{r}=D_{T}^{\alpha r}=D_{T}^{\gamma} \in \mathcal{C}_{p}(\mathcal{H})$, and (b) is established.

Next we study the class of $\left(\mathcal{C}_{p}, \alpha\right)$-hyponormal operators. Since the class $\mathcal{H}_{0}^{\alpha}(\mathcal{H})$ is monotone decreasing (as a subset) in terms of α, we can only expect that the class $\mathcal{H}_{p}^{\alpha}(\mathcal{H})$ will be monotone decreasing.

Proposition 7. Let $\alpha>0, p \geq 1$, and let $T \in \mathcal{H}_{p}^{\alpha}(\mathcal{H})$ with $D_{T}^{\alpha}=P+K, P \geq 0$, $K \in \mathcal{C}_{p}(\mathcal{H})$. If $0<\beta \leq \alpha$ and if one of the following is satisfied:
(a) either $T^{*} T$ or $T T^{*}$ is a semi-Fredholm operator or
(b) both $\left(T^{*} T\right)^{\alpha}$ and $\left(T T^{*}\right)^{\alpha}+P$ are invertible, then T belongs to $\mathcal{H}_{p}^{\beta}(\mathcal{H})$.

Proof. Let α, p, and T be as in the hypotheses and let $T=U|T|$ be the polar decomposition of T, and put $S=U|T|^{\alpha}$. The calculations used in the proof of Proposition 5 show that S belongs to $\mathcal{H}_{p}^{1}(\mathcal{H})$, and according to Proposition 1, $S^{*} S-\left(S S^{*}+P\right)=K$, with $P \geq 0$ and $K \in \mathcal{C}_{p}(\mathcal{H})$. If either $T^{*} T$ or $T T^{*}$ is a semi-Fredholm operator, then using the same circle of ideas as in the proof of Proposition 5, one can conclude that

$$
\left(S^{*} S\right)^{\frac{\beta}{\alpha}}-\left(S S^{*}+P\right)^{\frac{\beta}{\alpha}}=K^{\prime}
$$

with $K^{\prime} \in \mathcal{C}_{p}(\mathcal{H})$. On the other hand, using Lowner's inequality, one can write

$$
\left(S S^{*}+P\right)^{\frac{\beta}{\alpha}}=\left(S S^{*}\right)^{\frac{\beta}{\alpha}}+P^{\prime}
$$

with $P^{\prime} \geq 0$. These two equalities can be written in terms of operators T and T^{*} as

$$
\left(T^{*} T\right)^{\beta}-\left(T T^{*}\right)^{\beta}=P^{\prime}+K^{\prime}
$$

which, according to Proposition 1, implies that $T \in \mathcal{H}_{p}^{\beta}(\mathcal{H})$. This ends the proof under assumption (a). The proof with assumption (b) makes use of Corollary 4 and is left for the reader.

Corollary 8. Let $\alpha \geq \beta>0, p \geq 1$. Then $\mathcal{H}_{p}^{\alpha}(\mathcal{H}) \cap Q_{0}(\mathcal{H}) \subseteq \mathcal{H}_{p}^{\beta}(\mathcal{H}) \cap Q_{0}(\mathcal{H})$.
Proof. Apply part (a) of Proposition 7.
In section 3 we will use the lemmas below, one of them being a consequence of the following corollary. This corollary is a consequence of Theorem 3.4 of [5].

Corollary 9. Let $A, B \in \mathcal{L}(\mathcal{H})$ be positive semidefinite operators. If $\alpha \in(0,1]$ and $1 \leq p<\infty$, then

$$
\left\|B^{\alpha}-A^{\alpha}\right\|_{p} \leq\left\||B-A|^{\alpha}\right\|_{p}
$$

Lemma 10. Let $A \in \mathcal{L}(\mathcal{H}), A \geq 0, \alpha \in(0,1], p \geq \alpha, K \in \mathcal{C}_{p}(\mathcal{H})$, such that $A+K \geq 0$. Then $(A+K)^{\alpha}=A^{\alpha}+K_{1}$, where $K_{1} \in \mathcal{C}_{\frac{p}{\alpha}}(\mathcal{H})$. If in addition $K \geq 0$, then $K_{1} \geq 0$.

