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PRODUCING SET-THEORETIC COMPLETE INTERSECTION
MONOMIAL CURVES IN Pn

MESUT ŞAHİN

(Communicated by Ted Chinburg)

Abstract. In this paper we describe an algorithm for producing infinitely
many examples of set-theoretic complete intersection monomial curves in Pn+1,
starting with a single set-theoretic complete intersection monomial curve in Pn.
Moreover we investigate the numerical criteria to decide when these monomial
curves can or cannot be obtained via semigroup gluing.

1. Introduction

It is well known that a variety in an n-space can be written as the intersection
of n hypersurfaces set theoretically; see [5]. It is then natural to ask whether
this number is minimal. A curve in n-space which is the intersection of n − 1
hypersurfaces is called a set-theoretic complete intersection, s.t.c.i. for short. If
moreover its defining ideal is generated by n−1 polynomials, then it is called an ideal
theoretic complete intersection, abbreviated i.t.c.i. Determining set-theoretic or
ideal-theoretic complete intersection curves is a classical and long-standing problem
in algebraic geometry. An associated problem is to give explicitly the equations of
the hypersurfaces involved. When the characteristic of the field K is positive, it is
known that all monomial curves are s.t.c.i.’s in P

n; see [8]. However the question
is still open in the characteristic zero case despite the tremendous progress in this
direction; see for example [6, 7, 16] and the references there for some recent activity.

The purpose of the present paper is to describe a method to produce infinitely
many s.t.c.i. monomial curves starting from one single s.t.c.i. monomial curve; see
section 4. Our approach has the side novelty of describing explicitly the equations
of hypersurfaces on which these new monomial curves lie as an s.t.c.i. On the
other hand, semigroup gluing being one of the most popular techniques of recent
research, we develop numerical criteria to determine when these new curves can or
cannot be obtained via gluing; see section 3. In the last section we discuss several
consequences and variations of these results.

2. Preliminaries

Throughout the paper, K will be assumed to be an algebraically closed field of
characteristic zero. By an affine monomial curve C(m1, . . . , mn), for some positive
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integers m1 < · · · < mn with gcd(m1, . . . , mn) = 1, we mean a curve with generic
zero (vm1 , . . . , vmn) in the affine n-space An, over K. By a projective monomial
curve C(m1, . . . , mn) we mean a curve with generic zero

(umn , umn−m1vm1 , . . . , umn−mn−1vmn−1 , vmn)

in the projective n-space Pn, over K. Note that C(m1, . . . , mn) is the projective
closure of C(m1, . . . , mn).

Whenever we write C ⊂ Pn to simplify the notation, we always mean a mono-
mial curve C(m1, . . . , mn) for some fixed positive integers m1 < · · · < mn with
gcd(m1, . . . , mn) = 1.

Let m be a positive integer in the numerical semigroup generated by m1, . . . , mn;
i.e. m = s1m1 + · · ·+ snmn, where s1, . . . , sn are some non-negative integers. Note
that in general there is no unique choice for s1, . . . , sn to represent m in terms of
m1, . . . , mn. We define the degree δ(m) of m to be the minimum of all possible
sums s1 + · · · + sn. If � is a positive integer with gcd(�, m) = 1, then we say that
the monomial curve C(�m1, . . . , �mn, m) in Pn+1 is an extension of C. We similarly
define C(�m1, . . . , �mn, m) to be an extension of C = C(m1, . . . , mn). We say that
an extension is nice if δ(m) > � and bad otherwise, adopting the terminology of [1].

When the integers m1, . . . , mn are fixed and understood in a discussion, we will
use C�,m to denote the extensions C(�m1, . . . , �mn, m) in Pn+1 and use C�,m to
denote the extensions C(�m1, . . . , �mn, m) in A

n+1.

2.1. Extensions of monomial curves in A
n. Let C = C(m1, . . . , mn) be an

s.t.c.i. monomial curve in An. In this section, we show that all extensions of
C, in the sense defined above, are s.t.c.i. For this we first define, for any ideal
I ⊂ K[x1, . . . , xn+1], Γ�(I) to be the ideal which is generated by all polynomials of
the form Γ�(g), where Γ�(g(x1, . . . , xn+1)) = g(x1, . . . , xn, x�

n+1), for all g ∈ I. We
use the following trick of M. Morales:

Lemma 2.1 ([9, Lemma 3.2]). Let Y� be the monomial curve C(�m1, . . . , �mn, mn+1)
in An+1. Then I(Y�) = Γ�(I(Y1)).

