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Abstract. Let W be an infinite irreducible Coxeter group with (s1, . . . , sn)
the simple generators. We give a short proof that the word s1s2 · · · sns1s2 · · ·
sn · · · s1s2 · · · sn is reduced for any number of repetitions of s1s2 · · · sn. This
result was proved for simply laced, crystallographic groups by Kleiner and
Pelley using methods from the theory of quiver representations. Our proof
uses only basic facts about Coxeter groups and the geometry of root systems.
We also prove that, in finite Coxeter groups, there is a reduced word for w0

which is obtained from the semi-infinite word s1s2 · · · sns1s2 · · · sn · · · by in-
terchanging commuting elements and taking a prefix.

Let W be a Coxeter group with S the generating set of simple reflections. An
element c ∈ W of the form s1 · · · sn, with s1, . . . , sn some ordering of the elements of
S, is called a Coxeter element. It is a result of Howlett [4] that, if W is infinite, then
any Coxeter element has infinite order. Our main result is a dramatic strengthening
of this result:

Theorem 1. Let W be an infinite, irreducible Coxeter group and let (s1, . . . , sn) be
any ordering of the simple generators. Then the word s1 · · · sns1 · · · sn · · · s1 · · · sn

is reduced for any number of repetitions of s1 · · · sn.

There are several earlier results which are special cases of Theorem 1. In [9],
it is shown that, in each classical affine group, there is an ordering (s1, . . . , sn) of
the simple generators such that the word s1 · · · sns1 · · · sn · · · s1 · · · sn is reduced for
any number of repetitions of s1 · · · sn.1 Fomin and Zelevinsky [2, Corollary 9.6]
proved a version of Theorem 1 for Coxeter groups with bipartite diagrams; they
show that, if S = I � J is a partition of S into two sets so that all the ele-
ments in each set commute, and if W is irreducible and infinite, then the word∏

i∈I si

∏
j∈J sj

∏
i∈I si

∏
j∈J sj · · ·

∏
i∈I si

∏
j∈J sj is reduced for any number of

repetitions of
∏

i∈I si

∏
j∈J sj . Krammer [8] defines an element w of W to be

straight if �(wm) = |m|�(w) for all integers m. In his terminology, w is straight if
and only if the identity element is contained in the axis of w. This gives a finite
procedure to check whether any particular w is straight, but it is not clear how
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1More specifically, the authors of [9] define four properties of a sequence r1, r2, . . . of simple

reflections; property (IV) is that the word r1r2 · · · rN is reduced for any N . For each classical
affine type, they exhibit a sequence of reflections which satisfies their properties and the ordering
is periodic in each case.
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Krammer’s methods could be used to show that infinitely many elements, in differ-
ent Coxeter groups, are straight. It is trivial to extend any of these results to the
case where W ∼= W1 × W2 × · · · × Wr, with each Wi a Coxeter group meeting the
above conditions.

Most relevant to us is recent work of Kleiner and Pelley [5], who show that if W
is a simply laced, crystallographic Coxeter group which is irreducible and infinite,
then the word s1 · · · sns1 · · · sn · · · s1 · · · sn is reduced for any number of repetitions
of s1 · · · sn. Their argument relies heavily on the theory of quiver representations,
and on the work of Kleiner and Tyler [6]. Our proof is inspired by that of Kleiner
and Pelley, but we strip out the quiver theory and simplify several arguments. We
also eliminate the need for the assumptions that W is crystallographic and simply
laced.

The essential property of infinite Coxeter groups, in this proof, is that they have
no maximal element. Therefore, it is reasonable to guess that our methods can
be used to prove some property of the maximal element, w0, in a finite Coxeter
group. One guess might be that we could prove that there is some prefix of the semi-
infinite word s1s2 · · · sns1s2 · · · sn · · · which forms a reduced word for w0, so that the
partial products of this word climb all the way to the top of W before becoming
nonreduced. This isn’t quite true, but the following variant is: It is possible to
interchange commuting elements of s1s2 · · · sns1s2 · · · sn · · · so that a reduced word
for w0 appears as a prefix. For example, let W be the symmetric group on four
elements and let s1 = (12), s2 = (23) and s3 = (34). Then we can swap the second
occurrence of s3 with the third occurrence of s1 in s1s2s3s1s2s3s1s2s3 · · · , and the
reduced word s1s2s3s1s2s1 for w0 will appear as a prefix. We prove that this is
always possible in Corollary 4.1.

