PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 137, Number 3, March 2009, Pages 945–953 S 0002-9939(08)09731-1 Article electronically published on October 28, 2008

(C_p, α) -HYPONORMAL OPERATORS AND TRACE-CLASS SELF-COMMUTATORS WITH TRACE ZERO

VASILE LAURIC

(Communicated by Nigel J. Kalton)

This paper is dedicated to the memory of my grandparents.

ABSTRACT. We define the class of (C_p, α) -hyponormal operators and study the inclusion between such classes under various hypotheses for p and α , and then obtain some sufficient conditions for the self-commutator of the Aluthge transform $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ of (C_p, α) -hyponormal operators to be in the trace-class and have trace zero.

1. Introduction

In this section we define some classes of operators. Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space, and denote by $\mathcal{L}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} . For $\alpha > 0$ and $T \in \mathcal{L}(\mathcal{H})$, we call $(T^*T)^{\alpha} - (TT^*)^{\alpha}$ the α -self-commutator of T and denote it by D_T^{α} . Also, we will write |T| for $(T^*T)^{1/2}$, $\sigma(T)$, $\sigma_e(T)$, and $\sigma_w(T)$ for the spectrum, essential spectrum, and Weyl spectrum of T, respectively. For a selfadjoint operator A in $\mathcal{L}(\mathcal{H})$ we write A_+ , A_- for the positive and negative parts of A, that is, (|A|+A)/2, and (|A|-A)/2, respectively. We denote by K the ideal of all compact operators in $\mathcal{L}(\mathcal{H})$, and by $\mathcal{C}_p(\mathcal{H})$, $1 \leq p < 1$ $+\infty$, the ideal of operators in the Schatten p-class (cf. [9]). Although for 0 ,the usual definition of $||\cdot||_p$ does not satisfy the triangle inequality, nevertheless $(\mathcal{C}_p, ||\cdot||_p)$ is closed and $||TK||_p \leq ||T||\cdot ||K||_p$, when $T \in \mathcal{L}(\mathcal{H})$ and $K \in \mathcal{C}_p(\mathcal{H})$. Recall that $\mathcal{C}_1(\mathcal{H})$ is the trace-class and that $\mathcal{C}_2(\mathcal{H})$ is the Hilbert-Schmidt class. We write $\operatorname{tr}(T)$ for the canonical scalar-valued trace of an operator T in $\mathcal{C}_1(\mathcal{H})$. We denote by π the natural surjection from $\mathcal{L}(\mathcal{H})$ onto the Calkin algebra, $\mathcal{L}(\mathcal{H})/\mathbb{K}$, and by μ the planar Lebesgue measure. We say that an operator T in $\mathcal{L}(\mathcal{H})$ is (\mathcal{C}_p, α) normal if $D_T^{\alpha} \in \mathcal{C}_p(\mathcal{H})$, and denote the class of (\mathcal{C}_p, α) -normal operators by $\mathcal{N}_p^{\alpha}(\mathcal{H})$. Moreover, an operator T in $\mathcal{L}(\mathcal{H})$ will be called (\mathcal{C}_p, α) -hyponormal if $D_T^{\alpha} = P + K$, where P is a positive semidefinite operator $(P \ge 0)$ and $K \in \mathcal{C}_p(\mathcal{H})$. The class of (\mathcal{C}_p, α) -hyponormal operators will be denoted by $\mathcal{H}_p^{\alpha}(\mathcal{H})$. In particular, an operator T in $\mathcal{H}_1^1(\mathcal{H})$ will be called almost hyponormal. Furthermore, an operator $T \in \mathcal{L}(\mathcal{H})$ whose D_T^{α} is positive semidefinite is called α -hyponormal (notation: $T \in \mathcal{H}_0^{\alpha}(\mathcal{H})$).

Received by the editors February 7, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B20.

Key words and phrases. α -commutators, trace zero, (C_p, α) -hyponormal operators, Weyl spectrum of area zero, Aluthge transform.

With only minor changes to the proof of Proposition 1.1 from [7], one can easily prove the following.

Proposition 1. Let $A \in \mathcal{L}(\mathcal{H})$ be a selfadjoint operator and let p > 0. Then A can be written as P + K with $P \geq 0$ and $K \in \mathcal{C}_p(\mathcal{H})$ if and only if $A_- \in \mathcal{C}_p(\mathcal{H})$.

Consequently, an operator T belongs to $\mathcal{H}_{p}^{\alpha}(\mathcal{H})$ if and only if $(D_{T}^{\alpha})_{-} \in \mathcal{C}_{p}(\mathcal{H})$.

