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ABSTRACT. We study the existence of a modular form satisfying a certain
congruence relation. The existence of such modular forms plays an important
role in the determination of the structure of a ring of modular forms modulo
p. We give a criterion for the existence of such a modular form in the case of
Hermitian modular forms.

1. INTRODUCTION

In [7], H. P. F. Swinnerton-Dyer determined the structure of a ring of modular
forms mod p in the elliptic modular case. In his argument, the existence of a certain
modular form plays an important role. Namely, he used the fact that there exists
a modular form f of weight p — 1 with p-integral Fourier coefficients such that

f=1 (mod p).

(Also cf. Serre [6].) In the elliptic modular case, such a form can be constructed
easily. In fact, we may take f = E,_; (the normalized Eisenstein series of weight
p—1). However, the problem of existence in the case of Siegel modular forms turns
out to be difficult. For example, the Siegel-Eisenstein series E](fi)l of weight p—1 is
no longer a solution in general. In [2], S. Boecherer and the second author studied
this problem and gave some criteria for the existence problem in the case of Siegel
modular forms.

In this paper, we give a criterion of the existence problem in the case of Hermitian
modular forms over the imaginary quadratic fields Q(v/—1) and Q(v/-3).

2. HERMITIAN MODULAR FORMS

We start by recalling the definition of Hermitian modular forms. For details,
please refer to [3]. The Hermitian half-space H,, of degree n is defined by
1 o
H, :=43Z€M,(C)| ——=(Z-'Z)>0¢.
{zem© 152250}
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Let K be an imaginary quadratic field with discriminant dx. We denote by O = Ok
the ring of integers and by O* the group of units in O.
The Hermitian modular group of degree n over K,

— 01
Un(0) :={M € M2, (0) | "M J, M = J,,}, Jp= (_1 8)
acts on H,, by
Z s M< Z>=(AZ+B)(CZ+ D)™ !

for all Z € H,, and M = (5 2) € U,(0).

Let T' C U,(O) be a subgroup of U, (O). A holomorphic function F(Z) on H,
is called a Hermitian modular form of weight k for I if it satisfies the functional
equations:

F(M < Z >) =det(CZ + D)*F(Z)

for all Z € H,, and M = (é g) € I'. (We assume the holomorphy at the cusps
in the case n = 1.) We denote by M(I") the space of Hermitian modular forms
of weight k for I'. Later we mainly deal with the case I' = U, (O) or SU,(O) :=
U,(0O) N SLa,(O). In both cases, F € M(T") has a Fourier expansion of the form

F(Z)= Z ap(T)exp{2nV/—1tr(TZ)},
0< TeA,

where T runs over the lattice
AnZAn(K) ::{T: (tij) EH@’I‘n(K)‘tii €7, thij S O}
(ct. [3]).

3. MAIN RESULT

In this section, we state the main result of this paper, which gives a criterion on
the existence of a modular form satisfying a certain congruence relation.

Let p be a rational prime and Z,) = { $ € Q[p{ b} denote the localization of Z
at p. We denote by M, (I")z,, the subset of My (I') consisting of ' € My(I') such
that all of its Fourier coefficients belong to Z ).

Our main result can be stated as follows:

Theorem 3.1. (1) Assume that K = Q(v/—1) or K = Q(v/=3). There exists a
Hermitian modular form F,_1 € M,_1(SU,(0))z,,, such that

F,_1=1 (modp)
if
p=1 (mod 4).

(2) Assume that K = Q(v/—1). There exists a Hermitian modular form F,_; €
My-1(Un(0))z,,, such that

F,_1=1 (modp)

if and only if
p=1 (mod 4).
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4. p-SPECIAL HERMITIAN MATRIX

In order to prove our theorem, we need to consider the existence of a p-special
Hermitian matrix.
A Hermitian matrix H = ‘H € Her,,(K) is called p-special if H satisfies the
following four conditions:
(i) H is positive definite,
ii) H is even integral, namely, H € 2A,,,
m

(
(i) detH — (_> |
( Vdk|

iv) (the main condition) there exists a p-group Cp in the finite unitary group
Un(H;0) :={U € M,,(O0) |'"UHU = H}

such that the group C, acts freely on O™\{0}.

Our proof of the main result mainly depends on the existence of a p-integral
Hermitian matrix. To demonstrate the existence of such a matrix we use the result
of Bayer-Fluckiger, which guarantees the existence of a suitable even unimodular
lattice over Z.

Theorem 4.1 (Bayer-Fluckiger [1]). Let m be a positive integer such that m is not a
power of 2. Then there exists a definite unimodular lattice having an automorphism
with characteristic polynomial @, if and only if m is mized and o(m) is divisible
by 8. Here @, is the m-th cyclotomic polynomial.

Our result in this section is as follows:

Proposition 4.2. Assume that K = Q(v/—1) or Q(v/—3). If p is a prime number
such that p =1 (mod 4), then there exists a p-special Hermitian matriz H of rank

p— 1.