Our primary technical tool is the introduction of a skew-symmetric form ωc on
the root space. In [13], Nathan Reading and the author use this form to generalize
Reading’s results on sortable elements to infinite Coxeter groups.

1. Conventions regarding Coxeter groups

Let W be a Coxeter group of rank n. That means that W is generated by
s1, . . . , sn, subject to the relations s2

i = 1 and (sisj)mij = 1 for i �= j, where
2 ≤ mij = mji ≤ ∞. Note that the mij may be any integers; we do not assume
that W is crystallographic. The Coxeter diagram of W is the graph Γ whose
vertices are labeled 1, . . . , n and where there is an edge between i and j if mij �= 2.
The group W is called irreducible if Γ is connected. An element of W which is
conjugate to one of the elements of S is called a reflection ; the elements of S
are called simple reflections. An element of the form sx1 · · · sxn

of W , for some
permutation x1 · · ·xn of {1, . . . , n}, is called a Coxeter element. Given such a
permutation, direct Γ such that xj → xi if i < j. Two permutations yield the same
Coxeter element if and only if they give rise to the same orientation of Γ, so in this
way we may identify Coxeter elements and acyclic orientations of Γ.2

Let V be the n-dimensional real vector space with basis α1, . . . , αn and equip
V with the symmetric bilinear form B such that B(αi, αi) = 2 and B(αi, αj) =
−2 cos(π/mij) for i �= j. Then W acts on V by si : v �→ v − B(v, αi)αi, and this
action preserves the bilinear form B. The elements of V of the form wαi are called

2This identification between Coxeter elements and acyclic orientations of Γ is the one used
in [5]; it is the opposite of the one used in [10] and [11].
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roots.3 Every root is either in the positive real span of the αi, in which case it is
called a positive root, or in the positive real span of the −αi, in which case it is
called a negative root. The positive roots are in bijection with the reflections, via
wαs ↔ wsw−1. We write αt for the positive root associated to the reflection t. We
have wαt = ±αwtw−1 .

For any w ∈ W , the set of inversions of w is defined to be the set of reflections t
such that w−1αt is a negative root. If we write w as sx1 · · · sxN

, then the inversions
of w are the reflections that occur an odd number of times in the sequence sx1 ,
sx1sx2sx1 , sx1sx2sx3sx2sx1 , . . . , sx1sx2 · · · sxn

· · · sx2sx1 . The length of w, written
�(w), is the length of the shortest expression for w as a product of the simple
generators and a product which achieves this minimal length is called reduced. If
sx1 · · · sxN

is reduced, then sx1 · · · sxi−1αxi
= αsx1 ···sxi−1sxi

sxi−1 ···sx1
(as opposed

to −αsx1 ···sxi−1sxi
sxi−1 ···sx1

). Also, if sx2 · · · sxN
is reduced, then sx1sx2 · · · sxN

is
reduced if and only if sx1 is not an inversion of sx2 · · · sxN

.
The previous three paragraphs are very well known; a good reference for this

material and far more concerning Coxeter groups is [1], particularly Chapters 1
and 4. We now describe one additional combinatorial tool and one geometric tool.
For i between 1 and n, define the map πi : W → W by πi(w) = siw if �(siw) > �(w)
and πi(w) = w otherwise. This is sometimes known as the degenerate Hecke action.
The condition that �(siw) > �(w) is equivalent to the condition that si is not an
inversion of w. If sx1 · · · sxN

is reduced, then πx1 · · ·πxN
e = sx1 · · · sxN

. Also, if si

and sj commute, so do πi and πj . We call πx1 · · ·πxN
e the Demazure product of

x1 · · ·xn. For a quick introduction to the properties of the Demazure product, see
Section 3 of [7].

