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Abstract. We study the existence of a modular form satisfying a certain
congruence relation. The existence of such modular forms plays an important
role in the determination of the structure of a ring of modular forms modulo
p. We give a criterion for the existence of such a modular form in the case of
Hermitian modular forms.

1. Introduction

In [7], H. P. F. Swinnerton-Dyer determined the structure of a ring of modular
forms mod p in the elliptic modular case. In his argument, the existence of a certain
modular form plays an important role. Namely, he used the fact that there exists
a modular form f of weight p − 1 with p-integral Fourier coefficients such that

f ≡ 1 (mod p).

(Also cf. Serre [6].) In the elliptic modular case, such a form can be constructed
easily. In fact, we may take f = Ep−1 (the normalized Eisenstein series of weight
p−1). However, the problem of existence in the case of Siegel modular forms turns
out to be difficult. For example, the Siegel–Eisenstein series E

(n)
p−1 of weight p−1 is

no longer a solution in general. In [2], S. Boecherer and the second author studied
this problem and gave some criteria for the existence problem in the case of Siegel
modular forms.

In this paper, we give a criterion of the existence problem in the case of Hermitian
modular forms over the imaginary quadratic fields Q(

√
−1) and Q(

√
−3).

2. Hermitian modular forms

We start by recalling the definition of Hermitian modular forms. For details,
please refer to [3]. The Hermitian half-space Hn of degree n is defined by

Hn :=
{

Z ∈ Mn(C) | 1
2
√
−1

(Z − tZ) > 0
}

.
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Let K be an imaginary quadratic field with discriminant dK. We denote by O = OK

the ring of integers and by O× the group of units in O.
The Hermitian modular group of degree n over K,

Un(O) := {M ∈ M2n(O) | tMJnM = Jn}, Jn =
(

0 1n

−1n 0

)
,

acts on Hn by
Z �−→ M < Z >:= (AZ + B)(CZ + D)−1

for all Z ∈ Hn and M =
(

A B
C D

)
∈ Un(O).

Let Γ ⊂ Un(O) be a subgroup of Un(O). A holomorphic function F (Z) on Hn

is called a Hermitian modular form of weight k for Γ if it satisfies the functional
equations:

F (M < Z >) = det(CZ + D)kF (Z)

for all Z ∈ Hn and M =
(

A B
C D

)
∈ Γ. (We assume the holomorphy at the cusps

in the case n = 1.) We denote by Mk(Γ) the space of Hermitian modular forms
of weight k for Γ. Later we mainly deal with the case Γ = Un(O) or SUn(O) :=
Un(O) ∩ SL2n(O). In both cases, F ∈ Mk(Γ) has a Fourier expansion of the form

F (Z) =
∑

0≤ T∈Λn

aF (T )exp{2π
√
−1tr(TZ)},

where T runs over the lattice

Λn = Λn(K) := { T = (tij) ∈ Hern(K) | tii ∈ Z,
√

dK tij ∈ O }

(cf. [3]).

3. Main result

In this section, we state the main result of this paper, which gives a criterion on
the existence of a modular form satisfying a certain congruence relation.

Let p be a rational prime and Z(p) = { a
b ∈ Q | p � b } denote the localization of Z

at p. We denote by Mk(Γ)Z(p) the subset of Mk(Γ) consisting of F ∈ Mk(Γ) such
that all of its Fourier coefficients belong to Z(p).

Our main result can be stated as follows:

Theorem 3.1. (1) Assume that K = Q(
√
−1) or K = Q(

√
−3). There exists a

Hermitian modular form Fp−1 ∈ Mp−1(SUn(O))Z(p) such that

Fp−1 ≡ 1 (mod p)

if
p ≡ 1 (mod 4).

(2) Assume that K = Q(
√
−1). There exists a Hermitian modular form Fp−1 ∈

Mp−1(Un(O))Z(p) such that

Fp−1 ≡ 1 (mod p)

if and only if
p ≡ 1 (mod 4).
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4. p-Special Hermitian matrix

In order to prove our theorem, we need to consider the existence of a p-special
Hermitian matrix.

