
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 137, Number 4, April 2009, Pages 1275–1283
S 0002-9939(08)09622-6
Article electronically published on October 9, 2008

AN ALGEBRAIC INDEPENDENCE RESULT
FOR EULER PRODUCTS OF FINITE DEGREE

ALEXANDRU ZAHARESCU AND MOHAMMAD ZAKI

(Communicated by Ken Ono)

Abstract. We investigate the algebraic independence of some derivatives of
certain multiplicative arithmetical functions over the field C of complex num-
bers.

1. Introduction

In this paper we consider arithmetical functions defined over the field of complex
numbers, and their associated Dirichlet series. Let r ≥ 1 be an integer and write
Ar = Ar(C) = {f : Nr → C}. Given f, g ∈ Ar, define the convolution f ∗ g of f
and g by

(1.1) (f ∗ g)(n1, ..., nr) =
∑

d1|n1

...
∑

dr|nr

f(d1, ..., dr)g(
n1

d1
, ...,

nr

dr
).

Then C has a natural embedding in the ring Ar, and Ar with addition and convo-
lution defined as above becomes a C-algebra. The ring A1 has been studied from
various points of view by a number of authors. We mention in this connection the
work of Cashwell and Everett [4], who proved that (A1, +, .) is a unique factor-
ization domain. Schwab and Silberberg [12] constructed an extension of (A1, +, .)
which is a discrete valuation ring. Alkan and the authors [1] generalized this con-
struction and provided a family of extensions of Ar which are discrete valuation
rings. For other work on rings of arithmetical functions the reader is referred
to [5], [6], [9], [12], [13], [10], [11], [2]. In [1], it was shown that for any com-
pletely additive arithmetical function ψ ∈ Ar, the map Dψ : Ar → Ar defined by
Dψ(f)(n1, . . . , nr) = f(n1, . . . , nr)ψ(n1, . . . , nr), for all n1, . . . , nr ∈ N, is a deriva-
tion on Ar. It was also proved in [1] that for any multiplicative function f ∈ Ar, any
completely additive function ψ ∈ Ar, and any n1, . . . , nr ∈ N not all prime powers,
Dψ(f)

f (n1, . . . , nr) = 0, where Dψ(f)
f is viewed as Dψ(f) ∗ f−1. In this connection,

a natural line of investigation would be to study the action of Dψ on the subring
C[f ] of Ar generated over C by a given multiplicative function f ∈ Ar, for any ψ as
above. From this point of view, the first issue that arises is to consider the image
of C[f ] through Dψ, and identify the intersection of Dψ(C[f ]) and C[f ]. We will do
this for a special class of multiplicative functions f which are of particular interest,
namely, those which have Euler factors of finite degree.
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Fix ψ ∈ Ar. Assume that ψ is completely additive and satisfies

|ψ(n1, . . . , nr)| → ∞,

as n1 + · · · + nr → ∞. For any g ∈ Ar, any prime number p, and any integer
k ∈ {1, . . . , r}, let gp,k,r ∈ A1 be the function defined as follows. Let m ∈ N. If m
is not a power of the prime p, then gp,k,r(m) = 0. If m = pn for some nonnegative
integer n, let

(1.2) gp,k,r(pn) = g(1, . . . , 1, pn, 1, . . . , 1),

where pn occurs at the k-th component of the tuple (1, . . . , 1, pn, 1, . . . , 1) on the
rightside of (1.2). Given a multiplicative function f ∈ Ar, we say that f has an
Euler factor of finite degree at a prime number p provided there exists k ∈ {1, . . . , r}
and m ∈ N and nonzero complex numbers a1, . . . , am such that the Dirichlet series
associated to the arithmetical function fp,k,r is given by

∞∑
n=1

fp,k,r(n)
ns

=
1(

1 − a1
ps

)
· · ·

(
1 − am

ps

) .

As a matter of terminology, we will call the above Euler factor trivial if m = 0 and
respectively nontrivial if m ≥ 1. We will prove the following result.