For any extension of C of the form C�,m, we obviously have I(C) ⊂ I(C�,m) and
I(C�,m) ∩ K[x1, . . . , xn] = I(C). The exact relation between the ideals of C and
C�,m are given by the following lemma.

Lemma 2.2. Let m = s1m1 + · · · + snmn. For any positive integer � with
gcd(�, m) = 1 we have I(C�,m) = I(C) + (G), where G = x1

s1 · · · xn
sn − x�

n+1.

Proof.
Case � = 1: We show that I(C1,m) = I(C) + (x1

s1 · · · xn
sn − xn+1).

For any polynomial f ∈ K[x1, . . . , xn+1], there are polynomials g ∈ K[x1, . . . , xn]
and h ∈ K[x1, . . . , xn+1] such that

f(x1, . . . , xn+1) = f(x1, . . . , xn, xn+1 − xs1
1 · · ·xsn

n + xs1
1 · · ·xsn

n )
= g(x1, . . . , xn) + (xs1

1 · · ·xsn
n − xn+1)h(x1, . . . , xn+1).

This identity implies that f ∈ I(C1,m) if and only if g ∈ I(C).
Case � > 1: Applying Lemma 2.1 with Y1 = C1,m we have

I(C�,m) = Γ�(I(C1,m)) by Lemma 2.1

= Γ�(I(C) + (xs1
1 · · ·xsn

n − xn+1)) by the first part of this lemma

= I(C) + (G). �
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This lemma provides an alternate proof to the following theorem, which is a
special case of [16, Theorem 2].

Theorem 2.3. If C ⊂ An is an s.t.c.i. monomial curve, then all extensions of
the form C�,m ⊂ An+1 are also s.t.c.i. monomial curves.

Proof. Since I(C�,m) = I(C) + (G) by Lemma 2.2, it follows that

Z(I(C�,m)) = Z(I(C) + (G)),
C�,m = Z(I(C)) ∩ Z(G),

where Z(·) denotes the zero set as usual. Hence C�,m is an s.t.c.i. if C is also. �

3. Extensions that cannot be obtained by gluing

If C(m1, . . . , mn+1) is a monomial curve in Pn+1, then there is a corresponding
semigroup NT , where

T = {(mn+1, 0), (mn+1 − m1, m1), . . . , (mn+1 − mn, mn), (0, mn+1)} ⊂ N
2.

Let T = T1 � T2 be a decomposition of T into two disjoint proper subsets.
Without loss of generality assume that the cardinality of T1 is less than or equal to
the cardinality of T2. NT is called a gluing of NT1 and NT2 if there exists a non-zero
α ∈ NT1 ∩ NT2 such that Zα = ZT1 ∩ ZT2. Following the literature we write I(T )
for the ideal of the toric variety corresponding to the affine semigroup NT . Note
that if NT is a gluing of NT1 and NT2, then we have I(T ) = I(T1) + I(T2) + (Gα),
where Gα is the relation polynomial; see [16].

We note that the condition Zα = ZT1 ∩ ZT2 is not fulfilled when T1 is not a
singleton. Hence we formulate this observation to be the following:

Proposition 3.1. If T1 is not a singleton, then NT is not a gluing of NT1 and
NT2.

Proof. If T1 is not a singleton, then neither is T2 by the assumption on the cardi-
nalities of these sets. Thus ZT1 and ZT2 are submodules of Z2 of rank two each.
It is elementary to show that their intersection has rank two. For instance, let r
and t be generators of ZT1. Then the images of r and t have finite order in the
finite group Z

2/ZT2, meaning that ar and bt are in ZT2 for some positive integers
a and b. Then the rank two Z-module generated by ar and bt is contained in the
intersection ZT1 ∩ZT2, which must be of rank two itself, being a submodule of Z2.

Hence the intersection cannot be generated by a single element. Thus NT is not
a gluing of NT1 and NT2. �

This proposition means that the only way to show that an extension in P
n+1 is

an s.t.c.i. via gluing is to apply the technique to a projective monomial curve in
Pn. Thus we discuss the case where T1 is a singleton. But if T1 is {(mn+1, 0)} or
{(0, mn+1)}, then NT1 ∩ NT2 = {(0, 0)}. So it is sufficient to deal with the case
where T1 is of the form {(mn+1 − mi, mi)}, for some i ∈ {1, . . . , n}.

