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LINEARLY APPROXIMATABLE FUNCTIONS

THIERRY DE PAUW AND AMOS KOELLER

(Communicated by Tatiana Toro)

Abstract. The notion of uniform linear approximatability generalizes that of
being continuously differentiable. It occurs, e.g., in viscosity solutions of some
degenerate partial differential equations. We establish the Hölder continuity
of uniformly linearly approximatable functions, and we show that functions
which are nowhere linearly approximatable form a residual collection of the
appropriate Hölder space. Finally, we prove an analog of the implicit function
theorem applied to level sets.

1. Introduction

We say that u : R
m → R is linearly ε-approximatable at x ∈ R

m at scale r > 0
if there exists a vector e ∈ R

m such that

(1) |u(x + h) − u(x) − 〈e, h〉| � εr

whenever h ∈ B(0, r). For instance, if u is differentiable at x one can take e =
∇u(x) and r > 0 small enough depending upon ε > 0. Points where a given
Lipschitzian u is linearly ε-approximatable occur in a set whose complement is
small in a sense more restricted than being negligible with respect to the Lebesgue
measure, thus providing a version of Rademacher’s Theorem; see e.g. [5] (here
m � 2). Other instances of linearly ε-approximatable functions have occurred
recently as ∞-harmonic functions; see [3, 10] and [1] for a survey. These are viscosity
solutions of the equation 〈∇|∇u|2,∇u〉 = 0.

In general, though, the existence of an ε-gradient e = e(ε) at scale r = r(ε)
(at a fixed point x ∈ R

m) as in (1) does not imply the convergence of e(ε) to a
limit as ε → 0; see Example 2.2. Despite this potential unsettling behavior of ε-
gradients, the linear ε-approximatability of u at every point x ∈ S of some compact
set S ⊂ R

m and for every uniformly small scale 0 < r � r0 implies the continuity
of u restricted to S together with an estimate of its oscillation. In fact we show in
Theorem 2.7 that for every 0 < α < 1 there exists C = C(u, S, ε, r0, α) such that

|u(y) − u(x)| � C|y − x|α

whenever x, y ∈ S. This conclusion is reached regardless of the value of ε > 0.
Next we show that within the space of functions Hölder continuous with respect

to each exponent 0 < α < 1 the collection of those which nowhere are linearly

Received by the editors April 10, 2008.
2000 Mathematics Subject Classification. Primary 26B35, 26B10, 46E10.
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approximatable is residual, thus generalizing a classical result due independently
to S. Banach [2] and S. Mazurkiewicz [7]. Theorem 3.3 is stronger than its classical
analog because linear approximatability is weaker than differentiability, and because
the relevant topology turning the collection of Hölder continuous functions into a
complete metric space involves their oscillation.

The notion of linearly ε-approximatability of u on uniformly small scales can
be regarded as a generalization of the concept of being continuously differentiable.
Indeed the latter implies a Lipschitz estimate for u whereas, as we have seen, the
former implies Hölder estimates for u. A consequence of this is a weak analog of
the implicit function theorem. In case u is continuously differentiable at x and
∇u(x) �= 0, the level set {y : u(y) = u(x)} is, in a neighborhood of x, a submanifold
of dimension m−1. In case u is linearly ε-approximatable on uniformly small scales
and there are ε-gradients with length uniformly bounded away from zero, the level
set {y : u(y) = u(x)} is, in a neighborhood of x, Hölder homeomorphic to an
(m − 1)-dimensional ball; see Theorem 4.1. We obtain this result as a corollary of
E.R. Reifenberg’s topological disk Theorem, [9], whence the need for 0 < ε < ε(m)
to be small enough according to the dimension m.

2. Hölder continuity

Definition 2.1. Let U ⊂ R
m be open, B(x, r) ⊂ U , u : U → R, and ε > 0. We

say that u is linearly ε-approximatable at (x, r) if there exists e ∈ R
m such that

|u(x + h) − u(x) − 〈e, h〉| � εr

whenever h ∈ B(0, r). Such an e is called an ε-approximate gradient of u at (x, r)
and we let

grad(u, x, r, ε) := R
m ∩ {e : |u(x + h) − u(x) − 〈e, h〉| � εr for every h ∈ B(0, r)} .

In case u is linearly ε-approximatable at (x, r) we also define

|grad|(u, x, r, ε) := sup{|e| : e ∈ grad(u, x, r, ε)} .

