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ABSTRACT. In this paper we present some results concerning bounded har-
monic 1-forms on manifolds of compact type. As a corollary we obtain a
rigidity result for the first cohomology group of locally isometric Riemannian
manifolds.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The classical De Rham-Hodge theory of harmonic forms on compact manifolds

establishes a link between the underlying topology of the manifold and its geo-
metric structure. The dimension of the spaces of harmonic forms is defined via
the Riemannian structure and it is shown to be equal to the corresponding Betti
number, which is a topological invariant. This is one of the first instances where
topological quantities are obtained from geometric quantities. The first and the
most celebrated example of this kind is the famous Gauss-Bonnet Theorem. In the
case of noncompact manifolds little is known about the spaces of harmonic forms. It
is most natural to ask whether in the noncompact case the dimensions of the spaces
of harmonic forms are finite dimensional and also if they relate to the topology of
the manifold. The study of the space of harmonic forms on noncompact manifolds
may be used for the study of compact quotients of these manifolds as in Theo-
rem 3.3l To be able to answer these questions one has to impose some additional
conditions on the growth of the forms and/or the geometry of the manifold. For
square-integrable forms classical results can be found in [I0], [6], [7], [I2], [I] and
[8]. In this paper we investigate the space of bounded harmonic 1-forms on certain
manifolds. By the classical Hopf Theorem we know that on a compact manifold
every harmonic function must be a constant. There are, however, numerous exam-
ples of noncompact manifolds which have the same property. A classical theorem
of Yau states that on a complete manifold with nonnegative Ricci curvature there
are no nonconstant, bounded harmonic functions. A more recent result is due to
Avellaneda and Lin [2].
Theorem 1.1. Let the operator L = szzl(8/8xi)(ai)j(x)6/6xj), d>1,reRY
with periodic coefficients be such that a; ; € Lip(R?) and A[¢]? < Z‘ij:l a; ;(x)&&;
<A YEP? for all € € RY, € RY, where the constant A € (0,1]. Then we have the
following characterization of solutions of the equation:
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(1) Lu(z) =0 (z € R?) such that

(2) liminfr— oo R7|lul|pe(aj<r) < C
for 3 > 0,C > 0: Let v, = (¥n=3) — (d;‘;fgl) form > 2 1y =1, 1y = d.
There exists a sequence of linearly independent functions {Qn ;(x) x € R% n>0,
1 < j <w,} satisfying LQy j(z) = 0 and |Qn ;(z)| < A, |z (An,; independent
of ), such that if u satisfies (1) and (2), then u(zx) = Z%io Z;;l Cn,j@n, () for
¢n,j € R (the Liowville property).

If a metric on R™ is the pull-back of a metric from the n-dimensional torus T"
it will be called periodic. If one defines the action

Z" x R™ — R"
in the standard way as
(1) (k1,kay ooy kn)(z1, 22, ooy ) = (1 + k1, 22 + Koy ooy T + ki),

then an equivalent definition is that such a metric is invariant by the action defined
in ().

An immediate consequence of Theorem [I.1] is

Corollary 1.2. Let g be a periodic metric on R™. If f is a bounded harmonic
function w.r.t. g, then f is a constant.

These examples motivate the following definition:

Definition 1.3. Let M be a complete Riemannian manifold. If on M there is no
nonconstant, bounded harmonic function, then M is said to be of compact type.

Before we state our main result we must make a definition.

Definition 1.4. Let ¢ : M — M be an isometry of the Riemannian manifold M.
We say ¢ is bounded iff

dy(z,6(x)) < Cy V€ M.

Let 81 (M) denote the dimension of the first De Rham cohomology group of the
manifold M.
Our main result is:

Theorem 1.5. Let M be a complete manifold of compact type with (M) = 0.
If a is a closed, bounded and harmonic 1-form on M, then « is left invariant by
any bounded isometry of M. In addition, if we assume that there is a group G of
bounded isometries which acts freely on M such that the quotient M /G is compact,
then it follows that « is coclosed as well.