Proof. Set $K_{1}:=(A+K)^{\alpha}-A^{\alpha}$. From Corollary 9 one obtains

$$
\left\|K_{1}\right\|_{\frac{p}{\alpha}} \leq\left\||K|^{\alpha}\right\|_{\frac{p}{\alpha}}=\|K\|_{p}^{\alpha}<\infty
$$

which implies $K_{1} \in \mathcal{C}_{\frac{p}{\alpha}}(\mathcal{H})$.
If $K \geq 0$, then we can apply Lowner's inequality to $A+K$ and A and obtain $(A+K)^{\alpha} \geq A^{\alpha}$. Therefore $K_{1} \geq 0$.

Lemma 11. Let $A \in \mathcal{L}(\mathcal{H}), A \geq 0, p \geq 1, K \in \mathcal{C}_{p}(\mathcal{H})$, such that $A+K \geq 0$, and let $\alpha \in[1,+\infty)$. Then $(A+K)^{\alpha}=A^{\alpha}+K_{1}$, where $K_{1} \in \mathcal{C}_{p}(\mathcal{H})$.

Proof. Apply Lemma 2.

3. Application

In 4] the following sufficient condition for an almost hyponormal operator to have trace-class self-commutator with trace zero was obtained.

Theorem A (4). If $T \in \mathcal{H}_{1}^{1}(\mathcal{H})$ and $\mu\left(\sigma_{w}(T)\right)=0$, then $T \in \mathcal{N}_{1}^{1}(\mathcal{H})$ and

$$
\operatorname{tr}\left(D_{T}^{1}\right)=0
$$

In [1] the following was obtained.
Theorem B ([1]). If $T \in \mathcal{H}_{0}^{\alpha}(\mathcal{H})$ for some $\alpha \in(0,1]$, then

$$
\left\|D_{T}^{\alpha}\right\| \leq \frac{\alpha}{\pi} \iint_{\sigma_{w}(T)} r^{2 \alpha-1} d r d \theta
$$

An obvious consequence of Theorem B is the following.
Corollary 12. If $T \in \mathcal{H}_{0}^{\alpha}(\mathcal{H})$ for some $\alpha>0$ and $\mu\left(\sigma_{w}(T)\right)=0$, then T is normal.

The above results naturally lead to the following.
Question. Let T be in $\mathcal{H}_{p}^{\alpha}(\mathcal{H})$ for some $\alpha>0, p>0$, and such that $\mu\left(\sigma_{w}(T)\right)=0$. Does this imply that T or some transform of T, say $\phi(T)$, belongs to $\mathcal{N}_{1}^{\beta}(\mathcal{H})$, for some β, and $\operatorname{tr}\left(D_{\phi(T)}^{\beta}\right)=0$?

This question is also justified by Theorem C below. For a subset E of \mathbb{C}, let

$$
\omega_{p}(E)=\frac{p}{2} \iint_{E} \rho^{p-1} d \rho d \theta
$$

and for $T \in \mathcal{L}(\mathcal{H})$, let $m(T)$ be the rational cyclicity of T, that is, the least cardinal number of a set $\mathcal{M} \subseteq \mathcal{H}$ such that $\bigvee\{r(T) x: r \in \operatorname{Rat}(\sigma(T)), x \in \mathcal{M}\}=\mathcal{H}$.
Theorem C ([2]). Let $T \in \mathcal{L}(\mathcal{H})$ and $\frac{1}{2} \leq \alpha<\infty$.
(a) If $\frac{1}{2} \leq \alpha \leq 1$ and $T \in \mathcal{H}_{1}^{\alpha}(\mathcal{H})$, and $K \in \mathcal{C}_{2 \alpha}(\mathcal{H})$, then

$$
\operatorname{tr}\left(D_{T}^{\alpha}\right) \leq \frac{1}{\pi} m(T+K) \omega_{2 \alpha}(\sigma(T+K))
$$

