
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 137, Number 4, April 2009, Pages 1389–1395
S 0002-9939(08)09633-0
Article electronically published on July 31, 2008

PIECEWISE CONTRACTIONS
ARE ASYMPTOTICALLY PERIODIC

HENK BRUIN AND JONATHAN H. B. DEANE

(Communicated by Jane M. Hawkins)

Abstract. We show that, given a finite partition of the plane C such that
the map G acts as a linear contraction on each part, for almost every choice
of parameters every orbit of G is (asymptotically) periodic.

1. Introduction

Piecewise isometries are a class of dynamical systems which exhibit complicated
behaviour without being chaotic in the classical sense; they have zero Lyapunov
exponents, their topological entropy is zero [5], and they usually have islands of
quasi-periodic motion. However, they also tend to have ‘exceptional sets’ on which
the dynamical behaviour is of a fascinating complexity. Two well-known examples
of piecewise isometries are (i) the class of piecewise affine maps of the torus, stud-
ied for example in [1, 2, 6] and (ii) the ‘Goetz map’ [10]. The latter consists of
piecewise rotations of the positive and negative half planes around different centres
of rotation. For angles satisfying specific number-theoretical properties, both ‘toral
maps’ and Goetz maps can be understood in terms of substitution shifts [1, 4, 12],
but otherwise the dynamics remain mostly not understood.

Piecewise isometries, including those mentioned above, appear in many applica-
tions, for instance, as descriptions of at least three electronic circuits [2, 6, 8], and
also in relation to impact oscillators, as first return maps of polygonal billiards and
in queueing theory [13]. In two of the three electronic circuits alluded to, the (not
realistic) assumption of zero dissipation has been made; allowing nonzero dissipa-
tion forces one to consider piecewise contractions instead of piecewise isometries,
and it is this that motivates the present work.

Whereas in piecewise isometries, the discontinuities are responsible for compli-
cated behaviour, we show in this paper that for typical piecewise contractions, the
contracting behaviour dominates the complexity introduced by discontinuities, so
that we only see (asymptotic) periodic motion. This is illustrated by a ‘contracting
Goetz map’ in Figure 1. When the Goetz map has a contraction factor λ < 1, we
are left with only finitely many preimages of pieces of the discontinuity line in a
finite area. In fact, for sufficiently small λ, it has been shown in [9] that every point
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Figure 1. Approximations to the exceptional set for the Goetz
map with rotation angle 0.7 radians and λ = 0.9 (left) and λ = 1
(right). The rotation angle and contraction factor apply to both
partitions. The centres of rotation, shown as stars, are w1 = −1 +
2i, w2 = 1 and the left/right-hand half planes are rotated about
w2, w1 respectively.

is attracted to a single periodic orbit. The case of λ < 1 is to be contrasted with
the same mapping with λ = 1, also shown in Figure 1.

In the present paper, we assume that {Xk}K
k=1 is a finite partition of C such that

for each k, G|Xk
is an affine map contracting distances. By this we mean that G|Xk

extends to an affine contraction on C with a fixed point wk ∈ C. (Note that wk

need not belong to Xk.) Let w = {w1, . . . , wK} ∈ C
K and λ = {λ1, . . . , λK} ∈ D

K ,
where λk ∈ D are contraction factors and D is the open unit disc in C.

Thus we arrive at a piecewise continuous map G : C → C defined as

(1) G(z) := Gk(z) = λkz + (1 − λk)wk if z ∈ Xk.

Lemma 1. There exists an R such that the disc BR = {|z| ≤ R} is forward
invariant, and for every z there is an n such that Gn(z) ∈ BR.

Proof. Let λmax = maxk |λk| and wmax = maxk |wk|. Then it is straightforward to
show that taking R = 2wmax/(1 − λmax) satisfies the lemma. �

Let S =
⋃

k ∂Xk ∩ BR; by definition of the partition, S consists of finitely
many curves, which we assume to be rectifiable; i.e., they have finite length (finite
one-dimensional Hausdorff measure). In what follows, it is unimportant how G is
defined on S.

The exceptional set E is defined as

En =
⋃

0≤i≤n

G−i(S) ∩ BR and E =
⋃
n≥0

En.

Each En consists of a finite set of rectifiable arcs.