Let c = sx1 . . . sxn
be a Coxeter element of W . A simple reflection s is called

initial in c if it is the first letter of some reduced word for c and is called final
in c if it is the last letter of some reduced word for c. So sx1 is initial in c and sxn

is final in c. We define a skew symmetric bilinear form ωc on V by ωc(αxi
, αxj

) =
B(αxi

, αxj
) for i < j. (By skew-symmetry, ωc(αxi

, αxj
) = −B(αxi

, αxj
) for i > j

and ωc(αi, αi) = 0.) It is easy to check that ωc does not depend on the choice of a
reduced word for c.

Proposition 1.1. With the above notation:

(1) For all v and w ∈ V , we have ωsx1csx1
(sx1v, sx1w) = ωc(v, w).

(2) For all positive roots αt, ωc(αsx1
, αt) ≤ 0, with equality only if sx1 and t

commute.
(3) For all positive roots αt, ωc(αt, αsxn

) ≤ 0, with equality only if sxn
and t

commute.

Proof. We first check property (1). Let c = s1 · · · sn with s = s1. We recall the
formula sv = v − B(αs, v)αs. It is enough to check property (1) in the case that
v and w are simple roots, say v = αsi

and w = αsj
with i < j. We consider two

cases.

3Those interested in Kac-Moody algebras and quiver theory would call these vectors real roots;
those from a Coxeter-theoretic background would simply call them roots. We follow the latter
convention.
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Case 1 (i = 1). Then

ωscs(sαs, sαsj
) = ωscs(−αs, αsj

− B(αs, αsj
)αs)

= −ωscs(αs, αsj
) = B(αs, αsj

) = ωc(αs, αsj
).

We used that s is final in scs and initial in c to deduce the signs in the last two
equalities.

Case 2 (i > 1). Then

ωscs(sαsi
, sαsj

) = ωscs(αsi
− B(αs, αsi

)αs, αsj
− B(αs, αsj

)αs)

= ωscs(αsi
, αsj

) − B(αs, αsi
)ωscs(αs, αsj

) − B(αs, αsj
)ωscs(αsi

, αs).

Now, s is final in scs, so ωscs(αs, αsj
) = −B(αs, αsj

) and ωscs(αsi
, αs) = B(αsi

, αs).
Thus,

− B(αs, αsi
)ωscs(αs, αsj

) − B(αs, αsj
)ωscs(αsi

, αs)

= B(αs, αsi
)B(αs, αsj

) − B(αs, αsj
)B(αsi

, αs) = 0

and we deduce that

ωscs(sαsi
, sαsj

) = ωscs(αsi
, αsj

) = B(αsi
, αsj

) = ωc(αsi
, αsj

).

We have used that si comes before sj in a reduced word for scs, as well as in a
reduced word for c, to deduce the signs of the last two equalities. This concludes
the proof of property (1).

We now prove property (2). Let αt =
∑

r∈S arαr. Since αt is a positive root,
all of the coefficients ar are nonnegative. Then, as s is initial in c, we have
ωc(αs, αt) =

∑
r∈S\{s} arB(αs, αr). Every term in this sum is nonpositive, so

ωc(αs, αt) is nonpositive, which is the first half of the claim. Now, suppose that
ωc(αs, αt) is zero. Then ar is zero whenever r and s don’t commute. Let J be the
set of simple reflections which commute with s. So the root αt is in the span of
the set {αr}r∈J . This implies that the reflection t is in WJ , which is the subgroup
of W generated by J . (Proof: Let p be a point in V ∗, the dual vector space to V ,
such that 〈p, αs〉 = 0 for s ∈ J and 〈p, αs〉 ≥ 0 for s �∈ J . Then the contragredient
action of t on V ∗ fixes p. By [1, Lemma 4.5.1], the stabilizer of p is WJ .) Since
every generator of WJ commutes with s, so does t. This completes the proof of
property (2); the proof of property (3) is precisely analogous. �

2. Admissible sequences

This section essentially recapitulates (part of) Section 2 of [5], and we will try to
repeat the terminology from [5] as much as possible. Let c be a Coxeter element of
W . A sequence x1, x2, . . . , xN of elements of {1, 2, . . . , n} is called c-admissible if
sx1 is initial in c, sx2 is initial in sx1csx1 , sx3 is initial in sx2sx1csx1sx2 and so forth.
This definition can be understood in a purely graph-theoretic mannner, viewing c
as an orientation of Γ. The condition that sx is initial in c means that x is a sink
of (Γ, c) and changing c to sxcsx means reversing all edges incident to x, so that x
changes from a sink to a source.

We put an equivalence relation on the set of admissible sequences by setting two
sequences to be equivalent if they differ only by interchanging the order of non-
adjacent vertices. Write [u] for the equivalence class of u. Let S denote the set
of admissible sequences modulo this equivalence relation. When it is necessary to
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emphasize the dependence on c, we will write Sc and say that elements of Sc are
c-admissible. The following obvious observation will be of repeated importance:

Proposition 2.1. If s and t are two vertices of Γ, connected by an edge which is
c-oriented from t to s, then the occurrences of s and t in any c-admissible sequence
must alternate, with s coming first.

We can now state a result which immediately implies Theorem 1.

Theorem 2. Let W be an infinite, irreducible Coxeter group and let c be a Coxeter
element. Let x1x2 . . . xN be any c-admissible sequence. Then sx1 · · · sxN

is reduced.

The rest of the paper is devoted to the proof of Theorem 2.
We need a small combinatorial lemma. For u = [x1 . . . xN ] ∈ S, let φ(u)x be the

number of occurrences of x in x1x2 · · ·xN . So φ(u) is an integer-valued function on
the vertices of Γ. We put the structure of a poset on S by setting u � v if one can
choose representatives u1 . . . uM and v1 . . . vN for the equivalence classes u and v
such that M ≤ N and ui = vi for i ≤ M .

Proposition 2.2. We have u1 . . . uM � v1 . . . vN if and only if φ(u1 . . . uM )x ≤
φ(v1 . . . vN )x for every vertex x of Γ.

This is part of [5, Proposition 3.2]; we provide a short proof.

Proof. The “only if” direction is obvious; we prove the “if” direction by induction
on M . The base case M = 0 is obvious. Note that u1 is necessarily a sink of Γ. Since
φ(u1 . . . uM )u1 ≤ φ(v1 . . . vN )u1 , the vertex u1 must occur somewhere in v1 . . . vN .
Let vr be the first appearance of u1. Let w be any vertex neighboring u1; we claim
that w does not occur among v1, v2, . . . , vr−1. This is because, as noted above,
the occurrences of u1 and w in v1 . . . vN must alternate, with u1 appearing first.
So v1 . . . vN is equivalent to vrv1v2 . . . vr−1vr+1 . . . vN . By induction, u2u3 . . . uM �
v1v2 . . . vr−1vr+1 . . . vN in Ssu1csu1

, so u1 . . . uM � v1 . . . vN in Sc. �
Remark. Kleiner and Pelley characterize the image of φ in Z

n and use it to show
that the poset S is a distributive semi-lattice. Hohlweg, Lange, and Thomas, in
[3], study the lower interval of reduced words in S, in the case that W is finite, and
show that it is a distributive lattice as well. Hopefully, these lattices are related to
the appearance of lattice theory in Nathan Reading’s and the author’s work. (See
[10], [11], [12].)

3. The crucial lemmas

Now, let W be a Coxeter group and Γ its Dynkin diagram. As discussed above,
there is a bijection between Coxeter elements of W and acyclic orientations of Γ,
and we will feel free to use the same symbol to refer both to an orientation and the
corresponding Coxeter element. In this section, we will establish the following.

Proposition 3.1. Let x1 · · ·xN be of minimal length among all c-admissible se-
quences with Demazure product w. Then the word sx1 · · · sxN

is reduced and w =
sx1 · · · sxN

.