(b) If $1 \leq \alpha<\infty$ and $T \in \mathcal{H}_{0}^{\alpha}(\mathcal{H})$, then

$$
\operatorname{tr}\left(D_{T}^{\alpha}\right) \leq \frac{1}{\pi} m(T) \omega_{2 \alpha}(\sigma(T))
$$

Part (b) of Theorem C with the additional hypotheses that $\mu\left(\sigma_{w}(T)\right)=0$ and $m(T)<\infty$ holds the same conclusion as Corollary 12. Indeed, if $T \in \mathcal{H}_{0}^{\alpha}(\mathcal{H})$ for some $\alpha \geq 1$, then T is a hyponormal operator. It is now well known that for some class of operators, including the hyponormal ones, Weyl's theorem holds; that is,

$$
\sigma(T) \backslash \sigma_{w}(T)=\pi_{00}(T)
$$

where $\pi_{00}(T)$ is the set of isolated points of $\sigma(T)$ which are eigenvalues of finite multiplicity. Therefore, $\mu\left(\sigma_{w}(T)\right)=0$ implies that $\mu(\sigma(T))=0$, and thus $\operatorname{tr}\left(D_{T}^{1}\right)=$ 0 , that is, $D_{T}^{1}=0$.

On the other hand, concerning part (a) of Theorem C, J. Stampfli in [10] proved that for $T \in \mathcal{L}(\mathcal{H})$, there exists a compact operator K such that $\sigma(T+K) \backslash \sigma_{w}(T)$ consists of a countable set. In fact, the proof that was provided in [10] says more.

Lemma $\mathbf{D}([10])$. Let $T \in \mathcal{L}(\mathcal{H})$ and $p \geq 1$. Then for any $\varepsilon>0$, there exists $K \in \mathcal{C}_{p}(\mathcal{H})$ such that $\|K\|_{p}<\varepsilon$ and $\sigma(T+K) \backslash \sigma_{w}(T)$ consists of a countable set which clusters only on $\sigma_{w}(T)$.

Consequently, for an operator $T \in \mathcal{H}_{1}^{\alpha}(\mathcal{H})$, for some $\alpha \in\left[\frac{1}{2}, 1\right]$, and the operator K of Lemma D, we have $\omega_{2 \alpha}(\sigma(T+K))=0$, provided that $\mu\left(\sigma_{w}(T)\right)=0$. If in addition $m(T+K)<\infty$, then according to part (a) of Theorem C, $T \in \mathcal{N}_{1}^{1}(\mathcal{H})$ and $\operatorname{tr}\left(D_{T}^{\alpha}\right)=0$.

We make a modest contribution towards answering the above question. Let T belong to $\mathcal{H}_{p}^{\alpha}(\mathcal{H})$, for some $\alpha>0, p>0$, such that $D_{T}^{\alpha}=P+K$ with $P \geq 0$ and $K \in \mathcal{C}_{p}(\mathcal{H})$. Since $K=K^{*}=K_{+}-K_{-}$and $K_{+}, K_{-} \geq 0$ are \mathcal{C}_{p}-class operators, in what follows we will assume that $D_{T}^{\alpha}=P-K$ with $P \geq 0$ and $K \geq 0, K \in \mathcal{C}_{p}(\mathcal{H})$. For $T \in \mathcal{L}(\mathcal{H})$, let $T=U|T|$ be the polar decomposition of T and write \tilde{T} for the Aluthge transform of T, that is, $|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$.

Theorem 13. Let $p>0, \alpha \in\left[\frac{1}{2}, 1\right]$, and $T \in \mathcal{H}_{p}^{\alpha}(\mathcal{H})$ such that $D_{T}^{\alpha}=P-K$ with $P, K \geq 0, K \in \mathcal{C}_{p}(\mathcal{H})$, and let $\varepsilon \in\left(0, \frac{1}{2}\right]$ such that $\alpha+\varepsilon \leq 1$. Then $\tilde{T} \in \mathcal{H}_{\left(\frac{4 \alpha p}{\varepsilon+\alpha}\right)}^{(\alpha+\varepsilon)}(\mathcal{H})$.