Theorem 2. For all λ ∈ DK and Lebesgue a.e. w ∈ CK , there exists a finite N
such that E = EN .
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Corollary 3. For all λ ∈ DK and Lebesgue a.e. w ∈ CK , G has a finite number of
attracting periodic orbits, and every point is attracted to one of them.

Remark. Not all piecewise contractions have asymptotic periodic behaviour. Simple
examples occur in the family fa : [0, 1) → [0, 1), f(x) = λx + a (mod 1), for a
fixed λ ∈ (0, 1) and parameter a ∈ [0, 1). The rotation number ρ(fa) depends
continuously on a, and is not constant. In fact, the point 0 has period one for a = 0
and two for a = 1/(1 + λ), so ρ(f0) = 0 < 1

2 = ρ(f1/(1+λ)). By continuity, if we
vary a, we will obtain irrational rotation numbers, and in such a case, no periodic
orbits exist, and the asymptotic dynamics is an irrational rotation on a Cantor set.

Most applications of piecewise contractions that we are familiar with are in the
plane. Theorem 2 has higher-dimensional generalisations, where (1) is replaced by
e.g.

Gk(x) = Λkx + (I − Λk)wk if x ∈ Xk

for regions Xk ⊂ R
d and linear contractions Λk : R

d → R
d translated over wk ∈ R

d.
However, since the geometry of the boundaries ∂Xk and the possible eccentricities
of Λk create technicalities that only obscure the main idea, we prefer to deal only
with the planar case in this paper.

2. Proof of Theorem 2

Define the itinerary of z as a sequence e(z) = e0e1 · · · ∈ {1, . . . , K}N0 (N0 = N∪
{0}), where en = k if Gn(z) ∈ Xk. Let In be a collection of strings in {1, . . . , K}n

to be specified later, but satisfying the properties:
• σ(In) ⊂ In−1, where σ denotes the left shift,
• {e0(z) . . . en−1(z) : z ∈ BR} ⊂ In.

Let I =
⋃

n In. Define a multivalued image of z by

G̃n(z) := {Gen−1 ◦ · · · ◦ Ge0(z) : e0 . . . en−1 ∈ In}.
The omega-limit set is the set of accumulation points of an orbit, i.e., ω(z) =⋂

m

⋃
n≥m Gn(z). Let us define the multivalued omega-limit set analogously:

ω̃(z) =
⋂
m

⋃
n≥m

G̃n(z).

Lemma 4. For every z ∈ BR, ω(z) ⊂ ω̃(0).

Proof. If y ∈ ω(z), then there is a sequence (ni)i∈N such that Gni(z) → y. Take
xi ∈ Ini

obtained as Geni−1 ◦ Geni−2 ◦ · · · ◦ Ge0(0), where e = e(z) is the itinerary
of z. Since |Gni(z) − xi| ≤ 2Rλni

max, we have xni
→ y and the lemma follows. �

Let Sε be an ε-neighbourhood of S.

Lemma 5. For all λ ∈ DK and Lebesgue a.e. w ∈ CK , the following holds: for
every L ∈ N, there exists ε > 0 and a neighbourhood U � w such that for every x ∈ S
and w′ ∈ U , there is at most one integer r1 ≤ L such that Sε ∩ Gr1(Bε(x)) 	= ∅.

Proof. Suppose first that the conclusion fails for w. Then for every m ∈ N, there
is xm ∈ S and r1 < r2 ≤ L such that for ε = 1/m, Sε ∩Gri(Bε(x)) 	= ∅, i ∈ {1, 2}.
Since S is compact, and by passing to a subsequence if necessary, we can say that
xm → x ∈ S and there is a pair r1 < r2 ≤ L such that Gri(x) ∈ S for i ∈ {1, 2}.
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This is a condition that happens with positive co-dimension, so for Lebesgue
a.e. w, it will not occur. Finally, because G depends continuously on w, and by
decreasing ε if necessary, there is a neighbourhood U of w on which the conclusion
remains true on U . �

Lemma 6. If ω̃(0) ∩ S = ∅, then there exists N ∈ N such that EN = E .

