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ANALYTICITY OF THE SRB MEASURE
FOR HOLOMORPHIC FAMILIES

OF QUADRATIC-LIKE COLLET-ECKMANN MAPS

VIVIANE BALADI AND DANIEL SMANIA

(Communicated by Jane M. Hawkins)

Abstract. We show that if ft is a holomorphic family of quadratic-like maps
with all periodic orbits repelling so that for each real t the map ft is a real
Collet-Eckmann S-unimodal map, then, writing µt for the unique absolutely
continuous invariant probability measure of ft, the map

t �→
∫

ψ dµt

is real analytic for any real analytic function ψ.

1. Introduction and statement of the theorem

If t �→ ft is a smooth one-parameter family of dynamics ft so that f0 admits
a unique SRB measure µ0, it is natural to ask whether the map t �→ µt, where t
ranges over a set Λ of parameters such that ft has (at least) one SRB measure µt, is
differentiable at 0. Differentiability should be understood in the sense of Whitney
if Λ does not contain a neighbourhood of 0, as suggested by Ruelle [16]. Katok,
Knieper, Pollicott, and Weiss [7] gave a positive answer to this differentiability
question in the setting of C3 families of transitive Anosov flows, showing that
t �→

∫
ψ dµt is differentiable, for all smooth ψ. If f0 is a C3 mixing Axiom A

attractor and the family t �→ ft is C3, Ruelle [15] not only proved that t �→
∫

ψ dµt

is differentiable, but also gave an explicit formula, the linear response formula, for
the derivative. Of course, in the Anosov and Axiom A cases, Λ is a neighbourhood
of 0.

Ruelle [16] suggested that this linear response formula, appropriately interpreted,
should hold in much greater generality. Indeed, Dolgopyat [6] obtained the linear
response formula for a class of partially hyperbolic diffeomorphisms. In a previous
work [3, 4], we found that in the setting of piecewise expanding unimodal interval
maps, the SRB measure is differentiable if and only if the path ft is tangent to the
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topological class of f0, that is, if and only if ∂tft|t=0 is horizontal. We emphasize
that this setting is not structurally stable. When differentiability holds, Ruelle’s
candidate for the derivative, as interpreted in [2], gives the linear response formula.
(We refer to [2, 3, 4], which also contain conjectures about smooth, not necessarily
analytic, Collet–Eckmann maps, for more information and additional references.)
Then, Ruelle [17] proved the linear response formula for a class of nonrecurrent
analytic unimodal interval maps ft, assuming that all ft stay in the topological
class of f0. (Recall that ft is nonrecurrent if infk d(fk

t (c), c) > 0, where c denotes
the critical point.)

In the present work, we consider holomorphic families ft of quadratic-like holo-
morphic Collet–Eckmann maps. By holomorphic, we mean complex analytic. Our
assumptions imply, using classical holomorphic motions, that all ft lie in the same
conjugacy class. Generalising one of the arguments in [7], we are able to show that
t �→

∫
ψ dµt is real analytic for any real analytic function ψ, our main result.

Let us now state our result more precisely. Let I = [−1, 1]. A C3 map f : I → I
is an S-unimodal map if it has c = 0 as a unique critical point, and f has nonpositive
Schwarzian derivative, that is, f ′′′

f ′ − 3
2

(
f ′′

f ′

)2 ≤ 0 except at c. An S-unimodal map is
called Collet-Eckmann if there exist C > 0 and λc > 1 so that |(fn)′(f(c))| ≥ Cλn

c

for all n ≥ 1. In this paper, we shall only consider S-unimodal maps with f ′′(c) �= 0.
In Section 2 we shall define precisely the notion of a holomorphic (complex

analytic) family of quadratic-like maps in a neighbourhood of I and what all periodic
orbits repelling means for such maps, and prove the main result of this work:

Theorem 1.1. Let t �→ ft be a holomorphic family of quadratic-like maps in a
neighbourhood of I, with all periodic orbits repelling. Assume in addition that for
each small real t the map ft restricted to I is a (real) Collet-Eckmann S-unimodal
map. Then there exists ε > 0 so that for each real analytic ψ : I → C, the map

t �→
∫

ψρt dx,

where ρt is the invariant density of ft, is real analytic on (−ε, ε).