2. Some inclusions

We will examine various inclusions between these classes of operators. According to Lowner's inequality $(A, B \in \mathcal{L}(\mathcal{H}), 0 \le A \le B, 0 < r \le 1 \Rightarrow A^r \le B^r)$, we have the following inclusion, $\mathcal{H}_0^{\alpha}(\mathcal{H}) \supseteq \mathcal{H}_0^{\beta}(\mathcal{H})$, when $\alpha \le \beta$. In the case of (\mathcal{C}_p, α) -normal operators, and moreover, for (\mathcal{C}_p, α) -hyponormal operators, the similar inclusion for such classes is less obvious. We will give some sufficient conditions when such an inclusion holds for (\mathcal{C}_p, α) -normal operators and then for (\mathcal{C}_p, α) -hyponormal operators. We will make use of the following.

Lemma 2. Let $\alpha \geq 1$, $p \geq 1$, and $A, B \in \mathcal{L}(\mathcal{H})$ be positive semidefinite operators such that $A - B \in \mathcal{C}_p(\mathcal{H})$. Then $A^{\alpha} - B^{\alpha} \in \mathcal{C}_p(\mathcal{H})$.

The proof of Lemma 2 uses the following general fact.

Lemma 3. Let $p \geq 1$, $T \in \mathcal{L}(\mathcal{H})$ and $T_n \in \mathcal{C}_p(\mathcal{H})$, for all $n \in \mathbb{N}$, such that $T_n \xrightarrow{wo} T$ (i.e., weak operator topology) and such that $||T_n||_p \leq C < \infty$, for all $n \in \mathbb{N}$ and for some non-negative constant C. Then T belongs to $\mathcal{C}_p(\mathcal{H})$ and $||T||_p \leq C$.

Proof of Lemma 3. We will prove that T belongs to $\mathcal{C}_n(\mathcal{H})$ by proving that

(1)
$$\sup\{|\operatorname{tr}(TK)|: \operatorname{rank}(K) < \infty \text{ and } ||K||_q \le 1\} < \infty,$$

and the above sup equals $||T||_p$, where q is the index conjugate to p (cf. [8], p. 90). To each T_n one can associate $f_n \in \mathcal{C}_q(\mathcal{H})^*$ defined by $f_n(K) = \operatorname{tr}(T_nK)$. Since $||f_n|| = ||T_n||_p \leq C < \infty$, according to Alaoglu's theorem, there exists a subsequence $\{f_{n_k}\}$ such that $f_{n_k} \stackrel{w^*}{\longrightarrow} f$, where $f \in \mathcal{C}_q(\mathcal{H})^*$. Therefore $\operatorname{tr}(T_{n_k}K) = f_{n_k}(K) \longrightarrow f(K)$, for all $K \in \mathcal{C}_q(\mathcal{H})$, and $|f(K)| \leq M||K||_q$, for some positive constant M. On the other hand, since $T_n \stackrel{wo}{\longrightarrow} T$, $\operatorname{tr}(T_nK) \longrightarrow \operatorname{tr}(TK)$ for all operators K of finite rank. The statement follows easily from (1).

Proof of Lemma 2. Let α , p, A, and B be as in the hypotheses of Lemma 2. For purposes of proving that $A^{\alpha}-B^{\alpha}\in\mathcal{C}_p(\mathcal{H})$, we may assume that ||A|| and ||B|| are less than 1, since otherwise we may divide the norm of each operator by a sufficiently large constant. Put $A_n=A+\frac{1}{n}I$, $B_n=B+\frac{1}{n}I$, for $n\geq n_0$, where n_0 is sufficiently large so that $||A_{n_0}||$ and $||B_{n_0}||<1$. Put $T_n=A_n^{\alpha}-B_n^{\alpha}$ and $T=A^{\alpha}-B^{\alpha}$ and observe that $T_n\to T$ in norm. We will prove that $T_n\in\mathcal{C}_p(\mathcal{H})$, and $||T_n||_p\leq C$, for $n\geq n_0$, for some $C<\infty$. For an operator $X=X^*\in\mathcal{L}(\mathcal{H})$ with $\sigma(X)\subseteq (0,1)$, we may write

$$X^{\alpha} = I + \sum_{k=1}^{\infty} {\alpha \choose k} (X - I)^k,$$

where

$${\alpha \choose k} = \frac{\alpha(\alpha - 1)\dots(\alpha - k + 1)}{k!},$$

and the series above converges in the operator norm. Using this representation with $X = A_n$ and $X = B_n$ and then subtracting one from the other, we obtain

$$T_n = \sum_{k=1}^{\infty} {\alpha \choose k} [(A_n - I)^k - (B_n - I)^k].$$

Expressing $(A_n - I)^k - (B_n - I)^k$ as a telescopic sum and using the inequality

$$||RS||_p \leq ||R|| \cdot ||S||_p$$
, for $R \in \mathcal{L}(\mathcal{H})$, $S \in \mathcal{C}_p(\mathcal{H})$,

we obtain that $(A_n - I)^k - (B_n - I)^k \in \mathcal{C}_p(\mathcal{H})$ and

$$||(A_n - I)^k - (B_n - I)^k||_p \le ||A - B||_p k q_n^{k-1},$$

where $q_n = \max\{||A_n - I||, ||B_n - I||\} < 1$. Thus

$$||T_n||_p \le \sum_{k=1}^{\infty} |\binom{\alpha}{k}| \, ||A - B||_p \, k \, q_n^{k-1}$$

