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INTEGERS REPRESENTED AS THE SUM OF ONE PRIME,
TWO SQUARES OF PRIMES AND POWERS OF 2

GUANGSHI LÜ AND HAIWEI SUN

(Communicated by Ken Ono)

Abstract. In this short paper we prove that every sufficiently large odd inte-
ger can be written as a sum of one prime, two squares of primes and 83 powers
of 2.

1. Introduction and main results

It was shown by Linnik [9], [10] that each large even integer N is a sum of two
primes and a bounded number of powers of 2,

N = p1 + p2 + 2v1 + 2v2 + · · · + 2vk ,(1.1)

where p and v, with or without subscripts, denote a prime number and a positive
integer respectively. Later Gallagher [1] established a stronger result by a different
method. An explicit value for the number k of powers of 2 was first established
by Liu, Liu and Wang [11], who found that k = 54000 is acceptable. The original
value for the number k was subsequently improved by Li [6], Wang [20] and Li
[7]. In 2002, Heath-Brown and Puchta [3] applied a rather different approach to
this problem and showed that k = 13 is acceptable. In 2003, Pintz and Ruzsa [16]
announced that k = 8 is acceptable.

There are other similar problems. In 1938, Hua [4] proved that almost all n
satisfying a certain necessary condition are representable as sums of a prime and
two squares of primes,

n = p2
1 + p2

2 + p3,

where the necessary condition is that

n ∈ A = {n : n ∈ N, n �≡ 0(mod2), n �≡ 2(mod3)}.
Motivated by Hua’s result and the works of Linnik and Gallagher, Liu, Liu and
Zhan [12], among other important results, proved that every large odd integer N
can be written as a sum of one prime, two squares of primes and k powers of 2,
namely

N = p2
1 + p2

2 + p3 + 2v1 + 2v2 + · · · + 2vk .(1.2)
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In 2004, Liu [14] proved that k = 22000 is acceptable in (1.2). In 2007, Li [8] further
showed that k = 106 is acceptable in (1.2). However when we compare these results
with the former result of Heath-Brown and Puchta [3] (or Pintz and Ruzsa [16]), it
is a pity that a value for the number k with two digits cannot be obtained.

In this short paper we shall show that the current techniques are able to obtain
such a result.

Theorem 1.1. Every sufficiently large odd integer can be written as a sum of one
prime, two squares of primes and 83 powers of 2.

Unlike the previous works, we use a different idea to treat the second integral in
(3.1). This results in the improvement.

2. Preliminaries

In order to prove Theorem 1.1, it suffices to estimate the number of solutions of
the equation

N = p2
1 + p2

2 + p3 + 2v1 + 2v2 + · · · + 2vk .(2.1)

Suppose N is sufficiently large. We write

P = N
1
6−ε, Q = NP−1L−10, M = NL−9, L = log2 N.(2.2)

We use c and ε to denote an absolute constant and a sufficiently small positive
number respectively, not necessarily the same at each occurrence.

To apply the circle method, we begin with the observation

R(N) : =
∑

N=p2
1+p2

2+p3+2v1+2v2+···+2vk

M<p2
1,p2

2,p3≤N

(log p1)(log p2)(log p3)(2.3)

=
∫ 1

0

f2(α)g(α)hk(α)e(−αN)dα,

where

f(α) =
∑

M<p2≤N

(log p)e(αp2),(2.4)

g(α) =
∑

M<p≤N

(log p)e(αp),(2.5)

and

h(α) =
∑

2v≤N

e(α2v) =
∑
v≤L

e(α2v).(2.6)

By Dirichlet’s lemma on rational approximation, each α ∈ [1/Q, 1+1/Q] can be
written as

α =
a

q
+ β, |β| ≤ 1

qQ
,(2.7)

for some integers a, q with 1 ≤ a ≤ q ≤ Q, (a, q) = 1. We define the major arcs M
and minor arcs C(M) as usual, namely

(2.8) M =
⋃

q≤P

⋃
1≤a≤q
(a,q)=1

[
a

q
− 1

qQ
,
a

q
+

1
qQ

]
, C(M) =

[
1
Q

, 1 +
1
Q

]
\M.



REPRESENTATION OF ODD INTEGERS 1187

On the minor arcs, we need estimates for the measure of the set

Eλ := {α ∈ [0, 1] : |h(α)| ≥ λL}.(2.9)

The following lemma is due to Heath-Brown and Puchta [3].

Lemma 2.1. We have

meas(Eλ) � N−E(λ) with E(0.887167) >
3
4

+ 10−10.

Proof. Let

Th(α) =
∑

0≤n≤h−1

e(α2n),

F (ξ, h) =
1
2h

2h−1∑
r=0

exp{ξRe(Th(r/2h))},

and

E(λ) =
ξλ

log 2
− log F (ξ, h)

h log 2
− ε

log 2
.

Then for any ξ, ε > 0, and any h ∈ N, we have

meas(Eλ) � N−E(λ).

This was proved in Section 7 of Heath-Brown and Puchta [3]. Taking ξ = 1.21,
h = 22, we get on a PC that

E(0.887167) >
3
4

+ 10−10.

This completes the proof of the lemma. �
To control the minor arcs we also need three other lemmas.

Lemma 2.2. Suppose that α is a real number and that there exist integers a and
q satisfying

1 ≤ q ≤ Y, (a, q) = 1, |qα − a| < Y −1,

with Y = X
3
2 . Then for any fixed ε > 0 one has∑
X<p≤2X

(log p)e(αp2) � X
7
8+ε +

qεX(log X)c

(q + X2|qα − a|) 1
2
.

