A SHORT PROOF OF PITT'S COMPACTNESS THEOREM

SYLVAIN DELPECH

(Communicated by Nigel J. Kalton)

ABSTRACT. We give a short proof of Pitt's theorem that every bounded linear operator from ℓ_p or c_0 into ℓ_q is compact whenever $1 \leq q .$

A bounded linear operator between two Banach spaces X and Y is said to be compact if it maps the closed unit ball of X into a relatively compact subset of Y.

Theorem (Pitt; see for example [1], p. 175). Let $1 \le q , and put <math>X_p = \ell_p$ if $p < +\infty$ and $X_\infty = c_0$. Then every bounded linear operator from X_p into ℓ_q is compact.

Proof. Let $T: X_p \to \ell_q$ be a norm-one operator. As 1 < p, the dual of X_p is separable. Hence every bounded sequence in X_p has a weakly Cauchy subsequence. Thus, for proving the compactness of T, it is enough to show that T is weak-to-norm continuous. So, let us consider a weakly null sequence (h_n) in X_p . We have to show that $\lim_{n\to\infty} \|T(h_n)\| = 0$. We claim that

(1) for every $x \in c_0$ and for every weakly null sequence (w_n) in c_0 ,

$$\lim_{n\to\infty} \sup \|x + w_n\| = \max(\|x\|, \limsup_{n\to\infty} \|w_n\|),$$

(2) for every $x \in \ell_r$, $1 \le r < \infty$, and for every weakly null sequence (w_n) in ℓ_r ,

$$\limsup_{n\to\infty} \|x+w_n\|^r = \|x\|^r + \limsup_{n\to\infty} \|w_n\|^r.$$

Indeed this is obvious when x is finitely supported, because the coordinates of (w_n) along the support of x tend to 0 in norm. The general case is true by the density of finitely supported elements in X_p and since the norm is a Lipschitzian function.

Fix $0 < \varepsilon < 1$. By definition of the norm of T, there exists $x_{\varepsilon} \in X_p$ such that $||x_{\varepsilon}|| = 1$ and $1 - \varepsilon \le ||T(x_{\varepsilon})|| \le 1$. Moreover, for all $n \in \mathbb{N}$ and for all t > 0

$$||T(x_{\varepsilon}) + T(th_n)|| \le ||x_{\varepsilon} + th_n||.$$

In the left-hand side of (0), we apply claim (2) in ℓ_q , with $x = T(x_{\varepsilon})$ and the weakly null sequence $(T(th_n))$.

First, assume $p < +\infty$. We apply claim (2) to the right-hand side of (0) with r = p, $x = x_{\varepsilon}$ and the weakly null sequence (th_n) to obtain

$$\left[\|T(x_{\varepsilon})\|^{q} + t^{q} \limsup_{n \to \infty} \|T(h_{n})\|^{q} \right]^{\frac{1}{q}} \leq \left[\|x_{\varepsilon}\|^{p} + t^{p} \limsup_{n \to \infty} \|h_{n}\|^{p} \right]^{\frac{1}{p}}.$$

Received by the editors February 6, 2008, and, in revised form, April 16, 2008.

 $2000\ Mathematics\ Subject\ Classification.$ Primary 46B25.

Key words and phrases. ℓ_p space, c_0 space, compact operator.

Recall that $||x_{\varepsilon}|| = 1$, $1 - \varepsilon \le ||T(x_{\varepsilon})|| \le 1$ and that (h_n) is weakly convergent, thus bounded by some M > 0. This gives

$$\limsup_{n \to \infty} ||T(h_n)||^q \le \frac{1}{t^q} \left[(1 + t^p M^p)^{q/p} - (1 - \varepsilon)^q \right].$$

Taking $t = \varepsilon^{\frac{1}{p}}$ here, we get

$$\limsup_{n \to \infty} ||T(h_n)||^q \le \frac{1}{\varepsilon^{q/p}} \left[1 + \frac{q}{p} M^p \varepsilon - (1 - q\varepsilon) + o(\varepsilon) \right].$$

Now, letting $\varepsilon \to 0$ here, we get that $\limsup_{n\to\infty} ||T(h_n)||^q \le 0$, and therefore the sequence $(T(h_n))$ norm-converges to 0.

Second, assume $p = +\infty$. We apply claim (1) to the right-hand side of (0) to obtain

$$\limsup_{n \to \infty} ||T(h_n)||^q \le \frac{1}{t^q} \left[\max \left(1, t^q M^q \right) - \left(1 - \varepsilon \right)^q \right].$$

Considering here any $0 < \varepsilon < M^{-2q}$ and then taking $t = \varepsilon^{\frac{1}{2q}}$, we get that

$$\limsup_{n \to \infty} ||T(h_n)||^q \le \frac{1}{\varepsilon^{1/2}} \left[1 - (1 - \varepsilon)^q \right].$$

Now, letting $\varepsilon \to 0$ here, we get as before that the sequence $(T(h_n))$ norm-converges to 0.

The framework of this paper was inspired by [2]. The proof given in [2], devoted to the case $p < +\infty$, uses Stegall's variational principle.

References

- M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant and V. Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics, Springer-Verlag, New York, 2001. MR1831176 (2002f:46001)
- [2] M. Fabian and V. Zizler, A "nonlinear" proof of Pitt's compactness theorem, Proc. Amer. Math. Soc. ${\bf 131}$ (2003), 3693–3694. MR1998188 (2004g:46026)

Institut de Mathématiques de Bordeaux, UMR 5251, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence Cedex, France

E-mail address: sylvain.delpech@gmail.com