In proving Theorem 13 we will make use of an elementary lemma (Lemma 14, whose proof is omitted) and of Furuta's inequalities [3].

Lemma 14. For $T \in \mathcal{L}(\mathcal{H})$ there exists a Hilbert space \mathcal{K} that includes \mathcal{H} and an operator $A \in \mathcal{L}(\mathcal{K})$ such that $D_{T}^{\alpha} \oplus 0_{\mathcal{K} \ominus \mathcal{H}}=D_{A}^{\alpha}$, for any $\alpha>0$, and $\sigma(T) \backslash\{0\}=$ $\sigma(A) \backslash\{0\}$, where $A=U|A|$ with U unitary.

Theorem E ([3]). For operators $E \geq F \geq 0$ in $\mathcal{L}(\mathcal{H})$ and $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, we have
(F_{1}) $\left(F^{r} E^{p} F^{r}\right)^{\frac{1}{q}} \geq\left(F^{p+2 r}\right)^{\frac{1}{q}}$,
$\left(F_{2}\right) \quad\left(E^{p+2 r}\right)^{\frac{1}{q}} \geq\left(E^{r} F^{p} E^{r}\right)^{\frac{1}{q}}$.
Proof of Theorem 13. Let T be as in the hypotheses of Theorem 13. According to Lemma 14, we may assume that $T=U|T|$ with U unitary. The equality $D_{T}^{\alpha}=$ $P-K$ with $P, K \geq 0$ implies $|T|^{2 \alpha}+K \geq U|T|^{2 \alpha} U^{*}$. Multiplying this inequality by U^{*} to the left and by U to the right, one obtains

$$
A:=U^{*}|T|^{2 \alpha} U+U^{*} K U \geq|T|^{2 \alpha}=: B
$$

According to Lemma 10,

$$
A^{\frac{1}{2 \alpha}}=\left[U^{*}\left(|T|^{2 \alpha}+K\right) U\right]^{\frac{1}{2 \alpha}}=U^{*}\left(|T|^{2 \alpha}+K\right)^{\frac{1}{2 \alpha}} U=U^{*}\left(|T|+K_{1}\right) U
$$

with $K_{1} \in \mathcal{C}_{2 \alpha p}^{+}(\mathcal{H})$. Setting $K_{2}:=|T|^{\frac{1}{2}} U^{*} K_{1} U|T|^{\frac{1}{2}}$, we have

$$
\begin{aligned}
\left(\tilde{T}^{*} \tilde{T}+K_{2}\right)^{\alpha+\varepsilon} & =\left\{|T|^{\frac{1}{2}}\left[U^{*}\left(|T|+K_{1}\right) U\right]|T|^{\frac{1}{2}}\right\}^{\alpha+\varepsilon} \\
& =\left\{|T|^{\frac{1}{2}}\left[U^{*}\left(|T|^{2 \alpha}+K\right) U\right]^{\frac{1}{2 \alpha}}|T|^{\frac{1}{2}}\right\}^{\alpha+\varepsilon} \\
& =\left(B^{\frac{1}{4 \alpha}} A^{\frac{1}{2 \alpha}} B^{\frac{1}{4 \alpha}}\right)^{\alpha+\varepsilon} \\
& \left(F_{1}\right) \\
& \geq\left(B^{\frac{1}{\alpha}}\right)^{\alpha+\varepsilon}=|T|^{2(\alpha+\varepsilon)} .
\end{aligned}
$$

On the other hand, according to Lemma 10,

$$
\left(\tilde{T}^{*} \tilde{T}+K_{2}\right)^{\alpha+\varepsilon}=\left(\tilde{T}^{*} \tilde{T}\right)^{\alpha+\varepsilon}+K_{3}
$$

with $K_{3} \in \mathcal{C}_{\frac{2 \alpha p}{\alpha+\varepsilon}}^{+}(\mathcal{H})$ since $K_{2} \in \mathcal{C}_{2 \alpha p}^{+}(\mathcal{H})$. Thus we have obtained the inequality

$$
\begin{equation*}
\left(\tilde{T}^{*} \tilde{T}\right)^{\alpha+\varepsilon}+K_{3} \geq|T|^{2(\alpha+\varepsilon)}, \quad K_{3} \in \mathcal{C}_{\frac{2 \alpha p}{\alpha+\varepsilon}}^{+}(\mathcal{H}) \tag{*}
\end{equation*}
$$