The quadratic-like assumption implies that f ′′
t (c) < 0. The fact that periodic

orbits are repelling implies that ft is topologically conjugated with f0: see our
use of Mañé-Sad-Sullivan [10] in the beginning of the proof of the theorem in Sec-
tion 2. Besides Mañé-Sad-Sullivan [10], the other main ingredients of our proof are
the results and constructions of Keller and Nowicki [8], which allow us to exploit
dynamical zeta functions, following the argument in the work of Katok–Knieper–
Pollicott–Weiss [7, first proof of Theorem 1].

The extension from quadratic-like to polynomial-like is straightforward, and we
stick to the nondegenerate case f ′′(c) �= 0 for the sake of simplicity of exposition.
As the proof uses only real-analyticity of the holomorphic motions t �→ ht, it is
conceivable that the conclusion of the theorem holds if ft is a real analytic family
of quadratic-like maps, using ideas of [1], but this generalisation appears to be
nontrivial.

Lyubich’s work [9] implies that there are many nontrivial families ft satisfying
the assumptions of our theorem. Constructing examples of such families ft is in
fact easier, and we sketch the procedure next: Start from two topologically con-
jugated Collet-Eckmann quadratic-like maps f and g which are not differentiably
conjugated. By the result of Przytycki and Rohde [14], they are quasi-conformally
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conjugated. Hence, using a Beltrami path, one can construct a complex analytic
family ft of Collet-Eckmann maps containing both f and g, with f0 = f , say. If
f and g are real and conjugated in the real line, one can ensure that ft is real
for real parameters t. If f has negative Schwarzian derivative, then ft has nega-
tive Schwarzian derivative for t close to 0. See also [5] for a specific example and
numerical experiments.

2. Proof of the theorem

Before we prove the theorem, let us define precisely the objects we are studying:

Definition 2.1. We say that ft is a holomorphic family of quadratic-like maps
in a neighbourhood of I if there exists a complex neighbourhood U of I so that
t �→ ft is a holomorphic map from a complex neighbourhood of zero to the Banach
space B(U) of holomorphic functions on U extending continuously to U , with the
supremum norm, such that:

• For real t, the map ft is real on U ∩ R, with ft(I) ⊂ I and ft(−1) = ft(1) =
−1.

• There exist simply connected complex domains W and V , whose boundaries
are analytic Jordan curves, with I ⊂ V , V ⊂ U , V ⊂ W , and so that
f0 : V �→ W is a degree-two ramified covering, with c = 0 as a unique critical
point. That is, f0 : V �→ W is a quadratic-like restriction of f0.

If ft is a holomorphic family of quadratic-like maps in a neighbourhood of I, then
it is easy to see that for small complex t, denoting by Vt the connected component of
f−1

t (W ) containing 0, then ft : Vt �→ W is a quadratic-like restriction of ft: indeed,
∂W is an analytic Jordan curve, and f0 has no critical point on ∂V . If ft ∈ B(U) is
close to f0, there is a simply connected domain Vt close to V such that ft(Vt) = W ,
and the boundary of ∂Vt is a Jordan curve, by the implicit function theorem. Then
ft : Vt → W is a quadratic-like extension. We may then give another definition:

Definition 2.2. We say that ft is a holomorphic family of quadratic-like maps in
a neighbourhood of I with all periodic orbits repelling if ft is a holomorphic family
of quadratic-like maps in a neighbourhood of I so that, for each small complex t,
the map ft only has repelling periodic orbits in Vt.

Proof. Since we assumed that all periodic points of ft are repelling, [10, Theorem
B] implies that there exists a holomorphic motion of the Julia set K(f0) of f0, that
is, a map h : D × K(f0) → C, where D = {z ∈ C | |z| < ε0} for some ε0 > 0, such
that for each x ∈ K(f0) the map t �→ ht(x) is holomorphic, and for every t ∈ D the
function x �→ ht(x) is continuous and injective on K(f0), with

ht ◦ f0 = ft ◦ ht .