From now on, ∆i denotes the greatest common divisor of the positive inte-
gers m1, . . . , m̂i, . . . , mn+1 (mi is omitted), for i = 1, . . . , n. Note that we have
gcd(∆i, mi) = 1, for all i = 1, . . . , n, since gcd(m1, . . . , mn+1) = 1.

Proposition 3.2. If T1 = {(mn+1 − mi0 , mi0)} for some fixed i0 ∈ {1, . . . , n},
then NT is a gluing of NT1 and NT2 if and only if there exist non-negative integers
dj , for j = 1, . . . , î0, . . . , n + 1, satisfying the following two conditions:
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(I) ∆i0mi0 =
n+1∑
j=1
j �=i0

djmj and

(II) ∆i0 ≥
n+1∑
j=1
j �=i0

dj .

Proof. Let α = ∆i0(mn+1 − mi0 , mi0). We first show that ZT1 ∩ ZT2 = Zα. Since
∆i0 = gcd(m1, . . . , m̂i0 , . . . , mn+1), there are zj ∈ Z, for j = 1, . . . , î0, . . . , n + 1,
such that ∆i0 =

∑
j �=i0

zjmj . So ∆i0mi0 =
∑

j �=i0
mi0zjmj , which implies that

∆i0(mn+1 −mi0 , mi0) =
∑
j �=i0

mi0zj(mn+1 −mj , mj) + (∆i0 −
∑
j �=i0

mi0zj)(mn+1, 0).

Thus α = ∆i0(mn+1 − mi0 , mi0) ∈ ZT1 ∩ ZT2, implying Zα ⊆ ZT1 ∩ ZT2.
For the converse inclusion, take c(mn+1 − mi0 , mi0) ∈ ZT1 ∩ ZT2, for some

c ∈ Z. Then, obviously we have c(mn+1 − mi0 , mi0) ∈ ZT2, which implies that
cmi0 ∈ Z({m1, . . . , m̂i0 , . . . , mn+1}) = Z∆i0 . So ∆i0 divides cmi0 . If ∆i0 > 1, then
∆i0 divides c, since it does not divide mi0 (remember that gcd(∆i0 , mi0) = 1). If
∆i0 = 1, obviously ∆i0 divides c. Thus, c(mn+1 − mi0 , mi0) is a multiple of α and
ZT1 ∩ ZT2 ⊆ Zα.

Since ZT1 ∩ ZT2 = Zα, it will follow by definition that NT is a gluing of NT1

and NT2 if and only if α ∈ NT1 ∩ NT2. But, if α ∈ NT1 ∩ NT2, then there exist
non-negative integers dj and d for which we have

∆i0(mn+1 − mi0 , mi0) =
∑
j �=i0

dj(mn+1 − mj , mj) + d(mn+1, 0),

(∆i0mn+1 − ∆i0mi0 , ∆i0mi0) = ([d +
∑
j �=i0

dj ]mn+1 −
∑
j �=i0

djmj ,
∑
j �=i0

djmj).

Thus, ∆i0mi0 =
∑

j �=i0
djmj and d = ∆i0 −

∑
j �=i0

dj . Since d ≥ 0, we see that the
conditions (I) and (II) hold. On the other hand, if (I) and (II) hold, then we observe
that α ∈ NT1 ∩NT2, by the equalities above. Thus, the condition α ∈ NT1 ∩NT2 is
equivalent to the existence of the non-negative integers dj satisfying (I) and (II). �

As a direct consequence of Proposition 3.2, we get the following:

Corollary 3.3. If ∆i0 = 1, for some fixed i0 ∈ {1, . . . , n}, then NT cannot be
obtained as a gluing of NT1 and NT2, where T1 = {(mn+1 − mi0 , mi0)} and T2 =
T − T1.

Proof. We apply Proposition 3.2. If (I) does not hold, we are done. If (I) does

hold, then we have two cases: either
n+1∑
j=1
j �=i0

dj = 1 or
n+1∑
j=1
j �=i0

dj > 1. The first case forces

mi0 = mj for some j �= i0, from (I), but this contradicts the way we choose mi’s.
The second case causes (II) to fail, as ∆i0 = 1. �

Example 3.4. If we consider the curve C(2, 3, 4, 8) ⊂ P
4 and take i0 = 2, then

the conditions (I) and (II) of the above proposition hold. Thus this curve can be
obtained by gluing.
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However, if we consider the monomial curve C(2, 4, 7, 8) ⊂ P4, then for every
choice of i0, either ∆i0 = 1 or else condition (II) of the above proposition fails.
Hence this curve cannot be obtained by gluing.