Theorem 1. Let ψ ∈ Ar be completely additive and satisfy

(1.3) |ψ(n1, . . . , nr)| → ∞,

as n1 + · · · + nr → ∞. Let f ∈ Ar be multiplicative and such that for infinitely
many prime numbers p, f has an Euler product of finite degree at p as defined
above. Then for any distinct nonnegative integers i, and j, the derivations Di

ψ(f)
and Dj

ψ(f) of f of orders i and j respectively are algebraically independent over C.

As a consequence of this result, for ψ and f as above, the arithmetical function
which is constant and equal to zero is the only common element of Dψ(C[f ]) and
C[f ].

Corollary 1. Let ψ and f be elements of Ar satisfying the assumptions in Theo-
rem 1. Let C[f ] be the subring of Ar generated over C by f . Then,

Dψ(C[f ]) ∩ C[f ] = 0.

We end this section with some examples. Let r = 1, and let ψ0 ∈ A1 be the
completely additive function given by ψ0(n) = − log n for all n ∈ N. Then condi-
tion (1.3) is satisfied. Next, let f = χ be a Dirichlet character. So f satisfies the
condition in Theorem 1 with m = 1, for all but finitely many primes (where the
corresponding Euler factor is trivial). Then Theorem 1 applies, and it shows that
the derivations D

(i)
ψ0

(χ) and D
(j)
ψ0

(χ) of χ of orders i and j are algebraically inde-
pendent for any nonnegative distinct integers i and j. Moreover, by the standard
isomorphism which sends any arithmetical function h ∈ A1(C) to its associated
Dirichlet series H(s) = L(s, h) =

∑∞
1

h(n)
ns , and also sends Dψ0(h) to d

ds (H(s)), we
see that for any nonnegative distinct integers i and j, the functions L(i)(s, χ) and
L(j)(s, χ) are algebraically independent over C.
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For another example, let us again take r = 1, f = χ, and ψ0 as above. Also fix
a prime p such that χ(p) �= 0. Next, let χp ∈ A1(C) be defined by

χp(n) =

{
χ(n), if n = pm, m ≥ 1,

0, otherwise.

Note that
Dψ0(χp)(pm) = (−m log p)(χp(p))m

= (− log p)(χp(p))m((
∑
d|pm

1) − 1)

= (log p)(χ2
p(p

m) − χp(pm)).

One finds that
Dψ0(C[χp]) = (χ2

p − χp)C[χp].
Thus Corollary 1, and therefore also Theorem 1, fails in this case. But χp does not
satisfy the hypothesis of Theorem 1 either.

Other interesting examples arise from the theory of modular forms. For a nice
treatment of this subject the reader is referred to the recent monograpgh of Ono [7].
Let f(z) be a newform (or normalized Hecke eigenform) of weight k in Sk(Γ1(N), χ)
which has Fourier expansion

f(z) =
∞∑

n=1

af (n)e2πinz, Im z > 0.

The Fourier coefficients af (n) form a multiplicative arithmetical function. The
associated L-function is given by

L(s, f) =
∞∑

n=1

af (n)n−s,

where s ∈ C is a complex variable. Here L(s, f) has an Euler product expansion

L(s, f) =
∏
p

(1 − af (p)p−s + χ(p)pk−1−2s)−1 =
∏
p

1(
1 − αpp

k−1
2

ps

) (
1 − βpp

k−1
2

ps

) ,

where the product is taken over all primes, αp +βp = af (p)p
1−k
2 , and αpβp = χ(p).

For example, one can take the Ramanujan tau function τ (n), defined in terms
of the Delta function

(1.4) ∆(z) =
∞∑

n=1

τ (n)qn = q

∞∏
n=1

(1 − qn)24, q = e2πiz,

which is the unique normalized cusp form of weight 12 on SL2(Z). The Euler
product expansion of the L-series associated to ∆(z) is given by

L(s, ∆) =
∏
p

(1 − τ (p)p−s + p11−2s)−1 =
∏
p

1(
1 − αpp

11
2

ps

) (
1 − βpp

11
2

ps

) ,

where the product is taken over all primes, αp + βp = τ (p)p−
11
2 , and αpβp = 1.