If M is an n-dimensional Riemannian manifold, let d denote the exterior deriv-
ative on k-forms and * denote the Hodge isomorphism induced by the metric on
M. Let 6 = (—1)"k*n+1 « dx be the codifferential and A = dj + dd be the Laplace
operators on forms. With this notation a form is closed iff dae = 0 and coclosed iff
da = 0. Tt is also very well known that on the flat Euclidean space E™, all bounded
harmonic forms are parallel and thus closed and coclosed. Here we have to point out
the fact that in general even if we assume a harmonic form to be closed it is not true
that it will be coclosed as well. For example a = zdz on E? is harmonic and closed
but not coclosed, so it follows that even in the Euclidean case the boundedness of
the form is essential. One other instance in which Aa = 0 implies (d+ d*)a = 0 is,
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for example, in our opinion, the fact that any sublinear growth harmonic function
on a space with nonnegative Ricci curvature is constant (hence closed!). This is a
consequence of Yau's gradient estimate [I1] and it was proved by Cheng [4]. The
precise statement is:

Theorem (Cheng). Let M be a complete Riemannian manifold with nonnegative
Ricci curvature. Let u be a sublinear growth harmonic function on M. Then u
must be identically constant.

It is therefore clear that even one of the most basic properties of harmonic forms
on compact manifolds does not hold in the noncompact case. On the hyperbolic
plane H?, for example, there are many bounded harmonic 1-forms which are not
closed. To see this, one can consider

(2) a = f(z,y)dz,

where f is the real part of a holomorphic function F(z) satisfying
1

3 F < —.

3) F < g

Since on a 2-dimensional manifold any two metrics are locally conformal and the
Laplacian in mid-degree is invariant to conformal transformations of the metric,
it follows that « defined as in (@2)) is harmonic if and only if f(z,y) is a harmonic
function in the classical sense (i.e. is the real part of a holomorphic function).
Moreover ([B) will guarantee that « is bounded w.r.t. the hyperbolic metric. It is
clear that only a subset of the set of all the forms defined as in () is closed.

The case of harmonic 1-forms is a very special one. By the classical Bochner
argument one can see that on a compact manifold M with positive Ricci curvature
there is no nontrivial harmonic 1-form. Also on a compact manifold M, if the Ricci
curvature is assumed to be nonnegative, a similar argument shows that the form
has to be parallel. On a noncompact manifold with positive Ricci curvature, if
a harmonic, bounded 1-form attains its maximum, the same arguments as in the
compact case imply that the form is identically equal to zero. These arguments
cannot be applied in the case when there is no assumption on Ricci curvature.
A consequence of our main Theorem is that bounded, closed and harmonic
forms w.r.t. a periodic metric are pulled back from T", and hence they form an
n-dimensional vector space.

2. PROOF OF THE MAIN RESULT
We now give the proof of Theorem

Proof. Let a be the closed and bounded harmonic 1-form from the hypothesis and
let A > 0 such that

(4) llal[pe < A.
Since $1(M) = 0 it follows that « is exact; hence
a=df

with f a smooth scalar function defined on M. It follows that

0 = Aa = Adf = dAf,
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and consequently Af is constant. Let ¢ be a bounded isometry with respect to the
metric g. This means that there exists a Cy > 0 such that for every x € M,

(5) d(y(z), z) < Cy.
Next we have
A(foy — f) = (Af)oy — Af = 0;
hence the function h = foy — f is harmonic w.r.t. g. We shall now prove that h is

bounded. Let us choose ¢ = ¢(t) to be a normalized geodesic joining = and ¥(z).
The time interval of the geodesic is 0 < ¢t <, and | = d(¢)(z), ). We have

[h(@)] = [f(c(D) = f(c(0))] < A d(¢(2), ) < ACy;

hence h is bounded. Since M has compact type it follows that h is constant;
therefore

0=d(for — f) ="(df) — df,
or equivalently
¥ (a) = .

Let G be as in the theorem and let 6 denote the covering map
6: M — M/G.