Proof. Since ω̃(0)∩S = ∅, there is N ∈ N and ε > 0 such that
⋃

n≥N G̃n(0)∩Sε =
∅. Additionally, assume that λN

maxR < ε.
Let A be any arc in En \En−1, so Gn(A) ⊂ S. Moreover, there is x ∈ G̃n(0) such

that d(x, Gn(A)) < λn
maxR. Yet, if n ≥ N , then λn

maxR < ε, and no such arc A can
exist. This proves the lemma. �

Lemma 7. Suppose that I =
⋃

n In has the following property: there is an N
such that for n ≥ N and every e ∈ In, there are at most L0 strings in In+L

that coincide with e on the first n coordinates. Then the Hausdorff dimension
dimH(ω̃(0)) ≤ log L0

−L log λmax
.

Proof. Let an = #G̃n(0). By the condition in the lemma, an+L ≤ L0an for every
n ≥ N , so aN+iL ≤ KNLi

0.
Take δ > log L0

−L log λmax
, so λLδ

maxL0 < 1. Let ε > 0 be arbitrary, and i so large that
2Rλm

max < ε, where m = N + iL. We will argue that ω̃(0) is contained in the union
of closed discs Dx of radius 2Rλm

max centred at the points x ∈ G̃m(0).
Indeed, let y ∈ ω̃(0), and let yk ∈ G̃nk(0) be such that yk → y. By passing to a

subsequence, we may assume that

enk−m(yk) . . . enk−1(yk) = d0 . . . dm−1;

i.e., the itinerary of yk ends in the same m coordinates for all sufficiently large m.
Since σ(In) ⊂ In−1 for all n, it follows that d0 . . . dm−1 ⊂ Im, and there exists
x = Gdm−1 ◦ · · · ◦Gd0(0) ∈ G̃m(0). Therefore |x− yk| ≤ λm

maxR for all k, and hence
y ∈ Dx.

Now sum over all such discs to get∑
x∈G̃m(0)

diam(Dx)δ =
∑

x∈G̃m(0)

(2R)δλmδ
max ≤ KNλNδ

maxL
i
0(2R)δλLδi

max ≤ KNλNδ
max(2R)δ

independently of m, where the last inequality follows from the choice of δ above.
Hence we have found a cover of ω̃(0) with discs Dx of diameter < ε and with∑

x diam(Dx)δ < ∞. Since this holds for any ε and δ > log L0
−L log λmax

is arbitrary, the
Hausdorff dimension dimH(ω̃(0)) ≤ log L0

−L log λmax
as required. �

Remark. The idea of the proof of Theorem 2 is that since dimH(ω̃(0)) < 1, ω̃(0)
should be disjoint from S for each λ and Lebesgue a.e. w ∈ CK and ‘generically
parametrised’ families of piecewise contractions. In the proof below, we use linearity
in w to show that for a fixed λ ∈ DK , the family {Gw}w∈CK is indeed ‘generically
parametrised’; however, the result should hold for piecewise contractions that are
nonlinear in w as well.

Proof of Theorem 2. We can assume without loss of generality that 0 /∈ S, so η :=
inf{|s| : s ∈ S} > 0. Fix λ ∈ DK , take w ∈ CK arbitrary so that Lemma 5 holds,
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and let ε > 0 and neighbourhood U be taken from that lemma; U can be arbitrarily
small. Recall that wmax = maxk{|wk|} and λmax = maxk{|λk|}. Let

w∗ := 1 + sup{|w′
max| : w′ ∈ U}.

Then for R := 2w∗/(1−λmax), the disc BR satisfies Lemma 1 for every (w′, λ′) ∈ U .
Let L0 := K2 and take L so large that log L0/(−L log λmax) < 1. Now take

N ∈ N such that 2RλN
max < ε. If n ≥ N and Y ⊂ BR is a neighbourhood on which

Gn is continuous, then diam(Gn(Y )) < ε, so by Lemma 5, each x ∈ Gn(Y ) can
visit Sε at most twice in the next L iterates. On such a visit, say the ith, Gn+i(Y )
can intersect all K regions Xk, but as this happens at most twice, there are at most
K2 subregions of Y on which Gn+L is continuous. This is true for all w′ ∈ U .