Corollary 3.5. Let C�,m ⊂ P
n+1 be a bad extension of C = C(m1, . . . , mn), i.e.

� ≥ δ(m). If C is an s.t.c.i. on the hypersurfaces f1 = · · · = fn−1 = 0, then
C�,m can be shown to be an s.t.c.i. on the hypersurfaces f1 = · · · = fn−1 = 0
and F = x�

n+1 − x
�−δ(m)
0 xs1

1 · · ·xsn
n = 0 by the technique of gluing, where m =

s1m1 + · · · + snmn and s1 + · · · + sn = δ(m).

Proof. Since m1 < · · · < mn and m = s1m1 + · · · + snmn ≤ δ(m)mn ≤ �mn, it
follows that �mn is the biggest number among {�m1, . . . , �mn, m}. The extension
C�,m corresponds to the semigroup NT , where T = T1 ∪ T2, T1 = {(�mn − m, m)}
and T2 = {(�mn, 0), (�mn − �m1, �m1), . . . , (�mn − �mn−1, �mn−1), (0, �mn)}. Since
gcd(�m1, . . . , �mn) = �, �m = s1(�m1)+ · · ·+sn(�mn) and � ≥ δ(m), NT is a gluing
of NT1 and NT2, by Proposition 3.2. Since I(T ) = I(T1) + I(T2) + (F ), the claim
follows from [16, Theorem 2]. �

4. The main results

Since bad extensions are shown to be an s.t.c.i. by the technique of gluing (see
Corollary 3.5 above), we study nice extensions of monomial curves in this section.
By using the theory developed in the previous section, one can check which of these
extensions can be obtained by the technique of gluing semigroups.

Throughout this section we will assume that
• C = C(m1, . . . , mn) ⊂ Pn is an s.t.c.i. on f1 = · · · = fn−1 = 0.
• m = s1m1 + · · ·+ snmn for some nonnegative integers s1, . . . , sn such that

s1 + · · · + sn = δ(m).
• � is a positive integer with gcd(�, m) = 1.
• δ(m) > �.

Remark 4.1. Since C is an s.t.c.i. on f1 = · · · = fn−1 = 0, its affine part C is
an s.t.c.i. on g1 = · · · = gn−1 = 0, where gi(x1, . . . , xn) = fi(1, x1, . . . , xn) is the
dehomogenization of fi, i = 1, . . . , n−1. It follows from Theorem 2.3 that C�,m is an
s.t.c.i. on the hypersurfaces gi = 0 and G = x1

s1 · · · xn
sn − x�

n+1 = 0. So the ideal
of the affine curve C�,m contains gi’s and G. Hence the ideal of the projective closure
of C�,m must contain (at least) fi’s and F , where F is the homogenization of G.
Now, since f1, . . . , fn−1, F ∈ I(C�,m), we always have C�,m ⊆ Z(f1, . . . , fn−1, F ).

4.1. The case where fi’s are general, but m is special. In this section we
assume that m is a multiple of mn; i.e. m = snmn, where sn is a positive integer.
Note that (s1, . . . , sn−1) = (0, . . . , 0) and δ(m) = sn in this case.

Theorem 4.2. Let C ⊂ Pn be an s.t.c.i. on the hypersurfaces f1 = · · · = fn−1 = 0,
gcd(�, snmn) = 1 and sn > �. Then the nice extensions C�,snmn

in Pn+1 are
s.t.c.i.’s on f1 = · · · = fn−1 = F = 0, where F = xsn

n − xsn−�
0 x�

n+1.

Proof. The fact that these nice extensions are s.t.c.i.’s can be seen easily by [14,
Theorem 3.4] taking b1 = m1, . . . , bn−1 = mn−1, d = mn and k = (sn − �)mn. In
addition to this, we provide here the equation of the binomial hypersurface F = 0
on which these extensions lie as s.t.c.i. monomial curves.
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Since C�,snmn
⊆ Z(f1, . . . , fn−1, F ), we need to get the converse inclusion. Take

a point P = (p0, . . . , pn, pn+1) ∈ Z(f1, . . . , fn−1, F ). Then, since fi ∈ K[x0, . . . , xn],
we have fi(P ) = fi(p0, . . . , pn) = 0, for all i = 1, . . . , n−1. Since Z(f1, . . . , fn−1) =
C in Pn by assumption, the last observation implies that

(p0, . . . , pn) = (umn , umn−m1vm1 , . . . , umn−mn−1vmn−1 , vmn).