Since « is left invariant by all the elements of G, it follows that there exists (3 a
harmonic 1-form on M/G such that

0% () = a.

Since M /G is compact (3 is coclosed and since § commutes with local isometries, it
follows that « is coclosed as well. (I

3. A FEW GEOMETRIC APPLICATIONS OF THEOREM

Corollary 3.1. Let R™ be the Euclidean space endowed with g a periodic metric.
Assume « is a closed, bounded, and harmonic 1-form with respect to g. Then « is
left invariant by any isometry of g which commutes with the action of Z™.

The proof of Theorem B in the case when n = 2 is very simple. In this case
since the metric is locally conformal to the Euclidean metric, it follows that the
form is harmonic w.r.t. the Euclidean metric. Because the metric is periodic it is
bounded w.r.t. the Euclidean metric and the form as well. Therefore the form has
to be covariantly constant.

The proof for n > 2 is a consequence of Theorem and the following simple
lemma:

Lemma 3.2. Let M — N be a Riemannian cover with N compact. Any isometry
of M which commutes with all the elements of the group of deck transformations of
the cover is bounded.

Proof. Let 1 be an isometry which commutes with all the elements of the group of
deck transformations G. Let D be a fundamental domain associated to the action
of G on M. Since N is compact, it follows that D is relatively compact. Take
x € M to be an arbitrary point. Then there is t € G such that ¢(z) € D and since
1 commutes with any element of G it follows that

d(z, () = d(t(x), t(y(x))) = d(t(x), Y (¢(x))),



BOUNDED HARMONIC 1-FORMS ON COMPLETE MANIFOLDS 1463

and hence

d(z,¥(x)) < sup d(y, P(y)).

yeD

Since D is relatively compact, sup,cp d(y, ¥ (y)) < oo is attained and depends only
on . O

Next we construct a natural (defined by the metric!) isomorphism between the
first cohomology spaces of compact, orientable quotients of manifolds of compact

type.

Corollary 3.3. Let M be a simply connected, complete manifold of compact type.
Let My and My be two orientable, compact manifolds covered by M. Assume that
the groups of deck transformations associated to the two covers consist of bounded
isometries. Then there is a natural isomorphism

I: Hpp(Mi) — Hpg(Ms).
Proof. Let [a] € H}»(M;) be a cohomology class. We want to define
I([a]) € Hpp(Ma).

The covering map is a local diffeomorphism, and therefore M; and My inherit
natural metrics from M which make the covering maps into local isometries. Since
M, is compact and orientable, it follows that there is a unique (d + d*)-harmonic
form « € [a]. If 41 is the covering map

wl M — M17
then the pull-back
¥i ()

is a (d + d*)-harmonic form on M. If Gy denotes the group of isometries that
generate Mo in the sense that

My = M/G,,

then according to Theorem it follows that ¢7(«) is left invariant by G5 and
therefore there exists a unique harmonic form 3 on M such that

¥3(B) = ¥i(q).
Let us now define
I([o]) = [8].
The map is well defined and linear. The inverse I~! is defined in an obvious way. [J

Remark. The conclusion of Corollary stays the same if we assume that the two
deck transformation groups commute.

The next result is concerned with the flow induced by the dual of a harmonic
form.

Corollary 3.4. Let M be a compact manifold. In addition assume that M locally
around any point has a frame of Killing vector fields. Then every bounded, closed,
and harmonic 1-form is necessarily the dual of a Killing vector field.
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Proof. Let a be a form with the properties specified in the hypothesis. Let p € M
and let U be a neighborhood of the point p where one can find a frame

€1,€2,...,€n

of Killing vector fields with associated coframe

el,e?, ... em.

This means that the flow induced by these vector fields consists of isometries of the
manifold. Now taking into account the conclusion of Theorem we have

(6) L. a=0.

By Cartan’s formula

(7) Lo =i, da+ d(ic,a),

and taking into account the fact that « is closed we conclude that
ales) = a,

where a, is a constant real number. It follows that

n

§ : s
a/U = ase ,

s=1

and the conclusion of the theorem follows. O
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