On the other hand, the inequality

$$
D:=U|T|^{2 \alpha} U^{*} \leq|T|^{2 \alpha}+K=: C
$$

can be used in conjunction with $\left(F_{2}\right)$ to obtain a similar inequality to $\left(^{*}\right)$. Indeed, we have

$$
\left(C^{\frac{1}{4 \alpha}} D^{\frac{1}{2 \alpha}} C^{\frac{1}{4 \alpha}}\right)^{\alpha+\varepsilon} \stackrel{\left(F_{2}\right)}{\leq}\left(C^{\frac{1}{\alpha}}\right)^{\alpha+\varepsilon}
$$

Next, we compute each side of the above inequality. Again, according to Lemma 10,

$$
C^{\frac{1}{4 \alpha}}=\left(|T|^{2 \alpha}+K\right)^{\frac{1}{4 \alpha}}=|T|^{\frac{1}{2}}+K_{4}
$$

with $K_{4} \in \mathcal{C}_{4 \alpha p}^{+}(\mathcal{H})$. Obviously, $D^{\frac{1}{2 \alpha}}=U|T| U^{*}$. Therefore, the left-hand side of the above inequality becomes

$$
\begin{aligned}
\left(C^{\frac{1}{4 \alpha}} D^{\frac{1}{2 \alpha}} C^{\frac{1}{4 \alpha}}\right)^{\alpha+\varepsilon} & =\left[\left(|T|^{\frac{1}{2}}+K_{4}\right)\left(U|T| U^{*}\right)\left(|T|^{\frac{1}{2}}+K_{4}\right)\right]^{\alpha+\varepsilon} \\
& =\left(|T|^{\frac{1}{2}} U|T| U^{*}|T|^{\frac{1}{2}}+K_{5}\right)^{\alpha+\varepsilon}, \quad K_{5} \in \mathcal{C}_{4 \alpha p}(\mathcal{H}) \\
& =\left(\tilde{T} \tilde{T}^{*}+K_{5}\right)^{\alpha+\varepsilon} \\
& =\left(\tilde{T} \tilde{T}^{*}\right)^{\alpha+\varepsilon}+K_{6}, \quad K_{6} \in \mathcal{C}_{\frac{4 \alpha p}{\alpha+\varepsilon}}(\mathcal{H})
\end{aligned}
$$

The right-hand side of the above inequality can be handled with Lemmas 10 and 11 as follows:

$$
\left(C^{\frac{1}{\alpha}}\right)^{\alpha+\varepsilon} \stackrel{L 11}{=}\left(|T|^{2}+K_{7}\right)^{\alpha+\varepsilon} \stackrel{L 10}{=}|T|^{2(\alpha+\varepsilon)}+K_{8}
$$

with $K_{7} \in \mathcal{C}_{p}(\mathcal{H})$ and $K_{8} \in \mathcal{C}_{\frac{p}{\alpha+\varepsilon}}(\mathcal{H})$. Thus

$$
|T|^{2(\alpha+\varepsilon)}+K_{8} \geq\left(\tilde{T} \tilde{T}^{*}\right)^{\alpha+\varepsilon}+K_{6},
$$

where $K_{6} \in \mathcal{C}_{\frac{4 \alpha p}{\alpha+\varepsilon}}(\mathcal{H})$ and $K_{8} \in \mathcal{C}_{\frac{p}{\alpha+\varepsilon}}(\mathcal{H})$, which implies

$$
\begin{equation*}
|T|^{2(\alpha+\varepsilon)} \geq\left(\tilde{T} \tilde{T}^{*}\right)^{\alpha+\varepsilon}+K_{9}, \quad K_{9}=K_{6}-K_{8} \in \mathcal{C}_{\frac{4 \alpha p}{\alpha+\varepsilon}}(\mathcal{H}) \tag{**}
\end{equation*}
$$