$$= \alpha \, ||A - B||_p \left[1 + |\alpha - 1| \, q_n + \dots + \frac{|(\alpha - 1) \dots (\alpha - k + 1)|}{(k - 1)!} \, q_n^{k-1} + \dots \right]$$

$$= \alpha \, ||A - B||_p \left[1 + \sum_{k=1}^{[\alpha]} \frac{(\alpha - 1) \dots (\alpha - k)}{k!} \, q_n^k \right]$$

$$+ \alpha \, ||A - B||_p \left[\sum_{k=[\alpha]+1}^{\infty} \frac{(\alpha - 1) \dots (\alpha - [\alpha])|(\alpha - [\alpha] - 1) \dots (\alpha - k)|}{k!} \, q_n^k \right].$$

If the integer part of α , $[\alpha]$, is an even number written as $2k_0$, then the above sums, ignoring the factor $\alpha ||A - B||_p$, can be written as

$$\left[1 + \sum_{k=1}^{\infty} \frac{(\alpha - 1) \dots (\alpha - k)}{k!} (-q_n)^k + 2 \sum_{k=0}^{k_0} \frac{(\alpha - 1) \dots (\alpha - 2k - 1)}{(2k + 1)!} q_n^{2k + 1}\right] \\
= \left[(1 - q_n)^{\alpha - 1} + 2 \sum_{k=0}^{k_0} \frac{(\alpha - 1) \dots (\alpha - 2k - 1)}{(2k + 1)!} q_n^{2k + 1}\right].$$

Since $q_n \in (0,1)$, we can conclude that

$$||T_n||_p \le \alpha ||A - B||_p \left[1 + \sum_{k=0}^{k_0} \frac{(\alpha - 1) \dots (\alpha - 2k - 1)}{(2k + 1)!}\right],$$

when $[\alpha] = 2k_0$. The case when $[\alpha]$ is an odd number can be easily derived from the above case. Applying Lemma 3, the proof of Lemma 2 is complete.

With only minor adaptations of the proof of Lemma 2, one can prove the following.

Corollary 4. Let $\alpha \in \mathbb{R}$, $p \geq 1$, and $A, B \in \mathcal{L}(\mathcal{H})$ be invertible positive definite operators such that $A - B \in \mathcal{C}_p(\mathcal{H})$. Then $A^{\alpha} - B^{\alpha} \in \mathcal{C}_p(\mathcal{H})$.

In the following proposition we study how the class of (C_p, α) -normal operators varies when α changes.

Proposition 5. Let $\alpha > 0$, $p \ge 1$, and let T be in $\mathcal{N}_p^{\alpha}(\mathcal{H})$.

- (a) If $\beta \geq \alpha$, then T belongs to $\mathcal{N}_p^{\beta}(\mathcal{H})$, and therefore $\mathcal{N}_p^{\alpha}(\mathcal{H}) \subseteq \mathcal{N}_p^{\beta}(\mathcal{H})$.
- (b) If either T^*T or TT^* is a semi-Fredholm operator and $0 < \gamma \leq \alpha$, then T belongs to $\mathcal{N}_{p}^{\gamma}(\mathcal{H})$.

Denote by $Q_0(\mathcal{H}) = \{T \in \mathcal{L}(\mathcal{H}) \mid T^*T \text{ or } TT^* \text{ is semi-Fredholm}\}$. An alternative characterization of $Q_0(\mathcal{H})$ is $Q_0(\mathcal{H}) = \{T \in \mathcal{L}(\mathcal{H}) \mid 0 \in \rho_{le}(T) \cup \rho_{re}(T)\}$, where $\rho_{le}(T)$, $\rho_{re}(T)$ are the left essential and right essential resolvents of the operator $T \in \mathcal{L}(\mathcal{H})$, respectively.

Corollary 6. Let $p \ge 1$ and $\alpha, \beta > 0$. Then $\mathcal{N}_p^{\alpha}(\mathcal{H}) \cap Q_0(\mathcal{H}) = \mathcal{N}_p^{\beta}(\mathcal{H}) \cap Q_0(\mathcal{H})$.