The conditions in Theorem 1 are satisfied in this case, and therefore any two
derivatives of L(s, f) are algebraically independent over C.
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Theorem 1 applies, more generally, to the case when f is an automorphic cusp
form on GLm/Q, m ≥ 1. Its L-function L(s, f) has an Euler product of degree m:
L(s, f) =

∏
p L(s, fp), where

L(s, fp) =
1∏m

j=1

(
1 − αj,f (p)

ps

) .

By Theorem 1, any two derivatives of L(s, f) are algebraically independent over C.

2. Preliminaries

Let r be a positive integer and denote as above Ar = {f : Nr → C}. We say
that an arithmetical function f ∈ Ar is multiplicative provided one has

f(n1m1, ..., nrmr) = f(n1, ..., nr)f(m1, ..., mr),

for any n1, ..., nr, m1, ..., mr ∈ N satisfying (n1, m1) = · · · = (nr, mr) = 1. We say
that f ∈ Ar is completely multiplicative provided

f(n1m1, ..., nrmr) = f(n1, ..., nr)f(m1, ..., mr),

for any n1, ..., nr, m1, ..., mr ∈ N. Similarly we say that a function f ∈ Ar(R) is
additive provided

f(n1m1, ..., nrmr) = f(n1, ..., nr) + f(m1, ..., mr),

for any n1, ..., nr, m1, ..., mr ∈ N satisfying (n1, m1) = · · · = (nr, mr) = 1. We call
a function f ∈ Ar completely additive provided

f(n1m1, ..., nrmr) = f(n1, ..., nr) + f(m1, ..., mr),

for any n1, ..., nr, m1, ..., mr ∈ N. For any completely additive function ψ ∈ Ar, the
map Dψ : Ar → Ar defined by

Dψ(f)(n1, . . . , nr) = f(n1, . . . , nr)ψ(n1, . . . , nr),

for all n1, . . . , nr ∈ N, satisfies the following properties (see [1]). For all f, g ∈ Ar

and c ∈ C,
(a) Dψ(f + g) = Dψ(f) + Dψ(g),
(b) Dψ(fg) = fDψ(g) + gDψ(f),
(c) Dψ(cf) = cDψ(f).

Consequently, Dψ is a derivation on Ar over C.
Every f ∈ Ar has an associated formal Dirichlet series

f(s1, . . . , sr) =
∑

n1,...,nr∈N

f(n1, . . . , nr)
ns1

1 · · ·nsr
r

.

Let Ar be the ring of all such series with the usual addition and multiplication of
series. The map f → f is a ring isomorphism.

For any g ∈ Ar, a prime number p, and an integer k ∈ {1, . . . , r}, let us denote
by φp,k,r the map from Ar into A1 which sends g to gp,k = gp,k,r ∈ A1, where gp,k,r

is defined as in Section 1. The mapping φp,k,r is a homomorphism of C-algebras:
for any c ∈ C and g, h ∈ Ar, (cg)p,k,r = cgp,k,r, (g + h)p,k,r = gp,k,r + hp,k,r,
and (g ∗ h)p,k,r = gp,k,r ∗ hp,k,r. To see this, let n ∈ N and consider the r-tuple
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(1, . . . , 1, pn, 1, . . . , 1) ∈ Nr, where pn occurs at the k-th component of the tuple.
Then,

(g ∗ h)p,k,r(pn) = (g ∗ h)(1, . . . , 1, pn, 1, . . . , 1)

=
∑
d|pn

g(1, . . . , d, 1, . . . , 1)h(1, . . . ,
pn

d
, 1, . . . , 1)

=
∑
d|pn

gp,k,r(d)hp,k,r(
pn

d
)

= gp,k,r ∗ hp,k,r(pn).

On the other hand, if n is not a power of the prime p, then we have that

(g ∗ h)p,k,r(n) = 0 = gp,k,r ∗ hp,k,r(n).