If p0 = 0, then u = 0, yielding that (p0, . . . , pn−1, pn) = (0, . . . , 0, pn). Since
sn > �, we also have pn = 0 by F (0, . . . , 0, pn, pn+1) = pn

sn − psn−�
0 p�

n+1 = 0. So
we observe that (p0, . . . , pn, pn+1) = (0, . . . , 0, 1), which is on the curve C�,snmn

. If
p0 = 1, then (1, p1, . . . , pn, pn+1) ∈ Z(g1, . . . , gn−1, G) by the assumption, where gi

and G are polynomials defined in Remark 4.1. Since C�,snmn
is an s.t.c.i. on the

hypersurfaces g1 = · · · = gn−1 = 0 and G = 0, it follows that (1, p1, . . . , pn, pn+1) ∈
C�,snmn

⊂ C�,snmn
. �

4.2. The case where fi’s are special and m is general. Assume now that m
is not a multiple of mn, i.e. (s1, . . . , sn−1) �= (0, . . . , 0). Recall that we choose
s1, . . . , sn in the representation of m = s1m1 + · · · + snmn in such a way that
s1 + · · ·+ sn is minimum, i.e. s1 + · · ·+ sn = δ(m). First we prove a lemma where
no restriction on the fi is required.

Lemma 4.3. Let C ⊂ Pn be an s.t.c.i. on f1 = · · · = fn−1 = 0 and δ(m) > �. Then
Z(f1, . . . , fn−1, F ) = C�,m∪L ⊂ Pn+1, where F = x1

s1 · · · xn
sn −x

δ(m)−�
0 x�

n+1 and
L is the line x0 = · · · = xn−1 = 0.

Proof. We first prove C�,m∪L ⊆ Z(f1, . . . , fn−1, F ). By Remark 4.1, it is sufficient
to see that L ⊆ Z(f1, . . . , fn−1, F ). For this, we take a point P = (p0, . . . , pn+1)
on the line L, i.e., P = (0, . . . , 0, pn, pn+1). Since (s1, . . . , sn−1) �= (0, . . . , 0) and
δ(m) > �, we see that F (P ) = 0. Letting v ∈ K be any mn-th root of pn, we get
(0, . . . , 0, pn) = (0, . . . , 0, vmn) ∈ C = Z(f1, . . . , fn−1). Since the polynomials fi are
in K[x0, . . . , xn], it follows that fi(P ) = fi(0, . . . , 0, pn) = 0, for all i = 1, . . . , n−1.
Thus P ∈ Z(f1, . . . , fn−1, F ).

For the converse inclusion, take P = (p0, . . . , pn, pn+1) ∈ Z(f1, . . . , fn−1, F ).
Then, for all i = 0, . . . , n − 1, we get fi(p0, . . . , pn) = fi(P ) = 0, implying that

(p0, . . . , pn) = (umn , umn−m1vm1 , . . . , umn−mn−1vmn−1 , vmn).

If p0 = 0, then u = 0, yielding that (p0, . . . , pn) = (0, . . . , 0, pn). Thus, we get
P = (p0, . . . , pn, pn+1) = (0, . . . , 0, pn, pn+1) ∈ L. If p0 = 1, then by assumption
we know that P = (1, p1, . . . , pn, pn+1) ∈ Z(g1, . . . , gn−1, G). Since C�,m is an
s.t.c.i. on the hypersurfaces g1 = · · · = gn−1 = 0 and G = 0, it follows that
P = (1, p1, . . . , pn, pn+1) ∈ C�,m ⊂ C�,m. �

To get rid of L in the intersection of the hypersurfaces f1 = · · · = fn−1 = 0
and F = 0, we modify the F = x1

s1 · · · xn
sn − x

δ(m)−�
0 x�

n+1 of Lemma 4.3, as in
the work of Bresinsky (see [4]), for some special choice of f1, . . . , fn−1. In this way
we construct a new polynomial F ∗ from F such that Z(f1, . . . , fn−1, F

∗) = C�,m,
where F ∗ is a polynomial of the form

F ∗ = xα
n + xβ

0H(x0, . . . , xn+1),

where β is a positive integer.
Note that when x0 = 0, the vanishing of F ∗ implies that xn = 0. It follows from

the last part of the proof of Lemma 4.3 that this property of F ∗ ensures that we
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have a point at infinity in the intersection of f1 = · · · = fn−1 = 0 and F ∗ = 0
instead of a line.