Proof of Proposition 5. Let α , p, and T be as in the hypotheses and let T = U|T| be the polar decomposition of T, and set $S := U|T|^{\alpha}$. Then obviously, $S^*S = |T|^{2\alpha} = (T^*T)^{\alpha}$ and $SS^* = U|T|^{2\alpha}U^* = (TT^*)^{\alpha}$, and therefore, $[S^*, S] = D_T^{\alpha} = K \in \mathcal{C}_p(\mathcal{H})$. On the other hand,

$$D_S^r = (S^*S)^r - (SS^*)^r = (T^*T)^{\alpha r} - (TT^*)^{\alpha r} = D_T^{\alpha r}.$$

Let $\beta \geq \alpha$ and put $r = \frac{\beta}{\alpha} \geq 1$ and apply Lemma 2 to conclude (a). To prove (b), we assume that T^*T is semi-Fredholm; the proof when TT^* is semi-Fredholm is similar. Indeed, when T^*T is semi-Fredholm, obviously T^*T is Fredholm; i.e., $\pi(T^*T)$ is invertible in the Calkin algebra. Let $\pi(X)$ be the inverse of $\pi(T^*T)$ in the Calkin algebra; then $\pi(X)$ is a positive element and $\pi(X)^s\pi(T^*T)^s = \pi(T^*T)^s\pi(X)^s = I_{Calkin}$, for any $s \geq 0$. In particular, for $s = 2\alpha$, $\pi(T^*T)^{2\alpha} = \pi(S^*S)$ is invertible in the Calkin algebra. Thus, for any $r \geq 0$, there exist some operators A_r and B_r in $\mathcal{L}(\mathcal{H})$ so that

(2)
$$(S^*S)^r \cdot A_r = I + K_r^1 \text{ and } B_r \cdot (S^*S)^r = I + K_r^2$$

with K_r^1 , K_r^2 of finite rank, thus in $\mathcal{C}_1(\mathcal{H})$. Since $[S^*, S] = K \in \mathcal{C}_p(\mathcal{H})$, according to the argument used above, $D_S^q \in \mathcal{C}_p(\mathcal{H})$, for any $q \geq 1$. We prove that $D_S^{\{q\}}$ belongs to $\mathcal{C}_p(\mathcal{H})$, for any $q \geq 1$, where $q = [q] + \{q\}$ is the decomposition of q into its integer and fractional part. Indeed,

$$\begin{split} D_S^q &= (S^*S)^q - (SS^*)^{[q] + \{q\}} \\ &= (S^*S)^q - (S^*S - K)^{[q]} (SS^*)^{\{q\}} \\ &= (S^*S)^q - [(S^*S)^{[q]} + K'] (SS^*)^{\{q\}} \\ &= (S^*S)^{[q]} D_S^{\{q\}} + K'', \end{split}$$

where K, K', K'' are in $\mathcal{C}_p(\mathcal{H})$. Multiplying the equality

$$D_S^q = (S^*S)^{[q]}D_S^{\{q\}} + K^{\prime\prime}$$

by $B_{[q]}$ and using the fact that $D_S^q \in \mathcal{C}_p(\mathcal{H})$, we obtain according to (2) that $D_S^{\{q\}}$ belongs to $\mathcal{C}_p(\mathcal{H})$, for any $q \geq 1$; therefore, D_S^r belongs to $\mathcal{C}_p(\mathcal{H})$, for any $0 \leq r \leq 1$. Therefore, for $r = \frac{\gamma}{\alpha}$, we have $D_S^r = D_T^{\alpha r} = D_T^{\gamma} \in \mathcal{C}_p(\mathcal{H})$, and (b) is established. \square

Next we study the class of (\mathcal{C}_p, α) -hyponormal operators. Since the class $\mathcal{H}_0^{\alpha}(\mathcal{H})$ is monotone decreasing (as a subset) in terms of α , we can only expect that the class $\mathcal{H}_p^{\alpha}(\mathcal{H})$ will be monotone decreasing.

Proposition 7. Let $\alpha > 0$, $p \ge 1$, and let $T \in \mathcal{H}_p^{\alpha}(\mathcal{H})$ with $D_T^{\alpha} = P + K$, $P \ge 0$, $K \in \mathcal{C}_p(\mathcal{H})$. If $0 < \beta \le \alpha$ and if one of the following is satisfied:

- (a) either T^*T or TT^* is a semi-Fredholm operator or
- (b) both $(T^*T)^{\alpha}$ and $(TT^*)^{\alpha} + P$ are invertible, then T belongs to $\mathcal{H}_p^{\beta}(\mathcal{H})$.

Proof. Let α , p, and T be as in the hypotheses and let T = U|T| be the polar decomposition of T, and put $S = U|T|^{\alpha}$. The calculations used in the proof of Proposition 5 show that S belongs to $\mathcal{H}^1_p(\mathcal{H})$, and according to Proposition 1, $S^*S - (SS^* + P) = K$, with $P \geq 0$ and $K \in \mathcal{C}_p(\mathcal{H})$. If either T^*T or TT^* is a semi-Fredholm operator, then using the same circle of ideas as in the proof of Proposition 5, one can conclude that

$$(S^*S)^{\frac{\beta}{\alpha}} - (SS^* + P)^{\frac{\beta}{\alpha}} = K',$$

with $K' \in \mathcal{C}_p(\mathcal{H})$. On the other hand, using Lowner's inequality, one can write

$$(SS^* + P)^{\frac{\beta}{\alpha}} = (SS^*)^{\frac{\beta}{\alpha}} + P',$$

with $P' \geq 0$. These two equalities can be written in terms of operators T and T^*

$$(T^*T)^{\beta} - (TT^*)^{\beta} = P' + K',$$

which, according to Proposition 1, implies that $T \in \mathcal{H}_p^{\beta}(\mathcal{H})$. This ends the proof under assumption (a). The proof with assumption (b) makes use of Corollary 4 and is left for the reader.