It follows that at most bn := KNL
(n−N)/L
0 discs of radius εn := 2Rλn

max are
sufficient to cover ω(0), uniformly over (w′, λ) ∈ U . Let In be the collection of all
possible itineraries of points x ∈ BR and w′ ∈ U . For each e ∈ In, let

He,n(w′) := Gen−1 ◦ · · · ◦ Ge0(0)

= λen−1λen−2 · · ·λe1(1 − λe0)w
′
e0

+ · · ·
· · · + λen−1(1 − λen−2)w

′
en−2

+ (1 − λen−1)w
′
en−1

.

Since this expression is linear in w, the partial derivative ∂He,n

∂wk
is the sum of all

coefficients of terms which contain wk. Thus

De,n := max
k∈{1,...,K}

∣∣∣∣∂He,n(w′)
∂wk

∣∣∣∣
is independent of w′. Take

A := {w′ ∈ C
K : ω̃(0) ∩ S 	= ∅}

⊂ {w′ ∈ C
K :

⋃
e∈In

Bεn
(He,n(w′)) ∩ S 	= ∅}.

We show that A has no Lebesgue density points, whence Leb(A) = 0.
Let lS be the length of S, i.e., the sum of the lengths of all rectifiable curves that

comprise S ∩ BR. Next take n ≥ N such that

bnw∗εnlS <
η

8
Leb(U).

Each of the at most bn discs Bεn
(He,n) needed to cover ω̃(0) moves slightly as w′

moves in U . For each such disc, i.e., for each e ∈ In, there are two cases.
(i) If De,n < η/2w∗, then

sup{|He,n(w′)| : w′ ∈ U} ≤ w∗De,n < η/2,

so Bεn
(He,n)∩S = ∅ for each w′ ∈ U . In this case, the disc Bεn

(He,n) is ‘harmless’;
it doesn’t contribute to the set A.
(ii) If De,n ≥ η/(2w∗), then we can take k ∈ {1, . . . , K} such that

∣∣∣∂He,n

∂wk

∣∣∣ ≥
η/(2w∗). The εn-neighbourhood Sεn

has area ≤ 2εnlS, and the disc Bεn
(He,n(w′))

intersects S only if its centre He,n(w′, λ′) belongs to Sεn
. Thus if we fix the other

wi and all λi, then

Leb({w′
k ∈ C : w′ ∈ U, Bεn

(He,n(w′)) ∩ S 	= ∅}) ≤ 2lSεn

Dn
≤ 4w∗lSεn

η
.
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Integrating over the remaining w′
i (using Fubini’s theorem) gives

Leb({w′ ∈ U : Bεn
(He,n(w′)) ∩ S 	= ∅}) ≤ 4w∗lSεn

η
.

Summing over all the bn discs, we obtain

Leb({w′ ∈ U :
⋃

e∈In

Bεn
(He,n(w′)) ∩ S 	= ∅}) ≤ 4w∗lSbnεn

η
<

1
2
Leb(U).

Since this holds for all sufficiently small neighbourhoods U of w (adjusting n if
necessary), it follows that w cannot be a Lebesgue density point of A. Since w was
arbitrary in a set of full measure, Leb(A) = 0, as required.

Next we claim that if ω(z)∩ S = ∅, then z is asymptotically periodic. To prove
this, let y ∈ ω(z), and let the sequence (nk)k∈N be such that Gnk(z) =: zk → y.
We have ω(y)∩S = ∅, so there is δ > 0 such that Gn(Bδ(y))∩S = ∅ for all n ≥ 0.
Take k < k′ such that zk, zk′ ∈ Bδ/2(y) and λ

nk′−nk
max < 1

4 . Then, since

zk′ ∈ Gnk′−nk(Bδ(x)) ⊂ B
2δλ

n
k′−nk

max
(yk′) ⊂ Bδ(x),

the disc Bδ(y) is mapped continuously into itself under Gnk′−nk . So it contains a
single attracting periodic point attracting the orbit of z.

Finally, apply Lemma 6 to complete the proof. �

Proof of Corollary 3. On each component Y of BR \ EN , Gn is continuous and
contracting for all n ≥ 0, and therefore Y contains at most one periodic point pY .
If it does contain such a point, then every point in Y is asymptotic to orb(pY ). Since
EN consists of a finite number of arcs, there are finitely many periodic orbits, and
every point in BR, and hence every point in C, is asymptotic to one of them. �
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