The construction of F ∗ can be described as follows. We first assume that fi =
xai

i − xai−bi
0 xbi

n = 0, where ai > bi are positive integers, for all i = 1, . . . , n− 1. Let
p = a1 · · · an−1 and pi = bi

ai
p, for i = 1, . . . , n − 1. Take the p-th power of F , and

for every occurrence of xai
i substitute xai−bi

0 xbi
n for all i = 1, . . . , n − 1. Then we

have

F p = xγ
0xα

n + x
δ(m)−�
0 H(x0, . . . , xn+1) mod(f1, . . . , fn−1)

= xγ
0 [xα

n + x
δ(m)−�−γ
0 H(x0, . . . , xn+1)] mod(f1, . . . , fn−1),

where γ =
∑n−1

i=1 (p − pi)si, α = psn +
∑n−1

i=1 pisi and H is a polynomial. Letting

F ∗(x0, . . . , xn+1) = xα
n + x

δ(m)−�−γ
0 H(x0, . . . , xn+1),

we observe that

(4.1) F p(x0, . . . , xn+1) = xγ
0F ∗(x0, . . . , xn+1) mod(f1, . . . , fn−1).

Recall that m is an element of the numerical semigroup generated by m1, . . . , mn;
i.e. m = s1m1 + · · · + snmn with s1 + · · · + sn = δ(m). If m is large enough that
sn > � +

∑n−1
i=1 (p − pi − 1)si (or equivalently δ(m) − � − γ > 0), then F ∗ is the

required polynomial. (Otherwise, F ∗ may not be a polynomial.) Hence we conclude
the following:

Theorem 4.4. Let p, pi, fi and F ∗ be as above. Assume that m is chosen so that
sn > � +

∑n−1
i=1 (p − pi − 1)si. Then, for all � < δ(m) with gcd(�, m) = 1, the nice

extensions C�,m ⊂ P
n+1 are s.t.c.i.’s on f1 = · · · = fn−1 = 0 and F ∗ = 0.

Proof. We will show that C�,m is an s.t.c.i. on f1 = · · · = fn−1 = 0 and F ∗ = 0. To
do this, take a point P = (p0, . . . , pn+1) ∈ C�,m. Then, F (P ) = 0 and fi(P ) = 0,
for all i = 1, . . . , n − 1, since Z(f1, . . . , fn−1, F ) = C�,m ∪ L, by Lemma 4.3. From
equation (4.1) it follows that F ∗(P ) = 0 or p0 = 0. Since P is a point on the
monomial curve C�,m, it can be parameterized as follows:

(um, um−�m1v�m1 , . . . , um−�mnv�mn , vm).

So if p0 = 0, we get u = 0 and thus pi = 0, for all i = 1, . . . , n. Therefore
P = (0, . . . , 0, 1), and hence F ∗(P ) = 0 in any case.

Conversely, let P = (p0, . . . , pn+1) ∈ Z(f1, . . . , fn−1, F
∗). If p0 = 0, then pi = 0

by fi(P ) = 0, for all i = 1, . . . , n − 1. Since δ(m) − � − γ > 0, we have pn = 0
by F ∗(P ) = 0. Thus P = (0, . . . , 0, 1), which is always on the curve C�,m. If
p0 = 1, then C is an s.t.c.i. on the hypersurfaces given by gi = xai

i − xbi
i+1 = 0,

for i = 1, . . . , n − 1, by the assumption. Hence, Theorem 2.3 implies that C�,m

is an s.t.c.i. on g1 = · · · = gn−1 = 0 and G = x1
s1 · · · xn

sn − x�
n+1 = 0. Thus

P = (1, p1, . . . , pn+1) ∈ C�,m ⊂ C�,m. �

Remark 4.5. The nice extensions in Theorem 4.4 can also be shown to be s.t.c.i.’s
by using [14, Theorem 3.4]. But to show that the hypotheses of [14, Theorem 3.4]
are satisfied by these extensions is much more difficult than the proof here. As a
byproduct we also constructed here the hypersurface F ∗ = 0 on which these nice
extensions are s.t.c.i.’s.
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Example 4.6. We start with C = C(3, 4, 6) ⊂ P3. Let � = 1 and m = 6s + 7, for
some positive integer s. Then δ(m) = s + 2, s1 = s2 = 1 and s3 = s. Thus we get
the nice extensions C1,6s+7 = C(3, 4, 6, 6s+7) ⊂ P4. Since ∆1 = gcd(4, 6, 6s+7) =
1, ∆2 = gcd(3, 6, 6s + 7) = 1 and ∆3 = gcd(3, 4, 6s + 7) = 1, it follows from
Corollary 3.3 that these curves cannot be obtained by gluing. Using the software
Macaulay, it is easy to see that the ideal of C1,6s+7 is minimally generated by the
polynomials