In particular, ht is a homeomorphism from K(f0) to K(ft). Note that [10, The-
orem B] is quoted for polynomial maps, but the proof immediately extends to
polynomial-like. Our assumptions imply that [f2

0 (0), f0(0)] = K(f0) ∩ R and
ht(K(f0) ∩R) = K(ft) ∩R = [f2

t (0), ft(0)]. From now on, we only use real analyt-
icity of t �→ ft(x) and t �→ ht(x) for x ∈ [f2(0), f(0)].

We next claim that our assumptions guarantee that each ft satisfies the technical
requirement needed by Keller and Nowicki [8, (1.2)]. Denoting by varJφ the total
variation of a function φ on an interval J , and writing f = ft, we need to check
that there is a constant M > 0 such that:
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a. M−1 < supI
|x−c|
|f ′(x)| + varI

|x−c|
|f ′(x)| < M ,

b. varJu

|f(x)−f(u)|
|x−u||f ′(x)| < M , where Ju = [−1, u] if u < c and = [u, 1] if u > c.

Let δ1 > 0 be such that |f ′′(y)| > |f ′′(c)|/2 if |y − c| < δ1. It suffices to prove (a.)
and (b.) for |x − c| < δ1 and |u − c| < δ1, and we restrict to such points. Noting
that for every such x �= c there exist yx, zx, and z̃x, between x and c, so that

|x − c|
|f ′(x)| = − x − c

f ′(x) − f ′(c)
= − 1

f ′′(yx)
,

and, using f ′′(x) = f ′′(c)+f (3)(zx)(x−c) and f ′(x) = f ′′(c)(x−c)+f (3)(z̃x) (x−c)2

2 ,

∂x
|x − c|
|f ′(x)| =

−f ′(x) + (x − c)f ′′(x)
(f ′(x))2

=
(x − c)2

(f ′(x))2
(
f (3)(zx) − f (3)(z̃x)

2
)
,

the first two conditions hold because f is C3. For the third condition, consider
x ≥ u > c (the other case is symmetric). Since

f(x) − f(u)
(x − u)f ′(x)

= 1 +
x − u

f ′(x)
f ′′(zx)

2
= 1 +

x − u

f ′(x)
f ′′(zx)
2f ′′(yx)

,

and 0 < − x−u
f ′(x) < − x−c

f ′(x) , we get that
∣∣ f(x)−f(u)
(x−u)f ′(x)

∣∣ is bounded on [u, 1], uniformly
in u. Finally, since

∂x
x − u

f ′(x)
=

f ′(x) − (x − u)f ′′(x)
(f ′(x))2

,

analyticity of f implies that ∂x
x−u
f ′(x) changes signs finitely many times, uniformly

in u, proving (b.).
Also, the results of Nowicki–Sands [13] and Nowicki–Przytycki [12] ensure (see

Appendix A) that there exist λc > 1, λper > 1, λη > 1, and ε1 > 0 such that, for
each |t| < ε1, there is Ct > 0 with

(1) |(fn
t )′(ft(0))| ≥ Ctλ

n
c , ∀n ≥ 1 ,

and such that for each x ∈ I with fp
t (x) = x for some p ≥ 1, we have

(2) |(fp
t )′(x)| ≥ Ctλ

p
per ,

and, finally, setting

λη(t) := lim inf
n→∞

{|η|−1/n | η ⊂ I is the largest monotonicity interval of fn
t } ,

we have

(3) inf
|t|<ε1

λη(t) > λη .

In other words, the hyperbolicity constants are uniform in t, guaranteeing unifor-
mity when applying the results of Keller and Nowicki [8]. (We choose ε1 < ε0.)