Therefore, (g ∗ h)p,k,r = gp,k,r ∗ hp,k,r. Similarly, one sees that (cg)p,k,r = cgp,k,r

and (g + h)p,k,r = gp,k,r + hp,k,r.
Note that the homomorphism sending any g ∈ Ar to gp,k,r ∈ A1 induces a

homomorphism of Ar onto A1 which sends g(s1, . . . , sr) to gp,k,r(s). As an example,
for r = 1, this map sends the Riemann zeta function

ζ(s) =
∞∑

n=1

1
ns

=
∏
q

1
1 − 1

qs

to the function ζp(s) =
∑∞

k=0
1

pks = 1
1− 1

ps
. Also, −ζ′(s)

ζ(s) is sent to −ζ′
p(s)

ζp(s) = log p
ps−1 .

3. The case of the Riemann zeta function

In order to present the main idea behind the proof of Theorem 1 in terms as
simple as possible, in this section we show that the Riemann zeta function ζ(s)
and its derivative ζ ′(s) are algebraically independent over C. In doing this, we
will avoid the use of any analytic properties of the Riemann zeta function, so that
we later have a chance of generalizing this reasoning in the context of Theorem 1,
where one does not have any assumptions on the convergence of the Dirichlet series
associated to f , or its Euler product. Returning to the Riemann zeta function,
let us assume that ζ(s) and ζ ′(s) are algebraically dependent, and let Q(x, y) be
a nonzero polynomial in two variables x and y with coefficients in C such that
Q(ζ(s), ζ ′(s)) = 0. Let P (x, y) = Q(x, xy). Then P (x, y) is a nonzero polynomial
and P

(
ζ(s), −ζ′(s)

ζ(s)

)
= 0. Next, this gives us an equality in A1, namely

(3.1) P (I,−Dψlg(I) ∗ I−1) = 0,

where I ∈ A1 denotes the arithmetical function given by I(n) = 1, and ψ0 is
the completely additive function given by ψ0(n) = log(n) for all n ∈ N. Now for
any prime p, we apply the homomorphism φp,1,1 to the equality (3.1) and find
that P (Ip,−Dψ0(Ip) ∗ I−1

p ) = 0. This in turn gives us an equality between the
corresponding Dirichlet series, namely

(3.2) P

(
ζp(s),

−ζ ′p(s)
ζp(s)

)
= 0.
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This is a nontrivial relation which needs to be satisfied by each Euler factor ζp(s)
of ζ(s) with the same polynomial P . On the other hand, one checks by a direct
computation that

(3.3)
−ζ ′p(s)
ζp(s)

= (1 + ζp(s)) log p.

Using equation (3.3) in (3.2), we derive that ζp(s) is a zero of the polynomial Up(t)
which is given by Up(t) = P (t, (t + 1) log p). Since ζp(s) is transcendental over
C, Up(t) has to be identically zero. But, since P (x, y) is a nonzero polynomial,
P (t, (t+ 1) log p) can be identically zero only for finitely many values of p, and this
completes the proof that ζ(s) and ζ ′(s) are algebraically independent over C.

4. Proof of Theorem 1

Let ψ and f be as in the statement of Theorem 1. By our assumptions, we know
that there is an infinite set P of prime numbers with the following property. For
each prime p ∈ P, there exists a component kp ∈ {1, . . . , r} such that the Dirichlet
series associated to the arithmetical function fp,k,r is given by

fp,k,r(s) = fp,k(s) =
∞∑

n=1

fp,k,r(n)
ns

=
1(

1 − a1
ps

)
· · ·

(
1 − am

ps

) ,

for some m ∈ N and nonzero complex numbers a1, . . . , am. Therefore, there exists
a component k ∈ {1, . . . , r} and an infinite subset Pk ⊆ P of prime numbers p such
that the corresponding values kp are the same and equal k.

Fix such an integer k and a prime number p in the subset Pk. Let F (t) be defined
by F (t) = Fp,k,r(t) = 1

(1−a1t)···(1−amt) . Then, we see that fp,k,r(s) = F (p−s). Let
ψk ∈ A1 be the function defined by ψk(n) = ψ(1, . . . , 1, n, 1, . . . , 1) for all n ≥ 1,
where n occurs at the k-th component of the tuple (1, . . . , 1, n, 1, . . . , 1) on the right
side.