Proof. First we assume that K = Q(y/—1) and p = 1 (mod 4). If we put m = 4p,
then m is not a prime power and p(m) = 2(p — 1) is divisible by 8. Hence, by
Theorem 4.1, there exists an even unimodular positive definite lattice (L, S) having
an automorphism with characteristic polynomial @,,, (m-th cyclotomic polynomial),
where S is the associated bilinear form. We denote by ¢ such an automorphism. The
order of the automorphism #? is 4, and L becomes a Z[v/—1]-module by identifying
v/—1 with #P. Since Z[y/—1] is principal, one may construct a Z[y/—1]-basis of L.
Hence L becomes a Z[/—1]-lattice of rank p — 1. (The Z-rank of L is p(m) =
2(p — 1).) The corresponding Gram matrix H is the desired matrix. Indeed, one
can confirm that the Hermitian matrix H satisfies the conditions (i)-(iv) of the
p-special Hermitian matrix.

(i) The positivity of H comes from that of L.

(ii) The bilinear form S : L x L — 7Z satisfies

S(@.y) = 5(h(z.y) + h(y,2)),

where h : L x L — Q(+/—1) is the Hermitian form associated with H. Since
h(zx,x) = S(x,x) € 2Z, H is even integral.
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(iii) If we denote by B € Symyp,—1)(Z) the Gram matrix associated with the
bilinear form S, then we have

2(p—1)
Vd
detB = (detH)? - <%> .

Since detB = 1 and |dk| = 4, we have detH = 1. This shows that the matrix H
satisfies the condition (iii).

(iv) We recall the definition of the automorphism ¢ mentioned above. In this
case, the p-group C, :=< t* > acts freely on OP~1\{0} because the characteristic
polynomial of ¢ is @,,.

Next we assume that K = Q(v/=3) and p = 1 (mod 4). If we put m = 3p, then,
by a similar argument to that stated above, there exists an even unimodular positive
definite lattice (L, .S) having an automorphism with characteristic polynomial @,,.
We denote by s such an automorphism. The order of the automorphism s? is 3,
and L becomes an Og-module by identifying w = _1%‘/__3 with sP. Since Og =
7Z + wZ is principal, one may construct an Og-basis of L. One can prove that
the corresponding Gram matrix satisfies the conditions of the p-special Hermitian
matrix in a way similar to the case K = Q(y/—1). This completes the proof of
Proposition 4.2. O

Example 4.3. We give examples of H in the case p = 5:
2 0 1+v-1

The case K=Q(vV-1), H= 1 (3/_1 ,\;_1 R
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5. PROOF OF THE MAIN THEOREM

In this section, we prove our main theorem.

Proof. (1) We assume that K = Q(v/—1) or K = Q(v/-3) and that p = 1
(mod 4). By Proposition 4.2, there exists a p-special Hermitian matrix H of rank
p — 1. We denote by C,, the corresponding p-group (cf. section 4, the definition of
a p-special Hermitian matrix (iv)). We associate the theta series

Ia(Z2)= Y.  exp{nV/-1u(H[X]|Z)}, Z€H,,
XeM,_1,,(0)

where H[X] := *XHX. The modularity of 95 for SU, (O) comes from the con-
ditions (i), (ii), and (iii) of the p-special matrix H € 2A,_;1 (e.g. cf. Cohen
and Resnikoff [4], p. 332); namely, we have 9y (Z) € M,_1(SU,(O)). In par-
ticular, we have 9y (Z) € M,_1(U,(O)) in the case that K = Q(v/—1) because
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$O* = 4Z[v/—1]* = 4 and the weight p — 1 is divisible by 4. The Fourier expansion
is given as follows:

I (Z) = A(H,T)exp{2nv/=1tx(TZ)},

AH,T)=1AHT), AMHT)={X¢e M,_1,(0)H[X]=2T}.

If T # O,, then the p-group C, acts freely on the set A(H,T). Therefore, the
number A(H,T) is divisible by p. Since A(H,O,,) = 1, we have

9 (Z)=1 (mod p).
This proves (1) of Theorem 3.1.

(2) Assume that K = Q(v/—1) and that there exists a form
prl € Mp*l(Un(Z(\/ _1)))Z(p)

such that

Fp_1=1 (mod p).
We recall the definition of the @-operator defined by

Z 0

25 M(U,(0) — Mi(U,1(0), @02 = i 7 ((0)) 2,

If we apply the @-operator n — 1 times to Fj,_;, then
D (Fyo) € Mpoa(DL(ZIV-1)))z,
still satisfies the congruence relation
S D(F, )=1 (mod p).
If p#£ 1 (mod 4), this is impossible because
M (SLy(Z)) if k=0 (mod4),

0 otherwise.

My (Uy(Z[V-1))) = {

We have proved the state-

(This comes from the fact that Uy (O) = O - SLa(Z).)
1. O

ment (2), thereby completing the proof of Theorem 3.