We now adapt the strategy used in the first proof of [7, Theorem 1]. Fix ψ and,
for x ∈ I such that fp

0 (x) = x for p ≥ 1, and for small reals s and t, consider

(4) gs,t(x) =
esψ(ht(x))

|f ′
t(ht(x))| .

Since ψ is real analytic, the analyticity of t �→ ht and of t �→ ft together with (2)
imply that there is an ε2 > 0 so that, for every periodic point x ∈ I of period p ≥ 1
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for f , the function

(t, s) �→ g
(p)
s,t (x) :=

es
∑p−1

k=0 ψ(ht(f
k(x))

|(fp
t )′(ht(x))|

is real analytic in |s| < ε2 and |t| < ε2, uniformly in x. We take ε2 < ε1.
Therefore, the dynamical zeta function defined by

ζ(s, t, z) := exp
∞∑

p=1

zp

p

∑
x∈I:fp

0 (x)=x

g
(p)
s,t (x)(5)

has the following property: There exists δ2 > 0 so that for each |z| < δ2 the function
ζ(s, t, z) is real analytic in |t| < ε2, |s| < ε2, and so that for each (s, t) with |t| < ε2,
|s| < ε2 the map ζ(s, t, z) is holomorphic and nonvanishing in |z| < δ2.

Now, ht ◦ f0 = ft ◦ ht immediately implies

(6) ζ(s, t, z) = exp
∞∑

p=1

zp

p

∑
y∈I:fp

t (y)=y

es
∑p−1

k=0 ψ(fk
t (y))

|(fp
t )′(y)| .

Before we proceed, we warn the reader that our parameter s is called t in [8],
the parameter β in [8] is β = 1, and our parameter t corresponds to changing the
dynamics.

Recall (1, 2, 3) and take Θ ∈ (0, 1) with

Θ−1 < min{λη,
√

min(λc, λper)} .

Keller and Nowicki [8, Theorem 2.1] prove that if ε3 ∈ (0, ε2) is small enough, then
for |s| < ε3 and |t| < ε3, the transfer operator

Ls,tϕ(x) =
∑

f̂t(y)=x

ωt(y)
ωt(x)

exp(sψ(y))
|f̂ ′

t(y)|
ϕ(y) ,

acting on functions of bounded variation on a suitable Hofbauer tower extension
f̂t : Î → Î of ft [8, Section 3], endowed with an appropriate [8, §6.2] cocycle ωt,
is a bounded operator. Note that the cocycle embodies the singularities along the
postcritical orbit of ft.

If s = 0, then the spectral radius λ0,t of Ls,t is equal to 1, it is a simple eigenvalue,
whose eigenvector gives the invariant density ρt of ft, and the rest of the spectrum
is contained in a disc of strictly smaller radius. In addition, the essential spectral
radius θs,t of Ls,t satisfies sup|t|<ε3,|s|<ε3 θs,t < Θ, and for each |t| < ε3, the spectral
radius λs,t > Θ of Ls,t is an analytic function [8, Prop. 4.2] of s.

Note that λs,t is the exponential of the topological pressure of sψ − log |f ′
t | for

ft and that ρt dx is the equilibrium state for ft and − log |f ′
t |. Now, perturbation

theory gives (see [8, (5.2)])

(7) ∂s log λs,t|s=0 =
∫

ψρt dx .

Keller and Nowicki also show [8, Theorem 2.2] that for |t| < ε3 and |s| < ε3,
the power series ζ(s, t, z) defined by (6) extends meromorphically to the disc of
radius Θ−1, and its poles zk in this disc are in bijection with the eigenvalues λk of
Ls,t, via λk = z−1

k . In addition, the order of the pole coincides with the algebraic
multiplicity of the eigenvalue. By [8, Prop. 4.3 and Lemma 4.5] ζ(s, t, z) does not
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vanish in the disc of radius Θ−1. It follows that z �→ ζ(s, t, z)−1 is holomorphic in
the disc of radius Θ−1. This disc contains λ−1

s,t , which is a simple zero.
To end the proof, recalling (7), it suffices to see that (s, t) �→ λs,t is real analytic,

but this easily follows from Shiffman’s [18] real analytic Hartogs’ theorem (see Ap-
pendix B or [7, Theorem, p. 589]) applied to d(s, t, z) = ζ(s, t, z)−1, which implies
that for each (s, t) ∈ (−ε3, ε3) × (−ε3, ε3) the map z �→ d(s, t, z) is holomorphic in
|z| < Θ−1. Indeed, by the implicit function theorem, the simple zeroes of d(s, t, ·)
depend real analytically on s and t.