A Hermitian matrix H = tH ∈ Herm(K) is called p-special if H satisfies the
following four conditions:

(i) H is positive definite,
(ii) H is even integral, namely, H ∈ 2Λm,

(iii) detH =

(
2√
|dK|

)m

,

(iv) (the main condition) there exists a p-group Cp in the finite unitary group

Um(H;O) := {U ∈ Mm(O) | tUHU = H}

such that the group Cp acts freely on Om\{0}.
Our proof of the main result mainly depends on the existence of a p-integral

Hermitian matrix. To demonstrate the existence of such a matrix we use the result
of Bayer-Fluckiger, which guarantees the existence of a suitable even unimodular
lattice over Z.

Theorem 4.1 (Bayer-Fluckiger [1]). Let m be a positive integer such that m is not a
power of 2. Then there exists a definite unimodular lattice having an automorphism
with characteristic polynomial Φm if and only if m is mixed and ϕ(m) is divisible
by 8. Here Φm is the m-th cyclotomic polynomial.

Our result in this section is as follows:

Proposition 4.2. Assume that K = Q(
√
−1) or Q(

√
−3). If p is a prime number

such that p ≡ 1 (mod 4), then there exists a p-special Hermitian matrix H of rank
p − 1.

Proof. First we assume that K = Q(
√
−1) and p ≡ 1 (mod 4). If we put m = 4p,

then m is not a prime power and ϕ(m) = 2(p − 1) is divisible by 8. Hence, by
Theorem 4.1, there exists an even unimodular positive definite lattice (L, S) having
an automorphism with characteristic polynomial Φm (m-th cyclotomic polynomial),
where S is the associated bilinear form. We denote by t such an automorphism. The
order of the automorphism tp is 4, and L becomes a Z[

√
−1]-module by identifying√

−1 with tp. Since Z[
√
−1] is principal, one may construct a Z[

√
−1]-basis of L.

Hence L becomes a Z[
√
−1]-lattice of rank p − 1. (The Z-rank of L is ϕ(m) =

2(p − 1).) The corresponding Gram matrix H is the desired matrix. Indeed, one
can confirm that the Hermitian matrix H satisfies the conditions (i)-(iv) of the
p-special Hermitian matrix.

(i) The positivity of H comes from that of L.
(ii) The bilinear form S : L × L −→ Z satisfies

S(x, y) =
1
2
(h(x, y) + h(y, x)),

where h : L × L −→ Q(
√
−1) is the Hermitian form associated with H. Since

h(x, x) = S(x, x) ∈ 2Z, H is even integral.
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(iii) If we denote by B ∈ Sym2(p−1)(Z) the Gram matrix associated with the
bilinear form S, then we have

detB = (detH)2 ·
(√

|dK|
2

)2(p−1)

.

Since detB = 1 and |dK| = 4, we have detH = 1. This shows that the matrix H
satisfies the condition (iii).

(iv) We recall the definition of the automorphism t mentioned above. In this
case, the p-group Cp :=< t4 > acts freely on Op−1\{0} because the characteristic
polynomial of t is Φm.

Next we assume that K = Q(
√
−3) and p ≡ 1 (mod 4). If we put m = 3p, then,

by a similar argument to that stated above, there exists an even unimodular positive
definite lattice (L, S) having an automorphism with characteristic polynomial Φm.
We denote by s such an automorphism. The order of the automorphism sp is 3,
and L becomes an OK-module by identifying ω = −1+

√
−3

2 with sp. Since OK =
Z + ωZ is principal, one may construct an OK-basis of L. One can prove that
the corresponding Gram matrix satisfies the conditions of the p-special Hermitian
matrix in a way similar to the case K = Q(

√
−1). This completes the proof of

Proposition 4.2. �

Example 4.3. We give examples of H in the case p = 5:

The case K = Q(
√
−1), H =

⎛
⎜⎜⎝

2 0 1 +
√
−1

√
−1

0 2
√
−1 1 −

√
−1

1 −
√
−1 −

√
−1 2 0

−
√
−1 1 +

√
−1 0 2

⎞
⎟⎟⎠ .

The case K = Q(
√
−3), H =

⎛
⎜⎜⎜⎝

2 0 2√
−3

2√
−3

0 2 2√
−3

−2√
−3

−2√
−3

−2√
−3

2 0
−2√
−3

2√
−3

0 2

⎞
⎟⎟⎟⎠ .

5. Proof of the main theorem

In this section, we prove our main theorem.