Furthermore we say that u is linearly approximatable at x if for every ε > 0 there
exists r > 0 such that u is linearly ε-approximatable at (x, r).

One observes that u is differentiable at x if and only if u is linearly approximat-
able at x and one can take e in the definition independently of ε. Therefore the
cases of interest arise when e does not approach a limit as ε → 0. The following
example is due to D. Preiss as reported in [3].

Example 2.2. Let m = 1 and u(x) = x sin (ln |ln |x||), x ∈ R \ {0}, u(0) = 0. It is
an easy matter to check that u is Lipschitzian when restricted to some neighborhood
of 0. Furthermore, given h > 0 one sees that

u(h) − u(0)
rj

= h sin (ln |ln rj + lnh|)

whenever rj > 0, j = 1, 2, . . .. Given −1 � t � 1 and choosing properly the
sequence rj → 0 as j → ∞ one can readily achieve

sup
{∣∣∣∣u(h) − u(0)

rj
− th

∣∣∣∣ : h ∈ K

}
→ 0 as j → ∞
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for every compact K ⊂ R, according to Ascoli’s Theorem. In other words, for
every ε > 0 and every −1 � t � 1 there exists r > 0 such that u is linearly
ε-approximatable at (0, r) and t ∈ grad(u, 0, r, ε).

Interesting conclusions can be drawn when the condition of linear approximata-
bility is met uniformly in x, as we will show in this section. We distinguish between
the case when |grad|(u, x, r, ε) is bounded as r varies, and the case when it is not.

Theorem 2.3. Assume that U ⊂ R
m is an open ball, u : U → R and 0 < r0 � ∞.

The following conditions are equivalent.
(A) u is Lipschitzian in U .
(B) There are ε > 0 and C > 0 such that for every x ∈ U and 0 < r <

min{r0, dist(x, Rm\U)} the function u is linearly ε-approximatable at (x, r)
and |grad|(u, x, r, ε) � C.

Proof. Assume that u is Lipschitzian. Let ε := Lip u and C := 2 Lipu. Given x ∈ U
and r > 0 such that B(x, r) ⊂ U we notice that |u(x + h)− u(x)| � (Lipu)|h| � εr
whenever h ∈ B(0, r). This shows that u is linearly ε-approximatable at (x, r)
(letting e = 0 in the definition). Next if e ∈ R

m \ {0} is such that |u(x + h) −
u(x) − 〈e, h〉| � εr for every h ∈ B(0, r), then, letting h := r|e|−1e, one infers that
|e| � 2ε. This means that |grad|(u, x, r, ε) � C and completes the proof that (A)
implies (B).

In order to show that (B) implies (A) we let x, y ∈ U be such that r := |x−y| < r0

and we assume that B(x, r) ⊂ U . If e is an ε-approximate gradient of u at (x, r),
then |e| � C by our assumption, whence |u(y) − u(x)| � |〈e, y − x〉| + εr � (C +
ε)|x − y|. It therefore follows from the convexity of U that Lipu � C + ε. �

Having shown that in some cases linearly ε-approximatable functions are Lip-
schitzian, it is interesting to know whether or not all linearly ε-approximatable
functions are Lipschitzian. The following example shows that they are not.

Example 2.4. Let U = (− 1
2 , 3

2 ) ⊂ R, S = [0, 1] ⊂ R, ε > 0 and R < 1
12 . Take

r0 = 1
2 and define u : U → R by

u(x) = xR(1 − ε(2 ln(2))−1 ln(|x|)).
We first observe that the derivative

u′(x) = R(1 − ε(2 ln(2))−1(ln(|x|) + 1))

for x �= 0. Since u′(x) → ∞ as x → 0 it follows that neither u nor u � S are
Lipschitzian.

u is, however, linearly ε-approximatable. This can be checked by selecting the
elements of grad(u, x, r, ε) to be linear approximations of the function between
dyadic points at an appropriate scale. That is, it can be checked that, for x ∈ S
and r ∈ (0, r0] the following choices of ex,r ∈ grad(u, x, r, ε) are valid:

For x = 0 and r ∈ (0, r0], r ∈ (2−j−1, 2−j ] for some j ∈ N. In this case we can
take

ex,r =
u(2−j) − u(0)

2−j
= R

(
1 +

jε

2

)
.