Corollary 8. Let $\alpha \geq \beta > 0$, $p \geq 1$. Then $\mathcal{H}_p^{\alpha}(\mathcal{H}) \cap Q_0(\mathcal{H}) \subseteq \mathcal{H}_p^{\beta}(\mathcal{H}) \cap Q_0(\mathcal{H})$.

In section 3 we will use the lemmas below, one of them being a consequence of the following corollary. This corollary is a consequence of Theorem 3.4 of [5].

Corollary 9. Let $A, B \in \mathcal{L}(\mathcal{H})$ be positive semidefinite operators. If $\alpha \in (0,1]$ and $1 \leq p < \infty$, then

$$||B^{\alpha} - A^{\alpha}||_{p} \le |||B - A|^{\alpha}||_{p}.$$

Lemma 10. Let $A \in \mathcal{L}(\mathcal{H})$, $A \geq 0$, $\alpha \in (0,1]$, $p \geq \alpha$, $K \in \mathcal{C}_p(\mathcal{H})$, such that $A + K \geq 0$. Then $(A + K)^{\alpha} = A^{\alpha} + K_1$, where $K_1 \in \mathcal{C}_{\frac{p}{\alpha}}(\mathcal{H})$. If in addition $K \geq 0$, then $K_1 \geq 0$.

Proof. Set $K_1 := (A + K)^{\alpha} - A^{\alpha}$. From Corollary 9 one obtains

$$||K_1||_{\frac{p}{\alpha}} \le |||K|^{\alpha}||_{\frac{p}{\alpha}} = ||K||_p^{\alpha} < \infty,$$

which implies $K_1 \in \mathcal{C}_{\underline{P}}(\mathcal{H})$.

If $K \geq 0$, then we can apply Lowner's inequality to A + K and A and obtain $(A + K)^{\alpha} \geq A^{\alpha}$. Therefore $K_1 \geq 0$.

Lemma 11. Let $A \in \mathcal{L}(\mathcal{H})$, $A \geq 0$, $p \geq 1$, $K \in \mathcal{C}_p(\mathcal{H})$, such that $A + K \geq 0$, and let $\alpha \in [1, +\infty)$. Then $(A + K)^{\alpha} = A^{\alpha} + K_1$, where $K_1 \in \mathcal{C}_p(\mathcal{H})$.

Proof. Apply Lemma 2.
$$\Box$$

3. Application

In [4] the following sufficient condition for an almost hyponormal operator to have trace-class self-commutator with trace zero was obtained.

Theorem A ([4]). If
$$T \in \mathcal{H}_1^1(\mathcal{H})$$
 and $\mu(\sigma_w(T)) = 0$, then $T \in \mathcal{N}_1^1(\mathcal{H})$ and $\operatorname{tr}(D_T^1) = 0$.

In [1] the following was obtained.

Theorem B ([1]). If $T \in \mathcal{H}_0^{\alpha}(\mathcal{H})$ for some $\alpha \in (0,1]$, then

$$||D_T^{\alpha}|| \le \frac{\alpha}{\pi} \iint_{\sigma_{m}(T)} r^{2\alpha - 1} \, dr \, d\theta.$$

An obvious consequence of Theorem B is the following.

Corollary 12. If $T \in \mathcal{H}_0^{\alpha}(\mathcal{H})$ for some $\alpha > 0$ and $\mu(\sigma_w(T)) = 0$, then T is normal.

The above results naturally lead to the following.

Question. Let T be in $\mathcal{H}_p^{\alpha}(\mathcal{H})$ for some $\alpha > 0$, p > 0, and such that $\mu(\sigma_w(T)) = 0$. Does this imply that T or some transform of T, say $\phi(T)$, belongs to $\mathcal{N}_1^{\beta}(\mathcal{H})$, for some β , and $\operatorname{tr}(D_{\phi(T)}^{\beta}) = 0$?

This question is also justified by Theorem C below. For a subset E of \mathbb{C} , let

$$\omega_p(E) = \frac{p}{2} \int \int_E \rho^{p-1} \, d\rho \, d\theta,$$

and for $T \in \mathcal{L}(\mathcal{H})$, let m(T) be the rational cyclicity of T, that is, the least cardinal number of a set $\mathcal{M} \subseteq \mathcal{H}$ such that $\bigvee \{r(T)x: r \in \operatorname{Rat}(\sigma(T)), x \in \mathcal{M}\} = \mathcal{H}$.

Theorem C ([2]). Let $T \in \mathcal{L}(\mathcal{H})$ and $\frac{1}{2} \leq \alpha < \infty$.