Note that, at this point, we have not made any assumptions about W being
infinite or irreducible. That will come later, when we apply this result to prove
that particular words are reduced. The key technical trick of this note is contained
in the following lemma, which will be essential in the proof of Proposition 3.1.
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Lemma 3.2. Suppose that x1 . . . xN is c-admissible and sx1 . . . sxN
is a reduced

word of W . Let ti be the reflection sx1 · · · sxi−1sxi
sxi−1 · · · sx1 . Then ωc(αti

, αtj
) ≤

0 for i < j, and equality implies that ti and tj commute.

Proof. Our proof is by induction on i. If i = 1, then x1 is a sink of c and
the result is part (2) of Proposition 1.1. If i > 1, then, by induction, we have
ωsx1csx1

(αsx1 tisx1
, αsx1 tjsx1

) ≤ 0, with equality implying that sx1tisx1 and sx2tjsx2

commute. But, since sx1 · · · sxN
is reduced, we know that αsx1 tisx1

= sx1αti

and αsx1 tjsx1
= sx1αtj

. By part (1) of Proposition 1.1, we have ωc(αti
, αtj

) =
ωsx1csx1

(sx1αti
, sx1αtj

) ≤ 0 as desired. Moreover, ti and tj commute if and only if
sx1tisx1 and sx2tjsx2 do. �

We now begin the proof of Proposition 3.1. Our proof is by induction on N ; if
N = 1 the result is trivial. Let w and x1 · · ·xN be as in the statement of Proposi-
tion 3.1 with N > 1 and assume that the result is known, for all c, for all smaller
values of N . Abbreviate s = sx1 and w′ = πx2 · · ·πxN

e. We note that x2 · · ·xN

is of minimal length among scs-admissible sequences with Demazure product w′;
if y2 · · · yM were a shorter such sequence, then x1y2 · · · yM would be a shorter c-
admissible sequence with Demazure product w. So, by induction, sx2 · · · sxN

is
reduced and is equal to w′. The only way that sx1sx2 · · · sxN

might not be re-
duced then is if s is an inversion of w′ and w = w′. We adopt the notation ui

for sx2 · · · sxi−1sxi
sxi−1 · · · sx2 , where 2 ≤ i ≤ N , so the ui are the inversions of

sx2 · · · sxN
. Suppose, for the sake of contradiction, that s = ua and, thus, w = w′.

In this case, ssx2 · · · sxa−1sxa+1 · · · sxN
= w and the word ssx2 · · · sxa−1sxa+1 · · · sxN

is reduced.
Consider any b between a+1 and N . On the one hand, ωsx1csx1

(αua
, αub

) ≤ 0 by
Lemma 3.2. (Recall that x2 · · ·xN is reduced.) On the other hand, ua = sx1 and sx1

is the final letter in sx1csx1 , so ωsx1csx1
(αua

, αub
) ≥ 0 by part (3) of Proposition 1.1.

We deduce that, for all b with a + 1 ≤ b ≤ N , we have ωsx1csx1
(αua

, αub
) = 0 and,

by Lemma 3.2, uaub = ubua. Thus, we deduce that ua commutes with ub for all b
with a + 1 ≤ b ≤ N .

Write vb = sxa
· · · sxb−1sxb

sxb−1 · · · sxa
. Then sxa

= va commutes with vb for
all b with a + 1 ≤ b ≤ N . From the identity sxb

= vava+1 · · · vb · · · va+1va,
we conclude that sxa

commutes with sxb
for all b between a and N . But then

x1x2 · · ·xa−1xa+1 · · ·xN is c-admissible. We saw above that ssx2 · · · sxa−1sxa+1 · · ·
sxN

= w and the word ssx2 · · · sxa−1sxa+1 · · · sxN
is reduced, so x1x2 · · ·xa−1xa+1 · · ·

xN has Demazure product w. This contradicts our choice of x1x2 · · ·xa−1xaxa+1 · · ·
xN as the shortest c-admissible sequence with Demazure product w. This contra-
diction concludes the proof of Proposition 3.1.