6. REMARK

In the case that K = Q(v/—1) and n = 2, there is another construction of F,_,
which is based on the theory of Hermitian Jacobi forms.

We assume that K = Q(v/—1). Freitag [5] constructed a set of generators of the
graded ring

M (Uo(ZIV=1]) = D M (U2(Z[V-1])),

where M;Y" (Us(Z[/—1])) is the subspace consisting of the symmetric Hermitian
modular forms of weight k. (In general, F' € My(U,(O)) is called symmetric if
F('Z) = F(Z).) We recall the weight 4 generator ¢, of M*¥™(Uy(Z[\/—1])) (cf.
[5]). It is known that all the Fourier coefficients of £, := 1, are integral and the
constant term is equal to 1. We expand &, as a Fourier-Jacobi series and take the
index 1 Jacobi form @4;. All of the Fourier coefficients of ®@4,; are divisible by 240.
We put ¢y 1 = L@Ll. Now we assume that p =1 (mod 4). Then

240
p=5
fo—11=E;" -¢4.
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becomes a Hermitian Jacobi form of weight p — 1 and index 1. Here 4 = 1 +
240> | o3(n)¢™ is the ordinary Eisenstein series of weight 4 for SLy(Z). All of
the Fourier coefficients of f,_1,1 are integral and the constant term is equal to 1.
We consider the Maass lift M}, from the space of Hermitian Jacobi forms of weight
k and index 1 to the space My (Usz(Z[v/—1])). Then

=My ()

is the desired form, namely, F,, 1 € M,_1(U2(Z[v~1]))z,,, and
Fp_1=1 (mod p).

(Since the Maass lift My, is defined only for k such that £k =0 (mod 4) in this case,
we need the assumption p =1 (mod 4).)

Fp,1 =

ACKNOWLEDGEMENT

The authors wish to thank Prof. G. Nebe for suggesting the proof of Proposi-
tion 4.2.

REFERENCES

1. E. Bayer-Fluckiger, Definite unimodular lattices having an automorphism of given character-
istic polynomial. Comment. Math. Helv. 59 (1984), 509-538. MR780074 (86k:11032)

2. S. Boecherer, S. Nagaoka, On mod p properties of Siegel modular forms. Math. Ann. 338
(2007), 421-433. MR22302069|/(2008d:11041)

3. H. Braun, Hermitian modular functions. Ann. of Math. (2) 50 (1949), 827-855. MR0032699
(11:333a)

4. D. M. Cohen, H. L. Resnikoff, Hermitian quadratic forms and Hermitian modular forms. Pac.
J. Math. 76 (1978), 329-337. MR506135 (80b:10039)

5. E. Freitag, Modulformen zweiten Grades zum rationalen und Gausschen Zahlkorper. Sitzungs-
ber. Heidelberger Akad. Wiss. Math.-Natur. K1. (1967), 3-49. MR0214541/(35:5391)

6. J-P. Serre, Formes modulaires et fonctions zéta p-adiques. Modular Functions of One Variable
II1, Lecture Notes in Math. 350 (1973), 191-268, Springer. MR0404145|(53:7949a)

7. H. P. F. Swinnerton-Dyer, On £-adic representations and congruences for coefficients of mod-
ular forms. Modular Functions of One Variable 111, Lecture Notes in Math. 350 (1973), 1-55,
Springer. MR0406931)(53:10717a)

DEPARTMENT OF MATHEMATICS, KINKI UNIVERSITY, HIGASHI-OSAKA, OSAKA 577-8502, JAPAN
E-mail address: kikuta@math.kindai.ac.jp

DEPARTMENT OF MATHEMATICS, KINKI UNIVERSITY, HIGASHI-OSAKA, OSAKA 577-8502, JAPAN
E-mail address: nagaoka@math.kindai.ac.jp


http://www.ams.org/mathscinet-getitem?mr=780074
http://www.ams.org/mathscinet-getitem?mr=780074
http://www.ams.org/mathscinet-getitem?mr=2302069
http://www.ams.org/mathscinet-getitem?mr=2302069
http://www.ams.org/mathscinet-getitem?mr=0032699
http://www.ams.org/mathscinet-getitem?mr=0032699
http://www.ams.org/mathscinet-getitem?mr=506135
http://www.ams.org/mathscinet-getitem?mr=506135
http://www.ams.org/mathscinet-getitem?mr=0214541
http://www.ams.org/mathscinet-getitem?mr=0214541
http://www.ams.org/mathscinet-getitem?mr=0404145
http://www.ams.org/mathscinet-getitem?mr=0404145
http://www.ams.org/mathscinet-getitem?mr=0406931
http://www.ams.org/mathscinet-getitem?mr=0406931

	1. Introduction
	2. Hermitian modular forms
	3. Main result
	4. p-Special Hermitian matrix
	5. Proof of the main theorem
	6. Remark
	Acknowledgement
	References