- (a) If $\frac{1}{2} \leq \alpha \leq 1$ and $T \in \mathcal{H}_1^{\alpha}(\mathcal{H})$, and $K \in \mathcal{C}_{2\alpha}(\mathcal{H})$, then $\operatorname{tr}(D_T^{\alpha}) \leq \frac{1}{\pi} m(T+K) \, \omega_{2\alpha}(\sigma(T+K)).$
- (b) If $1 \le \alpha < \infty$ and $T \in \mathcal{H}_0^{\alpha}(\mathcal{H})$, then

$$\operatorname{tr}(D_T^{\alpha}) \leq \frac{1}{\pi} m(T) \,\omega_{2\alpha}(\sigma(T)).$$

Part (b) of Theorem C with the additional hypotheses that $\mu(\sigma_w(T)) = 0$ and $m(T) < \infty$ holds the same conclusion as Corollary 12. Indeed, if $T \in \mathcal{H}_0^{\alpha}(\mathcal{H})$ for some $\alpha \geq 1$, then T is a hyponormal operator. It is now well known that for some class of operators, including the hyponormal ones, Weyl's theorem holds; that is,

$$\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T),$$

where $\pi_{00}(T)$ is the set of isolated points of $\sigma(T)$ which are eigenvalues of finite multiplicity. Therefore, $\mu(\sigma_w(T)) = 0$ implies that $\mu(\sigma(T)) = 0$, and thus $\operatorname{tr}(D_T^1) = 0$, that is, $D_T^1 = 0$.

On the other hand, concerning part (a) of Theorem C, J. Stampfli in [10] proved that for $T \in \mathcal{L}(\mathcal{H})$, there exists a compact operator K such that $\sigma(T+K) \setminus \sigma_w(T)$ consists of a countable set. In fact, the proof that was provided in [10] says more.

Lemma D ([10]). Let $T \in \mathcal{L}(\mathcal{H})$ and $p \geq 1$. Then for any $\varepsilon > 0$, there exists $K \in \mathcal{C}_p(\mathcal{H})$ such that $||K||_p < \varepsilon$ and $\sigma(T + K) \setminus \sigma_w(T)$ consists of a countable set which clusters only on $\sigma_w(T)$.

Consequently, for an operator $T \in \mathcal{H}_1^{\alpha}(\mathcal{H})$, for some $\alpha \in [\frac{1}{2}, 1]$, and the operator K of Lemma D, we have $\omega_{2\alpha}(\sigma(T+K)) = 0$, provided that $\mu(\sigma_w(T)) = 0$. If in addition $m(T+K) < \infty$, then according to part (a) of Theorem C, $T \in \mathcal{N}_1^1(\mathcal{H})$ and $\operatorname{tr}(D_T^{\alpha}) = 0$.

We make a modest contribution towards answering the above question. Let T belong to $\mathcal{H}_p^{\alpha}(\mathcal{H})$, for some $\alpha > 0$, p > 0, such that $D_T^{\alpha} = P + K$ with $P \geq 0$ and $K \in \mathcal{C}_p(\mathcal{H})$. Since $K = K^* = K_+ - K_-$ and K_+ , $K_- \geq 0$ are \mathcal{C}_p -class operators, in what follows we will assume that $D_T^{\alpha} = P - K$ with $P \geq 0$ and $K \geq 0$, $K \in \mathcal{C}_p(\mathcal{H})$. For $T \in \mathcal{L}(\mathcal{H})$, let T = U|T| be the polar decomposition of T and write \tilde{T} for the Aluthge transform of T, that is, $|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$.

Theorem 13. Let p > 0, $\alpha \in [\frac{1}{2}, 1]$, and $T \in \mathcal{H}_p^{\alpha}(\mathcal{H})$ such that $D_T^{\alpha} = P - K$ with $P, K \geq 0$, $K \in \mathcal{C}_p(\mathcal{H})$, and let $\varepsilon \in (0, \frac{1}{2}]$ such that $\alpha + \varepsilon \leq 1$. Then $\tilde{T} \in \mathcal{H}_{\frac{(\Delta c_p)}{2+2c}}^{\frac{(\Delta c_p)}{2+2c}}(\mathcal{H})$.

In proving Theorem 13 we will make use of an elementary lemma (Lemma 14, whose proof is omitted) and of Furuta's inequalities [3].

Lemma 14. For $T \in \mathcal{L}(\mathcal{H})$ there exists a Hilbert space \mathcal{K} that includes \mathcal{H} and an operator $A \in \mathcal{L}(\mathcal{K})$ such that $D_T^{\alpha} \oplus 0_{\mathcal{K} \ominus \mathcal{H}} = D_A^{\alpha}$, for any $\alpha > 0$, and $\sigma(T) \setminus \{0\} = \sigma(A) \setminus \{0\}$, where A = U|A| with U unitary.