4. Finishing the proof

Assume that W is infinite and irreducible; recall that the second assumption sim-
ply means that the Coxeter diagram Γ is connected. We now have a powerful tool
(Proposition 3.1) to prove that certain words in W are reduced. In this section, we
will apply this tool to prove that sx1 · · · sxN

is reduced for any c-admissible sequence
x1 · · ·xN . Consider the sequence uk = (π1π2 · · ·πn)ke. Clearly, the sequence �(u1),
�(u2), . . . is weakly increasing. We claim that in fact it is strictly increasing. If not,
there is some u = uk = uk+1 with π1u = π2u = · · · = πnu = u. But then si is
an inversion of u for every i from 1 to n. In an infinite Coxeter group, there is no
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element with this property. (In a finite Coxeter group, the only element with this
property is the maximal element w0.)

Therefore, �(uk) ≥ k. By Proposition 3.1, there is a c-admissible reduced word
for each uk; call this reduced word wk. We know that wk has length at least k. Let
z be the letter that occurs most often in wk; then φ(w)z ≥ k/n. (Recall the map
φ from Section 2.) Now we use that Γ is connected. Let δ be the diameter of the
graph Γ. If x and y are adjacent vertices of Γ, then x and y alternate within wk,
so |φ(wk)x − φ(wk)y| ≤ 1 and we deduce that φ(wk)x ≥ k/n − δ for any x. Let M
be the greatest number of times any letter occurs in x1 · · ·xN . Choosing k large
enough that k/n − δ ≥ M , we see that φ(wk)x ≥ φ(x1 · · ·xN )x for any x. So,
by Proposition 2.2, x1 · · ·xN is equivalent to a prefix of the reduced word wk. In
particular, sx1 · · · sxN

is reduced. This concludes the proof of Theorem 2 and hence
proves Theorem 1.

We note one variant of this argument.

Theorem 3. Let W be a finite Coxeter group. Then there is a c-admissible sequence
x1x2 · · ·xN such that sx1sx2 · · · sxN

is a reduced word for w0.

Proof. Define uk = (π1π2 · · ·πn)ke as before. We must have uk = w0 for k suffi-
ciently large. So there is a c-admissible sequence with Demazure product w0. By
Proposition 3.1, the shortest such c-admissible sequence gives a reduced word for
w0. �

In the introduction, because we lacked the terminology of admissible sequences,
we stated this result differently. The following corollary makes the connection.

Corollary 4.1. It is possible to interchange labels of commuting reflections in the
semi-infinite sequence c∞ := 12 · · ·n12 · · ·n · · · so that the c-admissible sequence
x1x2 · · ·xN from Theorem 3 becomes a prefix of the resulting semi-infinite word.

Proof. Let M be a positive integer which is larger than the number of times any
given letter occurs in the word x1x2 · · ·xN . Then, by Proposition 2.2, the word
x1x2 · · ·xN is equivalent to a prefix of (12 · · ·n)M . Adding additional letters to the
right of (12 · · ·n)M does not change this. �

Note that we can start with the semi-infinite word A of which x1x2 · · ·xN is a
prefix and undo all of the commutations of commuting generators, keeping track of
where the first N letters go. We thus obtain a subword of c∞ which gives a reduced
word for w0. Consider any generator si ∈ S. There is some integer k such that the
first k occurrences of i in w are in the prefix x1x2 · · ·xN , after which none of the
later occurrences of i in A lie in x1x2 · · ·xN . Without loss of generality, we may
assume that we never interchange i with itself while transforming A into c∞. Thus,
we have obtained a subword w0 of c∞ such that w0 is a reduced word for w0 and,
for each si ∈ S, there is some k such that the first k occurrences of i in c∞ lie in w0,
while all the later occurrences of i do not. In other words, w0 is c-sortable in the
sense of [10]. This gives an efficient proof of Corollary 4.4 of [10] without any case
by case analysis. The reduced word w0 plays an important role in [3]. Theorem 3,
and its proof, may be of use in finding better descriptions of w0.
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