We used the same εi discs for the s and t variables, but a more careful analysis
shows that ε in the statement of the theorem may be selected independently of
ψ. �

Appendix A. Uniformity of the hyperbolicity constants

Duncan Sands’ explanations were instrumental in writing this appendix, and we
thank him for that.

We start with a preliminary observation: Let g be an S-unimodal Collet–
Eckmann map (with g′′(0) < 0, say). Denote by λc(g), λper(g), and λη(g) the
constants defined by (1, 2, 3) (replacing ft by g). Nowicki and Sands [13] proved
that if g is an S-unimodal map and λper(g) > 1, then λc(g) > 1. A careful study of
their proof shows that λc(g) > λper(g)α, where the exponent α > 0 only depends on
the maximum length N(g) of “almost-parabolic funnels” of g (see [13, Lemma 6.6]
for a definition of N(g), which can be bounded by a function of 1/ log(λper(g))
and sup |g′|). Since N(g) is in fact invariant under topological conjugacy and ft is
topologically conjugated to f0, we conclude that λc(ft) > λper(ft)α, with α > 0
uniform in small t.

Next, recall that Nowicki and Przytycki [12] proved that if g and g̃ are S-
unimodal maps, with g′′(c) �= 0 and g̃′′(c) �= 0, say, conjugated by a homeomorphism
of the interval and g is Collet–Eckmann, then g̃ is Collet–Eckmann. Take g = f0

and g̃ = ft. In particular, ft is C2 close to f0 and t �→ ht is smooth. Then it
is not very difficult to see that the constants M = M(ft) > 0, P4 = P4(ft) > 0,
and δ4 = δ4(ft) > 0 from the topological characterisation (“finite criticality”) of
Collet–Eckmann in [12, (4), p. 35]) are uniform in small t.

Recall that our assumptions imply f ′′
t (c) �= 0 for all small t, so that the constant

denoted lc in [12] is lc = 2. Section 2 of [12], and in particular the use of the
Koebe principle there, implies that there exists a (universal) function q : R+

∗ ×
(0, 1) → (0, 1) with q(M, 1/4) < 1/2 for any M (see [12, Lemma 2.2]) so that
λper(ft) >

(
1 − 2q(M(ft), 1/4)

)−1. Therefore, λper(ft) > 1 is uniformly bounded
away from 1 for small t. The preliminary observation then implies that λc(ft) is
also uniformly bounded in t. By [11, Proposition 3.2] (see also [12, p. 35]), this
implies a uniform lower bound for λη(ft). Indeed, in the notation of [11, §3], we
have λη = λ5 = λ4 ≥ λ3 = λ1 ≥

√
λc.

Appendix B. Shiffman’s real analytic Hartogs’ extension theorem

Theorem B.1 ([18]). Let δ > 0 and 0 < r < R. Assume that

d : (−δ, δ)2 × {z ∈ C | |z| < R} → C

satisfies the following conditions:
• for each (s, t) ∈ (−δ, δ)2 the map z �→ d(s, t, z) is holomorphic in |z| < R;
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• for each |z| < r the map (s, t) �→ d(s, t, z) is real analytic in (−δ, δ)2.
Then d(s, t, z) is real analytic on (−δ, δ)2 × {|z| < R}.

Note that the above theorem fails if real analyticity is replaced by Ck for k ≤ ∞.
The theorem holds because |z| < r is not pluripolar in |z| < R. Shiffman’s result

is based on deep work of Siciak [19].
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