Proof. (1) We assume that K = Q(
√
−1) or K = Q(

√
−3) and that p ≡ 1

(mod 4). By Proposition 4.2, there exists a p-special Hermitian matrix H of rank
p − 1. We denote by Cp the corresponding p-group (cf. section 4, the definition of
a p-special Hermitian matrix (iv)). We associate the theta series

ϑH(Z) :=
∑

X∈Mp−1,n(O)

exp{π
√
−1 tr(H[X]Z)}, Z ∈ Hn,

where H[X] := tXHX. The modularity of ϑH for SUn(O) comes from the con-
ditions (i), (ii), and (iii) of the p-special matrix H ∈ 2Λp−1 (e.g. cf. Cohen
and Resnikoff [4], p. 332); namely, we have ϑH(Z) ∈ Mp−1(SUn(O)). In par-
ticular, we have ϑH(Z) ∈ Mp−1(Un(O)) in the case that K = Q(

√
−1) because
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�O× = �Z[
√
−1]× = 4 and the weight p−1 is divisible by 4. The Fourier expansion

is given as follows:

ϑH(Z) =
∑
T

A(H, T )exp{2π
√
−1 tr(TZ)},

A(H, T ) = �A(H, T ), A(H, T ) = {X ∈ Mp−1,n(O)|H[X] = 2T}.
If T �= On, then the p-group Cp acts freely on the set A(H, T ). Therefore, the
number A(H, T ) is divisible by p. Since A(H, On) = 1, we have

ϑH(Z) ≡ 1 (mod p).

This proves (1) of Theorem 3.1.
(2) Assume that K = Q(

√
−1) and that there exists a form

Fp−1 ∈ Mp−1(Un(Z(
√
−1)))Z(p)

such that
Fp−1 ≡ 1 (mod p).

We recall the definition of the Φ-operator defined by

Φ : Mk(Un(O)) −→ Mk(Un−1(O)), Φ(F )(Z) := lim
λ→∞

F

((
Z 0
0 iλ

))
, Z ∈ Hn−1.

If we apply the Φ-operator n − 1 times to Fp−1, then

Φ(n−1)(Fp−1) ∈ Mp−1(U1(Z[
√
−1]))Z(p)

still satisfies the congruence relation

Φ(n−1)(Fp−1) ≡ 1 (mod p).

If p �≡ 1 (mod 4), this is impossible because

Mk(U1(Z[
√
−1])) =

{
Mk(SL2(Z)) if k ≡ 0 (mod 4),
0 otherwise.

(This comes from the fact that U1(O) = O× · SL2(Z).) We have proved the state-
ment (2), thereby completing the proof of Theorem 3.1. �

6. Remark

In the case that K = Q(
√
−1) and n = 2, there is another construction of Fp−1,

which is based on the theory of Hermitian Jacobi forms.
We assume that K = Q(

√
−1). Freitag [5] constructed a set of generators of the

graded ring
Msym(U2(Z[

√
−1])) =

⊕
Msym

k (U2(Z[
√
−1])),

where Msym
k (U2(Z[

√
−1])) is the subspace consisting of the symmetric Hermitian

modular forms of weight k. (In general, F ∈ Mk(Un(O)) is called symmetric if
F (tZ) = F (Z).) We recall the weight 4 generator ϕ4 of Msym(U2(Z[

√
−1])) (cf.

[5]). It is known that all the Fourier coefficients of E4 := 1
4ϕ4 are integral and the

constant term is equal to 1. We expand E4 as a Fourier-Jacobi series and take the
index 1 Jacobi form Φ4,1. All of the Fourier coefficients of Φ4,1 are divisible by 240.
We put φ4,1 := 1

240Φ4,1. Now we assume that p ≡ 1 (mod 4). Then

fp−1,1 := E
p−5
4

4 · φ4,1
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becomes a Hermitian Jacobi form of weight p − 1 and index 1. Here E4 = 1 +
240

∑∞
n=1 σ3(n)qn is the ordinary Eisenstein series of weight 4 for SL2(Z). All of

the Fourier coefficients of fp−1,1 are integral and the constant term is equal to 1.
We consider the Maass lift Mk from the space of Hermitian Jacobi forms of weight
k and index 1 to the space Mk(U2(Z[

√
−1])). Then

Fp−1 := −2(p − 1)
Bp−1

Mp−1(fp−1,1)

is the desired form, namely, Fp−1 ∈ Mp−1(U2(Z[
√
−1]))Z(p) and

Fp−1 ≡ 1 (mod p).

(Since the Maass lift Mk is defined only for k such that k ≡ 0 (mod 4) in this case,
we need the assumption p ≡ 1 (mod 4).)
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