Proof. This is Theorem 3 for the case k = 2 in Kumchev [5], which is a powerful
tool to control the contribution from the minor arcs when one applies the circle
method to the Waring-Goldbach problems. �
Lemma 2.3. Let f(α) and h(α) be as in (2.4) and (2.6). Then∫ 1

0

|f(α)h(α)|4dα ≤ c1
π2

16
NL4,

where

c1 ≤
(

324 · 101 · 1.620767
3

+
8 · log2 2

π2

)
(1 + ε)9.

Proof. The first version of this lemma was established in Liu and Liu [13]. Then
the constant was subsequently refined in [15] and [8]. �
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Lemma 2.4. Let g(α) and h(α) be as in (2.5) and (2.6). Then

∫ 1

0

|g(α)h(α)|2dα ≤ 12.3238c0NL2,

where

c0 =
∏
p≥3

(
1 − 1

(p − 1)2

)
= 0.6601....

Proof. This lemma is actually Lemma 10 in [3]. By Lemma 2 of [17], we can replace
(41) of [3] by C2 ≤ 1.93657, and by the result of Wu [21] we can replace (32) of [3]
by 7.8209. Then by the proof of Lemma 9 of [3] this lemma follows. �

To treat the major arcs, we need the following three lemmas.

Lemma 2.5. For all integers n ∈ A, we have∫
M

f2(α)g(α)e(−αn)dα = (π/4 + o(1))S(n, P )n + O(N/ log N).(2.10)

Proof. This lemma is Lemma 4 in [8] or Theorem 2 in [19]. These results are based
on the new approach to treat the enlarged major arcs in the circle method, which
was developed by Liu, Liu and Zhan [12]. �

Lemma 2.6. For all integers n ∈ A, we have

S(n, P ) ≥ 2.27473966.(2.11)

Proof. This lemma is Lemma 5 in Li [8]. �

Lemma 2.7. Let A(N, k) = {n ≥ 2 : n = N − 2v1 − · · · − 2vk} with k ≥ 80. Then
for odd N , we have

∑
n∈A(N,k)

n�≡2(mod 3)

n ≥ (
2
3
− 2−70)NLk.

Proof. This lemma is actually Lemma 6 in Li [8]. We make the corresponding
change according to the range of k. �

3. Proof of Theorem 1.1

Let Eλ be as defined in (2.9), and M and C(M) be as in (2.8), with P , Q
determined in (2.2). Then (2.3) becomes

(3.1) R(N) =
∫ 1

0

f2(α)g(α)hk(α)e(−αN)dα =
∫
M

+
∫

C(M)∩Eλ

+
∫

C(M)\Eλ

.
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For the major arcs, by Lemma 2.5 we have

∫
M

f2(α)g(α)hk(α)e(−αN)dα =
∑

n∈A(N,k)

∫
M

f2(α)g(α)e(−αn)dα

=
(π

4
+ o(1)

) ∑
n∈A(N,k)

S(n, P )n + O(NLk−1)

≥ 2.27473966
(π

4
+ o(1)

) ∑
n∈A(N,k)

n + O(NLk−1)

≥ 1.516492
π

4
NLk,

(3.2)

where we have used Lemmas 2.6 and 2.7.
Now we consider the second integral in (3.1). By Dirichlet’s lemma on rational

approximation, any α ∈ C(M) can be written as

α =
a

q
+ β, |β| ≤ 1

qN
3
4
,

for some integers a, q with 1 ≤ a ≤ q ≤ N
3
4 , (a, q) = 1. If q ≤ P , since α ∈ C(M),

we have PL10 < N |qα − a|; otherwise we have q > P . Hence we have that for
α ∈ C(M),

q + N |qα − a| > P.

Then by Lemma 2.2, we have

max
α∈C(M)

|f(α)| � N
1
2−

1
16+ε.(3.3)

It should be remarked that now (3.3) is a standard result, which has been used in
[2], [18], [15] and [8], etc. For the second integral in (3.1), by Cauchy’s inequality
we have∫

C(M)∩Eλ

≤
(∫

C(M)∩Eλ

|f2(α)g(α)hk(α)|2dα

) 1
2

(∫
C(M)∩Eλ

1dα

) 1
2

≤
(∫

C(M)

|f2(α)g(α)hk(α)|2dα

) 1
2 (∫

Eλ

1dα

) 1
2

≤
(

L2k

(
max

α∈C(M)
|f(α)|

)4 ∫ 1

0

|g(α)|2dα

) 1
2 (∫

Eλ

1dα

) 1
2

.

Then by (3.3) and the well-known estimate∫ 1

0

|g(α)|2dα � NL,

we have ∫
C(M)∩Eλ

� (L2kN
7
4+εN)

1
2 (meas(Eλ))

1
2

� (L2kN
7
4+εN)

1
2 N−E(λ)

2(3.4)

� N
11
8 +εLkN−E(λ)

2 � N1−ε,
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where we have used Lemma 2.1 with λ = 0.887167, namely

meas (E0.887167) � N−E(0.887167) < N− 3
4−10−10

.

For the last integral in (3.1) with the definition of Eλ, and Lemmas 2.3 and 2.4,
by Cauchy’s inequality we have∫

C(M)\Eλ

≤ (λL)k−3

(∫ 1

0

|f(α)h(α)|4dα

) 1
2

(∫ 1

0

|g(α)h(α)|2dα

) 1
2

≤ 21576λk−3 π

4
NLk.

(3.5)

Combining this with (3.2) and (3.4), we get

R(N) ≥ π

4
NLk(1.516492 − 21576λk−3).(3.6)

When k ≥ 83, for λ = 0.887167, by the above estimate we have

R(N) > 0.

This means that every large odd integer N can be written in the form of (1.2) for
k ≥ 83.
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