Let C(t) denote, as usual, the field of rational functions in t over C, and R′(t)
the derivative of R(t) ∈ C(t) as a rational function. Define Γ : C(t) → C(t) by
Γ(R(t)) = ψk(p)tR′(t), for R(t) ∈ C(t).

Also define
f
′
p,k,r(s) = f

′
p,k(s) = (Γ(Fp,k,r(t)))(p−s),

and inductively f
(l)

p,k,r(s) = f
(l)

p,k(s) = (Γ(l)(Fp,k,r(t)))(p−s) for any positive integer
l, where Γ(l) denotes the composition of Γ with itself l times.

Now let G(t) = Gp,k,r(t) = 1
Fp,k,r(t) . Then, we find that Gp,k,r(t) is a polyno-

mial Gp,k,r(t) = αpt
m + · · · with leading coefficient αp = (−1)ma1 · · · am, and its

derivative is given by G′
p,k,r(t) = mαpt

m−1 + · · · .
Next, define inductively B0 = B(p,k,r),0 = 1 and

Bn+1(t) = B(p,k,r),n+1(t) = t
(
Gp,k,r(t)B′

n(t) − (n + 1)G′
p,k,r(t)Bn(t)

)
.

We claim that

Γn(Fp,k,r(t)) =
Bn(t)

(G(t))n+1

=
Bn(t)

(1 − a1t)n+1 · · · (1 − amt)n+1
.
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To prove this claim, first notice that Γ0(Fp,k,r(t)) = Fp,k,r = B0(t)
G(t) since B0 = 1.

Next, assume that n ≥ 1 and Γn(Fp,k,r(t)) = Bn(t)
(G(t))n+1 . Then,

Γn+1(Fp,k,r(t)) = Γ(Γn(Fp,k,r(t)))

= Γ
(

Bn(t)
(G(t))n+1

)

= t
b′n(t)G(t)n+1 − (n + 1)Bn(t)G(t)nu′(t)

G(t)2n+2

= t
b′n(t)G(t)− (n + 1)Bn(t)u′(t)

G(t)n+2
.

This completes the proof of the claim.
Observe that deg(Gp,k,r(t)) = m. Now we show inductively that Bn(t) is a

polynomial of degree deg(Bn(t)) = nm with leading coefficient (−1)nαn
pmnψk(p)

for all n ≥ 1. Clearly, B0(t) satisfies this claim. Assume that n ≥ 1, and Bn(t)
satisfies the claim. We would like to prove that Bn+1(t) satisfies the claim as
well; i.e., Bn+1(t) is a polynomial of degree deg(Bn+1(t)) = (n + 1)m with leading
coefficient (−1)n+1αn+1

p mn+1ψk(p). Since

Bn+1(t) = B(p,k,r),n+1(t) = t
(
Gp,k,r(t)B′

n(t) − (n + 1)G′
p,k,r(t)Bn(t)

)
,

its leading term can be written in the form

t(αpt
m)nm(−1)nαn

pmnψk(p)tnm−1 − t(αp(n + 1)mtm−1)(−1)nαn
p mnψk(p)tnm

= αpnm(−1)nαn
pmnψk(p)t(n+1)m − αp(n + 1)m(−1)nαn

pmnψk(p)t(n+1)m

= (−1)nαn+1
p mnψk(p)(nm − m(n + 1))t(n+1)m

= (−1)n+1αn+1
p mn+1ψk(p)t(n+1)m.

Hence the desired claim holds.
Now let i, j be nonnegative integers such that i �= j. We have that f

(i)

p,k(s) =

(Γ(i)(F (t)))(p−s) and f
(j)

p,k(s) = (Γ(j)(F (t)))(p−s). Let S denote a finite set of
pairs (u, v) of positive integers. Let P (X, Y ) ∈ C[X, Y ] and P (X, Y ) =∑

(u,v)∈S CuvX
uY v, where Cuv is a nonzero complex number for every (u, v) ∈ S.