Theorem E ([3]). For operators $E \ge F \ge 0$ in $\mathcal{L}(\mathcal{H})$ and $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+2r)q \ge p+2r$, we have

$$(F_1)$$
 $(F^r E^p F^r)^{\frac{1}{q}} \ge (F^{p+2r})^{\frac{1}{q}}$

$$(F_2)$$
 $(E^{p+2r})^{\frac{1}{q}} \ge (E^r F^p E^r)^{\frac{1}{q}}.$

Proof of Theorem 13. Let T be as in the hypotheses of Theorem 13. According to Lemma 14, we may assume that T = U|T| with U unitary. The equality $D_T^{\alpha} = P - K$ with P, $K \geq 0$ implies $|T|^{2\alpha} + K \geq U|T|^{2\alpha}U^*$. Multiplying this inequality by U^* to the left and by U to the right, one obtains

$$A:=U^*|T|^{2\alpha}U+U^*KU\geq |T|^{2\alpha}=:B.$$

According to Lemma 10,

$$A^{\frac{1}{2\alpha}} = [U^*(|T|^{2\alpha} + K)U]^{\frac{1}{2\alpha}} = U^*(|T|^{2\alpha} + K)^{\frac{1}{2\alpha}}U = U^*(|T| + K_1)U,$$

with $K_1 \in \mathcal{C}^+_{2\alpha p}(\mathcal{H})$. Setting $K_2 := |T|^{\frac{1}{2}} U^* K_1 U |T|^{\frac{1}{2}}$, we have

$$\begin{split} \left(\tilde{T}^*\,\tilde{T} + K_2\right)^{\alpha + \varepsilon} &= \left\{|T|^{\frac{1}{2}}\left[U^*(|T| + K_1)U\right]|T|^{\frac{1}{2}}\right\}^{\alpha + \varepsilon} \\ &= \left\{|T|^{\frac{1}{2}}\left[U^*(|T|^{2\alpha} + K)U\right]^{\frac{1}{2\alpha}}|T|^{\frac{1}{2}}\right\}^{\alpha + \varepsilon} \\ &= \left(B^{\frac{1}{4\alpha}}A^{\frac{1}{2\alpha}}B^{\frac{1}{4\alpha}}\right)^{\alpha + \varepsilon} \\ &\stackrel{(F_1)}{\geq} \left(B^{\frac{1}{\alpha}}\right)^{\alpha + \varepsilon} &= |T|^{2(\alpha + \varepsilon)}. \end{split}$$

On the other hand, according to Lemma 10,

$$(\tilde{T}^* \, \tilde{T} + K_2)^{\alpha + \varepsilon} = (\tilde{T}^* \, \tilde{T})^{\alpha + \varepsilon} + K_3,$$

with $K_3 \in \mathcal{C}^+_{\frac{2\alpha p}{\alpha+2}}(\mathcal{H})$ since $K_2 \in \mathcal{C}^+_{2\alpha p}(\mathcal{H})$. Thus we have obtained the inequality

(*)
$$(\tilde{T}^* \tilde{T})^{\alpha+\varepsilon} + K_3 \ge |T|^{2(\alpha+\varepsilon)}, \quad K_3 \in \mathcal{C}^+_{\frac{2\alpha p}{\alpha+\varepsilon}}(\mathcal{H}).$$

On the other hand, the inequality

$$D := U|T|^{2\alpha}U^* < |T|^{2\alpha} + K =: C$$

can be used in conjunction with (F_2) to obtain a similar inequality to (*). Indeed, we have

$$(C^{\frac{1}{4\alpha}}D^{\frac{1}{2\alpha}}C^{\frac{1}{4\alpha}})^{\alpha+\varepsilon} \stackrel{(F_2)}{\leq} (C^{\frac{1}{\alpha}})^{\alpha+\varepsilon}.$$

Next, we compute each side of the above inequality. Again, according to Lemma 10,

$$C^{\frac{1}{4\alpha}} = (|T|^{2\alpha} + K)^{\frac{1}{4\alpha}} = |T|^{\frac{1}{2}} + K_4,$$

with $K_4 \in \mathcal{C}^+_{4\alpha p}(\mathcal{H})$. Obviously, $D^{\frac{1}{2\alpha}} = U|T|U^*$. Therefore, the left-hand side of the above inequality becomes

$$(C^{\frac{1}{4\alpha}}D^{\frac{1}{2\alpha}}C^{\frac{1}{4\alpha}})^{\alpha+\varepsilon} = \left[(|T|^{\frac{1}{2}} + K_4)(U|T|U^*)(|T|^{\frac{1}{2}} + K_4) \right]^{\alpha+\varepsilon}$$

$$= \left(|T|^{\frac{1}{2}}U|T|U^*|T|^{\frac{1}{2}} + K_5 \right)^{\alpha+\varepsilon}, \quad K_5 \in \mathcal{C}_{4\alpha p}(\mathcal{H})$$

$$= \left(\tilde{T}\tilde{T}^* + K_5 \right)^{\alpha+\varepsilon}$$

$$= (\tilde{T}\tilde{T}^*)^{\alpha+\varepsilon} + K_6, \quad K_6 \in \mathcal{C}_{\frac{4\alpha p}{\alpha+\varepsilon}}(\mathcal{H}).$$