For x = 2−j and r ∈ (0, 3 · 2−j ] for some j ∈ N we can take

ex,r =
u(x) − u(x/2)

x/2
=

u(2−j) − u(2−j−1)
2−j−1

= R − εR(j − 1)
2

.
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For x = 2−j and r ∈ (3 · 2−j , r0] for some j ∈ N, x + r ∈ (2−k−1, 2−k] for some
k ∈ N and we can take

ex,r =
u(2−k) − u(2−k−1)

2−k−1
= R − εR(k − 1)

2
.

Finally, in any other case, x ∈ (2−j−1, 2−j ] for some j ∈ N and we can take

ex,r = e2−j ,r.

We can, though, show that linearly ε-approximatable functions do have some
degree of regularity. Indeed, we now show that for any ε > 0 and any 0 < α <
1, any linearly ε-approximatable function is Hölder continuous with exponent α.
Initially this result may seem a little unexpected since the Reifenberg Theorem only
provides for Hölder continuity with exponent α for sufficiently small ε, ε < ε(α, m).
Alternatively, we note that if u is ‘shallow’, then it is in any case Lipschitz and
Hölder, but if it is ‘steep’, then the linear ε-approximation property says that we
are ‘vertically’ within ε from an affine plane, which implies that a point on the
graph is actually much closer to the affine space than ε, the vertical distance. That
is, the analogous Reifenberg approximation property improves as the ‘slope’ of u
increases. With this intuition the result is no longer so unexpected.

Lemma 2.5 (Same scale, different center). Assume that ex,r ∈ grad(u, x, r, ε),
ey,r ∈ grad(u, y, r, ε), and |y − x| � r/2. One then has |ey,r| � |ex,r| + 6ε.

Proof. First notice that

(2) 〈ex,r, y − x〉 − εr � u(y) − u(x) � 〈ex,r, y − x〉 + εr .

Letting z = y + 1
2r|ey,r|−1ey,r, one has |z − x| � r, whence

(3) 〈ex,r, x − z〉 − εr � u(x) − u(z) � 〈ex,r, x − z〉 + εr .

Summing (2) and (3) yields

|u(y) − u(z)| � |〈ex,r, y − z〉| + 2εr � |ex,r|
r

2
+ 2εr .

Consequently,

|ey,r|
r

2
= |〈ey,r, z − y〉|

� |u(z) − u(y) − 〈ey,r, z − y〉| + |u(z) − u(y)|

� εr + |ex,r|
r

2
+ 2εr ,

and in turn,
|ey,r| � |ex,r| + 6ε .

�

Lemma 2.6 (Same center, different scale). Assume that ex,r ∈ grad(u, x, r, ε),
and ex,2r ∈ grad(u, x, 2r, ε). One then has |ex,r| � |ex,2r| + 3ε.

Proof. Letting y = x + r|ex,r|−1ex,r, one notices |y − x| � r, whence

|u(y) − u(x)| � |〈ex,2r, y − x〉| + 2εr .
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Therefore
|ex,r|r � |〈ex,r, y − x〉|

� |u(y) − u(x) − 〈ex,r, y − x〉| + |u(y) − u(x)|
� εr + |ex,2r|r + 2εr .

Finally
|ex,r| � |ex,2r| + 3ε .

�

In the remaining part of this paper we use the notation B(S, r0) to denote the
r0-neighborhood of a set S ⊂ R

m, i.e.

B(S, r0) := R
m ∩ {y : dist(y, S) � r0} .

Theorem 2.7. Assume that:
(A) ε > 0, U ⊂ R

m is open, u : U → R, S ⊂ U is compact and r0 > 0 is such
that B(S, r0) ⊂ U ;

(B) for every 0 < r � r0 and every x ∈ S the function u is linearly ε-
approximatable at (x, r).

It then follows that u ∈ C0,α(S) for every 0 < α < 1.

Proof. Since S is compact we can cover S by finitely many balls of radius r0/2,
B(xi, r0/2), i = 1, . . . , Q. We choose ex,r ∈ grad(u, x, r, ε) for every x ∈ S and
0 < r � r0. Letting

E := max{|exi,r0 | : i = 1, . . . , Q} < ∞
we infer from Lemma 2.5 that, for every x ∈ S,

|ex,r0 | � E + 6ε .