Suppose that

(4.1) P (Di
ψ(f), Dj

ψ(f)) = 0.

By applying the homomorphism φp,k,r to both sides of equality (4.1), we find that
P (Di

ψ(f)p,k,r, D
j
ψ(f)p,k,r) = 0. This in turn gives us an equality between the cor-

responding Dirichlet series, namely,

(4.2) P (f
i

p,k(s), f
j

p,k(s)) = 0.

Thus, ∑
(u,v)∈S

Cuv

(
Bi(t)

(G(t))i+1

)u (
Bj(t)

(G(t))j+1

)v

= 0.

Let N = max(u,v)∈S{(i + 1)u + (j + 1)v}. We have that

(4.3)
∑

(u,v)∈S

CuvBi(t)uBj(t)v(G(t))N−(i+1)u−(j+1)v = 0.
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Note that

deg(Bi(t)uBj(t)v(G(t))N−(i+1)u−(j+1)v) = ium + vjm + (N−(i + 1)u−(j + 1)v)m

= m(N − u − v).

Let L = min(u,v)∈S{u + v}. Then equality (4.3) can be written as∑
(u,v)∈S
u+v=L

CuvBi(t)uBj(t)v(G(t))N−(i+1)u−(j+1)v

+
∑

(u,v)∈S
u+v>L

CuvBi(t)uBj(t)v(G(t))N−(i+1)u−(j+1)v = 0.

For f ∈ A1, consider the support of f given by supp(f) = {n ∈ N|f(n) �= 0}. By
abuse of notation, let us denote by Bi, Bj , and G the arithmetical functions whose
Dirichlet series are given respectively by Bi(p−s), Bj(p−s), and G(p−s). Note that
the support of the arithmetical function (Bu

i Bv
j GN−(i+1)u−(j+1)v) is a subset of

{1, p, p2, . . . , pm(N−L)}. So the arithmetical function corresponding to the second
sum in the above equation, that is, the function given by the sum∑

(u,v)∈S
u+v>L

CuvB
u
i Bv

j GN−(i+1)u−(j+1)v,

vanishes at pm(N−L). Since this must hold for infinitely many primes, we conclude
that the second sum in the equation above vanishes, and thus∑

(u,v)∈S
u+v=L

CuvBi(t)uBj(t)v(G(t))N−(i+1)u−(j+1)v = 0.

In this equation, the coefficient of tm(N−L) is∑
(u,v)∈S
u+v=L

Cuv((−ψk(p))iαi
pm

i)u((−ψk(p))jαj
pm

j)v(αp)N−(i+1)u−(j+1)v,

which equals ∑
(u,v)∈S
u+v=L

Cuv(−ψk(p))iu+jvαN−u−v
p miu+jv.

We rewrite this sum as ∑
(u,v)∈S
u+v=L

Cuv(−mψk(p))iu+jvαN−L
p .

Since the coefficient of tm(N−L) must equal zero, we have that∑
(u,v)∈S
u+v=L

Cuv(−mψk(p))iu+jvαN−L
p = 0.

But, αp �= 0, and so we must have

(4.4)
∑

(u,v)∈S
u+v=L

Cuv(−mψk(p))iu+jv = 0.
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By our assumption on ψ and our observation on the set Pk of prime numbers
at the beginning of this section, it follows that there exist infinitely many distinct
values ψk(p) for primes in Pk. Each of these values ψk(p) must satisfy (4.4), which
is not possible. This completes the proof of Theorem 1.

Proof of Corollary 1. Let f and ψ be as in the statement of Corollary 1. Let
Q ∈ C[f ] be such that Dψ(Q) ∈ C[f ]. Since for any c ∈ C and n ∈ N, Dψ(cfn) =
cnfn−1Dψ(f), Dψ(Q) equals Dψ(f) times a polynomial in f . But, f and Dψ(f)
being algebraically independent, the only multiple of Dψ(f) inside C[f, Dψ(f)]
which belongs to C[f ] is zero, and this proves the corollary. �
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