The right-hand side of the above inequality can be handled with Lemmas 10 and 11 as follows:

$$(C^{\frac{1}{\alpha}})^{\alpha+\varepsilon} \stackrel{L11}{=} (|T|^2 + K_7)^{\alpha+\varepsilon} \stackrel{L10}{=} |T|^{2(\alpha+\varepsilon)} + K_8,$$

with $K_7 \in \mathcal{C}_p(\mathcal{H})$ and $K_8 \in \mathcal{C}_{\frac{p}{\alpha+\varepsilon}}(\mathcal{H})$. Thus

$$|T|^{2(\alpha+\varepsilon)} + K_8 \ge (\tilde{T}\tilde{T}^*)^{\alpha+\varepsilon} + K_6,$$

where $K_6 \in \mathcal{C}_{\frac{4\alpha p}{\alpha+\varepsilon}}(\mathcal{H})$ and $K_8 \in \mathcal{C}_{\frac{p}{\alpha+\varepsilon}}(\mathcal{H})$, which implies

(**)
$$|T|^{2(\alpha+\varepsilon)} \ge (\tilde{T}\tilde{T}^*)^{\alpha+\varepsilon} + K_9, \quad K_9 = K_6 - K_8 \in \mathcal{C}_{\frac{4\alpha p}{2-2}}(\mathcal{H}).$$

Combining (*) and (**) we obtain

$$(\tilde{T}^* \tilde{T})^{\alpha+\varepsilon} - (\tilde{T}\tilde{T}^*)^{\alpha+\varepsilon} \ge K_{10},$$

where $K_{10} = K_9 - K_3 \in \mathcal{C}_{\frac{4\alpha p}{\alpha + \varepsilon}}(\mathcal{H})$, and the proof is finished.

Corollary 15. Let $T \in \mathcal{H}^{(1/2)}_{(1/2)}(\mathcal{H})$ such that $D_T^{\frac{1}{2}} = P - K$ with $P, K \geq 0, K \in \mathcal{C}_{\frac{1}{3}}(\mathcal{H})$. Then $\tilde{T} \in \mathcal{H}^1_1(\mathcal{H})$.

Theorem 16. Let $T \in \mathcal{H}^{(1/2)}_{(1/2)}(\mathcal{H})$ such that $D_T^{\frac{1}{2}} = P - K$ with $P, K \geq 0, K \in \mathcal{C}_{\frac{1}{n}}(\mathcal{H})$. If $\mu(\sigma_w(T)) = 0$, then $\tilde{T} \in \mathcal{N}^1_1(\mathcal{H})$ and $\operatorname{tr}(D_{\tilde{T}}^1) = 0$.

Proof. Let T be as in the hypotheses. According to Corollary 15, the operator \tilde{T} is in $\mathcal{N}_1^1(\mathcal{H})$. Furthermore, according to Theorem 1.8 of [6], we obtain that $\mu(\sigma_w(\tilde{T})) = 0$. Then apply Theorem A to finish the proof.

References

- M. Chō, M. Itoh, and S. Ōshiro, Weyl's theorem holds for p-hyponormal operators, Glasgow Math. J. 39 (1997), 217–220. MR1460636 (98e:47038)
- R. Curto, P. Muhly and D. Xia, A trace estimate for p-hyponormal operators, Integral Equations and Operator Theory 6 (1983), 507–514. MR708409 (85b:47029)
- 3. T. Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc. **101** (1987), 85–88. MR897075 (89b:47028)
- D. Hadwin and E. Nordgren, Extensions of the Berger-Shaw theorem, Proc. Amer. Math. Soc. 102 (1988), 517–525. MR928971 (89e:47026)
- D. Jocić, Integral representation formula for generalized normal derivations, Proc. Amer. Math. Soc. 127(8) (1999), 2303–2314. MR1486737 (99j:47026)
- I. B. Jung, E. Ko and C. Pearcy, Spectral pictures of Aluthge transforms of operators, Integral Equations and Operator Theory 40 (2001), 52–60. MR1829514 (2002b:47007)
- V. Lauric and C. M. Pearcy, Trace-class commutators with trace zero, Acta. Sci. Math. (Szeged) 66 (2000), 341–349. MR1768871 (2001g:47038)
- 8. J. Ringrose, Compact non-self-adjoint operators, Van Nostrand Reinhold Company, London (1971).
- R. Schatten, Norm ideals of completely continuous operators, Ergeb. Math. Grenzgeb. 27, Springer-Verlag, Berlin (1960). MR0119112 (22:9878)
- J. G. Stampfli, Compact perturbations, normal eigenvalues and a problem of Salinas, J. London Math. Soc. (2) 9 (1974/1975), 165–175. MR0365196 (51:1449)

Department of Mathematics, Florida A&M University, Tallahassee, Florida 32307