f1 = x2
1 − x0x3,

f2 = x3
2 − x0x

2
3,

f3 = xs+3
3 − xs−1

0 x1x
2
2x4,

f4 = x2x
s+1
3 − xs

0x1x4,

f5 = x1x
s+2
3 − xs

0x
2
2x4,

F = x1x2x
s
3 − xs+1

0 x4.

Since C(3, 4, 6) ⊂ P3 is an s.t.c.i. on the surfaces f1 = 0 and f2 = 0, it follows from
Theorem 4.4 that C1,6s+7 is an s.t.c.i. on f1 = 0, f2 = 0 and

F ∗ = x6s+7
3 − 6xs−1

0 x1x
2
2x

5s+4
3 x4 + 15x2s

0 x2x
4s+4
3 x2

4 − 20x3s
0 x1x

3s+3
3 x3

4

+15x4s
0 x2

2x
2s+1
3 x4

4 − 6x5s
0 x1x2x

s
3x

5
4 + x6s+1

0 x6
4 = 0,

provided that s > 2.

5. Variations and consequences of the main results

In this section, we give some consequences of Theorem 4.2, and hence all the
notation is as in that theorem. We also include some theorems about nice extensions
of projective monomial curves that are variations of Theorem 4.4.

5.1. Consequences of Theorem 4.2. Since arithmetically Cohen-Macaulay
monomial curves are s.t.c.i.’s in P3 (see [12]), we get the following corollary as
a consequence of Theorem 4.2.

Corollary 5.1. Let C(m1, m2, m3) be an arithmetically Cohen-Macaulay monomial
curve in P

3. Let m = s3m3, gcd(�, m) = 1 and δ(m) = s3 > �. Then the nice
extensions C�,s3m3 = C(�m1, �m2, �m3, s3m3) are all s.t.c.i.’s in P4. �

Remark 5.2. There are very few examples of s.t.c.i. monomial curves in Pn, where
n > 3. We know that the rational normal curve C(1, 2, . . . , n) is an s.t.c.i. in Pn,
for any n > 0 (see [11, 14]). Applying Theorem 4.2 to C(1, 2, . . . , n) ⊂ Pn, we can
produce infinitely many new examples of s.t.c.i. monomial curves in P

n+1:

Corollary 5.3. For all positive integers �, n and s with gcd(�, sn) = 1, the mono-
mial curves C(�, 2�, . . . , n�, sn) ⊂ Pn+1 are s.t.c.i.’s.

Proof. Let m = sn. Clearly δ(m) = s. If s ≤ �, then the curves C�,m =
C(�, 2�, . . . , n�, sn) ⊂ Pn+1 are bad extensions of C(1, 2, . . . , n) ⊂ Pn. Hence they
are s.t.c.i.’s by Corollary 3.5. If s > �, then these curves are nice extensions of
C(1, 2, . . . , n) ⊂ Pn. Therefore they are s.t.c.i.’s by Theorem 4.2. �

In [10], all complete intersection (i.t.c.i.) lattice ideals are characterized by gluing
semigroups. But, for a given projective monomial curve it is not easy to find two
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subsemigroups whose ideals are complete intersections. So, as another application
of Theorem 4.2 we can produce infinitely many i.t.c.i. monomial curves:

Proposition 5.4. If C ⊂ Pn is an i.t.c.i., then the nice extensions C�,snmn
⊂ Pn+1

are i.t.c.i.’s for all positive integers � and sn with sn > �, gcd(�, snmn) = 1.

Proof. Since C is an s.t.c.i. on the binomial hypersurfaces f1 = · · · = fn−1 = 0, it
follows from Theorem 4.2 that C�,snmn

is an s.t.c.i. on f1 = · · · = fn−1 = 0 and
F (x0, . . . , xn+1) = xsn

n −xsn−�
0 x�

n+1 = 0. Since these are all binomial, the monomial
curves C�,snmn

are i.t.c.i.’s on the same hypersurfaces, by [2, Theorem 4]. �

Corollary 5.5. The monomial curves C(�m1, �m2, s2m2) are i.t.c.i.’s in P3, for
all positive integers m1, m2, � and s2 with s2 > �, gcd(�, s2m2) = 1.