Combining $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ we obtain

$$
\left(\tilde{T}^{*} \tilde{T}\right)^{\alpha+\varepsilon}-\left(\tilde{T} \tilde{T}^{*}\right)^{\alpha+\varepsilon} \geq K_{10}
$$

where $K_{10}=K_{9}-K_{3} \in \mathcal{C}_{\frac{4 \alpha p}{\alpha+\varepsilon}}(\mathcal{H})$, and the proof is finished.
Corollary 15. Let $T \in \mathcal{H}_{(1 / 2)}^{(1 / 2)}(\mathcal{H})$ such that $D_{T}^{\frac{1}{2}}=P-K$ with $P, K \geq 0, K \in$ $\mathcal{C}_{\frac{1}{2}}(\mathcal{H})$. Then $\tilde{T} \in \mathcal{H}_{1}^{1}(\mathcal{H})$.

Theorem 16. Let $T \in \mathcal{H}_{(1 / 2)}^{(1 / 2)}(\mathcal{H})$ such that $D_{T}^{\frac{1}{2}}=P-K$ with $P, K \geq 0, K \in$ $\mathcal{C}_{\frac{1}{2}}(\mathcal{H})$. If $\mu\left(\sigma_{w}(T)\right)=0$, then $\tilde{T} \in \mathcal{N}_{1}^{1}(\mathcal{H})$ and $\operatorname{tr}\left(D_{\tilde{T}}^{1}\right)=0$.

Proof. Let T be as in the hypotheses. According to Corollary 15, the operator \tilde{T} is $\operatorname{in~}_{\tilde{\sim}} \mathcal{N}_{1}^{1}(\mathcal{H})$. Furthermore, according to Theorem 1.8 of [6], we obtain that $\mu\left(\sigma_{w}(\tilde{T})\right)=0$. Then apply Theorem A to finish the proof.

References

1. M. Chō, M. Itoh, and S. Ōshiro, Weyl's theorem holds for p-hyponormal operators, Glasgow Math. J. 39 (1997), 217-220. MR1460636 (98e:47038)
2. R. Curto, P. Muhly and D. Xia, A trace estimate for p-hyponormal operators, Integral Equations and Operator Theory 6 (1983), 507-514. MR708409 (85b:47029)
3. T. Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc. 101 (1987), 85-88. MR897075 (89b:47028)
4. D. Hadwin and E. Nordgren, Extensions of the Berger-Shaw theorem, Proc. Amer. Math. Soc. 102 (1988), 517-525. MR928971 (89e:47026)
5. D. Jocić, Integral representation formula for generalized normal derivations, Proc. Amer. Math. Soc. 127(8) (1999), 2303-2314. MR1486737(99j:47026)
6. I. B. Jung, E. Ko and C. Pearcy, Spectral pictures of Aluthge transforms of operators, Integral Equations and Operator Theory 40 (2001), 52-60. MR1829514 (2002b:47007)
7. V. Lauric and C. M. Pearcy, Trace-class commutators with trace zero, Acta. Sci. Math. (Szeged) 66 (2000), 341-349. MR1768871 (2001g:47038)
8. J. Ringrose, Compact non-self-adjoint operators, Van Nostrand Reinhold Company, London (1971).
9. R. Schatten, Norm ideals of completely continuous operators, Ergeb. Math. Grenzgeb. 27, Springer-Verlag, Berlin (1960). MR0119112 (22:9878)
10. J. G. Stampfli, Compact perturbations, normal eigenvalues and a problem of Salinas, J. London Math. Soc. (2) 9 (1974/1975), 165-175. MR0365196 (51:1449)

Department of Mathematics, Florida A\&M University, Tallahassee, Florida 32307

[^0]: Received by the editors February 7, 2008.
 2000 Mathematics Subject Classification. Primary 47B20.
 Key words and phrases. α-commutators, trace zero, $\left(\mathcal{C}_{p}, \alpha\right)$-hyponormal operators, Weyl spectrum of area zero, Aluthge transform.

