A SHORT PROOF OF PITT'S COMPACTNESS THEOREM

SYLVAIN DELPECH

(Communicated by Nigel J. Kalton)

Abstract

We give a short proof of Pitt's theorem that every bounded linear operator from ℓ_{p} or c_{0} into ℓ_{q} is compact whenever $1 \leq q<p<\infty$.

A bounded linear operator between two Banach spaces X and Y is said to be compact if it maps the closed unit ball of X into a relatively compact subset of Y. Theorem (Pitt; see for example [1, p. 175). Let $1 \leq q<p \leq+\infty$, and put $X_{p}=\ell_{p}$ if $p<+\infty$ and $X_{\infty}=c_{0}$. Then every bounded linear operator from X_{p} into ℓ_{q} is compact.
Proof. Let $T: X_{p} \rightarrow \ell_{q}$ be a norm-one operator. As $1<p$, the dual of X_{p} is separable. Hence every bounded sequence in X_{p} has a weakly Cauchy subsequence. Thus, for proving the compactness of T, it is enough to show that T is weak-tonorm continuous. So, let us consider a weakly null sequence $\left(h_{n}\right)$ in X_{p}. We have to show that $\lim _{n \rightarrow \infty}\left\|T\left(h_{n}\right)\right\|=0$. We claim that
(1) for every $x \in c_{0}$ and for every weakly null sequence $\left(w_{n}\right)$ in c_{0},

$$
\limsup _{n \rightarrow \infty}\left\|x+w_{n}\right\|=\max \left(\|x\|, \limsup _{n \rightarrow \infty}\left\|w_{n}\right\|\right)
$$

(2) for every $x \in \ell_{r}, 1 \leq r<\infty$, and for every weakly null sequence $\left(w_{n}\right)$ in ℓ_{r},

$$
\limsup _{n \rightarrow \infty}\left\|x+w_{n}\right\|^{r}=\|x\|^{r}+\underset{n \rightarrow \infty}{\limsup }\left\|w_{n}\right\|^{r}
$$

Indeed this is obvious when x is finitely supported, because the coordinates of (w_{n}) along the support of x tend to 0 in norm. The general case is true by the density of finitely supported elements in X_{p} and since the norm is a Lipschitzian function.

Fix $0<\varepsilon<1$. By definition of the norm of T, there exists $x_{\varepsilon} \in X_{p}$ such that $\left\|x_{\varepsilon}\right\|=1$ and $1-\varepsilon \leq\left\|T\left(x_{\varepsilon}\right)\right\| \leq 1$. Moreover, for all $n \in \mathbb{N}$ and for all $t>0$

$$
\begin{equation*}
\left\|T\left(x_{\varepsilon}\right)+T\left(t h_{n}\right)\right\| \leq\left\|x_{\varepsilon}+t h_{n}\right\| . \tag{0}
\end{equation*}
$$

In the left-hand side of (0), we apply claim (2) in ℓ_{q}, with $x=T\left(x_{\varepsilon}\right)$ and the weakly null sequence $\left(T\left(t h_{n}\right)\right)$.

First, assume $p<+\infty$. We apply claim (2) to the right-hand side of (0) with $r=p, x=x_{\varepsilon}$ and the weakly null sequence $\left(t h_{n}\right)$ to obtain

$$
\left[\left\|T\left(x_{\varepsilon}\right)\right\|^{q}+t^{q} \limsup _{n \rightarrow \infty}\left\|T\left(h_{n}\right)\right\|^{q}\right]^{\frac{1}{q}} \leq\left[\left\|x_{\varepsilon}\right\|^{p}+t^{p} \limsup _{n \rightarrow \infty}\left\|h_{n}\right\|^{p}\right]^{\frac{1}{p}}
$$

[^0]Recall that $\left\|x_{\varepsilon}\right\|=1,1-\varepsilon \leq\left\|T\left(x_{\varepsilon}\right)\right\| \leq 1$ and that $\left(h_{n}\right)$ is weakly convergent, thus bounded by some $M>0$. This gives

$$
\limsup _{n \rightarrow \infty}\left\|T\left(h_{n}\right)\right\|^{q} \leq \frac{1}{t^{q}}\left[\left(1+t^{p} M^{p}\right)^{q / p}-(1-\varepsilon)^{q}\right]
$$

Taking $t=\varepsilon^{\frac{1}{p}}$ here, we get

$$
\limsup _{n \rightarrow \infty}\left\|T\left(h_{n}\right)\right\|^{q} \leq \frac{1}{\varepsilon^{q / p}}\left[1+\frac{q}{p} M^{p} \varepsilon-(1-q \varepsilon)+o(\varepsilon)\right]
$$

Now, letting $\varepsilon \rightarrow 0$ here, we get that $\limsup _{n \rightarrow \infty}\left\|T\left(h_{n}\right)\right\|^{q} \leq 0$, and therefore the sequence $\left(T\left(h_{n}\right)\right)$ norm-converges to 0 .

Second, assume $p=+\infty$. We apply claim (1) to the right-hand side of (0) to obtain

$$
\limsup _{n \rightarrow \infty}\left\|T\left(h_{n}\right)\right\|^{q} \leq \frac{1}{t^{q}}\left[\max \left(1, t^{q} M^{q}\right)-(1-\varepsilon)^{q}\right]
$$

Considering here any $0<\varepsilon<M^{-2 q}$ and then taking $t=\varepsilon^{\frac{1}{2 q}}$, we get that

$$
\limsup _{n \rightarrow \infty}\left\|T\left(h_{n}\right)\right\|^{q} \leq \frac{1}{\varepsilon^{1 / 2}}\left[1-(1-\varepsilon)^{q}\right]
$$

Now, letting $\varepsilon \rightarrow 0$ here, we get as before that the sequence $\left(T\left(h_{n}\right)\right)$ norm-converges to 0 .

The framework of this paper was inspired by [2]. The proof given in [2], devoted to the case $p<+\infty$, uses Stegall's variational principle.

References

[1] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant and V. Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics, Springer-Verlag, New York, 2001. MR 1831176 (2002f:46001)
[2] M. Fabian and V. Zizler, A "nonlinear" proof of Pitt's compactness theorem, Proc. Amer. Math. Soc. 131 (2003), 3693-3694. MR1998188 (2004g:46026)

Institut de Mathématiques de Bordeaux, UMR 5251, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence Cedex, France

E-mail address: sylvain.delpech@gmail.com

[^0]: Received by the editors February 6, 2008, and, in revised form, April 16, 2008. 2000 Mathematics Subject Classification. Primary 46B25.
 Key words and phrases. ℓ_{p} space, c_{0} space, compact operator.