Proof. Let m = s2m2. Then δ(m) = s2 and C�,m = C(�m1, �m2, s2m2) is a nice
extension of C(m1, m2), by the assumption s2 > �. Since C(m1, m2) is an i.t.c.i.
on xm2

1 − xm2−m1
0 xm1

2 = 0, it follows from Proposition 5.4 that the nice extensions
C(�m1, �m2, s2m2) are i.t.c.i.’s on xm2

1 −xm2−m1
0 xm1

2 = 0 and xs2
2 −xs2−�

0 x�
3 = 0. �

To produce infinitely many examples of i.t.c.i. curves, our method starts from
just one i.t.c.i. curve, whereas the semigroup gluing method produces only one
example starting from one i.t.c.i. The following example illustrates this point.

Example 5.6. From Corollary 5.5, we know that C(1, 2, 4) is an i.t.c.i. on

f1 = x2
1 − x0x2 = 0 and f2 = x2

2 − x0x3 = 0.

Take two positive integers � and s with s > �, gcd(�, 4s) = 1. Then the mono-
mial curves C(�, 2�, 4�, 4s) ⊂ P

4 are nice extensions of C(1, 2, 4) ⊂ P
3. Thus, by

Proposition 5.4, the monomial curves C(�, 2�, 4�, 4s) are i.t.c.i.’s on

f1 = x2
1 − x0x2 = 0, f2 = x2

2 − x0x3 = 0 and F = xs
3 − xs−�

0 x�
4 = 0.

The nice extensions C(�, 2�, 4�, 4s) can also be obtained by gluing subsemigroups
generated by T1 = {(4s− �, �)} and T2 = {(4s, 0), (4s−2�, 2�), (4s−4�, 4�), (0, 4s)}.
But in this case one has to know that C(�, 2�, 2s) is an i.t.c.i. for each � and s. In
other words, starting with the fact that C(1, 2, 4) is an i.t.c.i., the gluing method
can only produce C(1, 2, 4, 8) as an i.t.c.i. monomial curve.

5.2. Variations of Theorem 4.4. Recall that our method starts with a monomial
curve C = Z(f1, . . . , fn−1) in Pn and produces infinitely many nice extensions
C�,m = Z(f1, . . . , fn−1, F

∗) in P
n+1. Since the construction of F ∗ depends on the

choice of f1, . . . , fn−1, it is possible to start with another curve C = Z(f1, . . . , fn−1)
in P

n and obtain new families of nice extensions. In this section we provide two
examples of this sort. For instance, if we assume that C is an s.t.c.i. on the
hypersurfaces fi = xai

i − xai−bi
0 xbi

i+1 = 0, where ai > bi are positive integers, i =
1, . . . , n− 1, then under some suitable conditions we obtain other families of s.t.c.i.
nice extensions. Let p = a1 · · · an−1, q0 = b1 · · · bn−1 and qi = a1 · · · aibi+1 · · · bn−1,
i = 1, . . . , n − 2. The first variation is the following:
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Theorem 5.7. Let p, q0, . . . , qn−2 be as above. For all m which give rise to sn >

� +
∑n−2

i=0 (p − qi − 1)si+1 and for all � with � < δ(m) and gcd(�, m) = 1, the nice
extensions C�,m ⊂ Pn+1 are s.t.c.i.’s on f1 = · · · = fn−1 = F ∗ = 0. �

Now, we give another variation where m = simi + sjmj , for i, j ∈ {1, . . . , n}.
For notational convenience we take i = 1 and j = n.

Theorem 5.8. Let C ⊂ Pn be an s.t.c.i. on the hypersurfaces given by

f1 = xa
1 − xa−b

0 xb
n = 0,

fi = xai
i + xbi

0 A(x1, . . . , xn) + xci
1 B(x2, . . . , xn) = 0,

where a, b, a− b, ai, bi, and ci are positive integers, for i = 2, . . . , n−1, and where
A and B are some polynomials. For all m which give rise to sn > � + (a− b− 1)s1

and for all � with � < δ(m) and gcd(�, m) = 1, the nice extensions C�,m ⊂ Pn+1

are s.t.c.i.’s on f1 = · · · = fn−1 = F ∗ = 0. �

Acknowledgements

The author would like to extend his sincere thanks to F. Arslan, Ö. Kişisel,
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