Applying inductively Lemma 2.6 we obtain

|ex,2−kr0 | � E + 6ε + 3kε

whenever k ∈ N. If y ∈ B(x, 2−kr0), then

|u(y) − u(x)| �
∣∣〈ex,2−kr0

, y − x
〉∣∣ + ε2−kr0

�
∣∣ex,2−kr0

∣∣ 2−kr0 + ε2−kr0

� 2−kr0(E + 7ε + 3kε) .

(4)

Now, take any 0 < α < 1. In the case that |y − x| = 2−kr0 for some k ∈ N we thus
have

|u(y) − u(x)|
|y − x|α � r1−α

0 (2α−1)k(E + 7ε + 3kε) .

Since the above sequence in k converges to 0 as k → ∞ there exists C ∈ R (de-
pending only upon α, r0, E, and ε) such that for each k ∈ N, x ∈ S, and y ∈ U
satisfying |y − x| = 2−kr0,

|u(y) − u(x)| � C|y − x|α.

Now consider y ∈ S ∩ B(x, r0). Then there exists k ∈ N such that 2−k−1r0 �
|y − x| < 2−kr0. It follows from (4) that

|u(y) − u(x)|
|y − x|α � 2αr1−α

0 (2α−1)k(E + 7ε + 3kε) � 2αC .
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That is,

(5) |u(y) − u(x)| � 2αC|y − x|α.

Moreover, letting
F := max{|u(xi)| : i = 1, . . . , Q} ,

we notice that, since S ⊂
⋃Q

i=1 B(xi, r0),

|u(x)| � F + Er0 + εr0 =: M

for each x ∈ S. We thus deduce that for |y − x| � r0,

(6) |u(y) − u(x)| � r−α
0 2M |y − x|α .

It follows from inequalities (5) and (6) that

|u(y) − u(x)| � C ′|y − x|α

for all y, z ∈ S, where C ′ = max{2αC, r−α
0 2M}. �

3. Genericity

Theorem 2.7 implies that the appropriate space of functions in which to con-
sider the genericity of linearly approximatable functions is that of functions Hölder
continuous for each 0 < α < 1, that is,

Höld(U) :=
⋂

{C0,α(U) : 0 < α < 1} .

We recall that C0,α(U) (the collection of bounded Hölder continuous functions with
exponent α) is a Banach space under the norm �u�α := ‖u‖∞ + Höldα(u), where
‖u‖∞ := sup{|u(x)| : x ∈ U} and

Höldα(u) := sup
{
|u(y) − u(x)|

|y − x|α : x, y ∈ U and x �= y

}
.

To make Höld(U) a metric space we need to consider simultaneously all appropri-
ately large 0 < α < 1. We therefore take αj = 1 − 1

j+1 for each j = 1, 2, . . . and
define for u, v ∈ Höld(U),

d(u, v) :=
∞∑

j=1

1
2j

(
�u − v�αj

1 + �u − v�αj

)
.

It is clear that Höld(U) is complete under the given metric.
We show that the collection of functions linearly ε-approximatable at at least

one point is meager in Höld(U). To make this statement more rigorous we make
the following definition.

Definition 3.1. Let U ⊂ R
m be open, S ⊂ U be compact, r0 > 0 such that

B(S, r0) ⊂ U , and ε > 0. We write LA(ε, r0, S, U) to denote the set of those
functions u ∈ Höld(U) with the following property. There exists x ∈ S such that
for every 0 < r � r0, u is linearly ε-approximatable at (x, r).

Lemma 3.2. If uj ∈ LA(ε, r0, S, U), j = 1, 2, . . ., converge uniformly to u ∈
Höld(U), then u ∈ LA(ε, r0, S, U).
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Proof. For each j = 1, 2, . . ., we select xj ∈ S such that uj is linearly ε-approxima-
table at (xj , r) whenever 0 < r � r0. Passing to a subsequence if necessary we will
assume that xj → x ∈ S as j → ∞. From now on we fix an 0 < r � r0 and we
select and fix an ej(xj , r) ∈ grad(uj , xj , r, ε). From the convergence property of
u1, u2, . . . and the Arzelà-Ascoli Theorem we infer that there exists δ > 0 such that
|uj(y)− uj(z)| � 1 for every j = 1, 2, . . . and every y, z ∈ B(S, r0) with |y − z| � δ.
Further, there is an integer j0 such that: (i) |uj(y) − uj0(y)| � 1 for each j � j0
and for each y ∈ U , and (ii) |xj0 − xj | � δ for every j � j0. We deduce that for
any j � j0 and h ∈ B(0, r),

|〈ej0(xj0 , r) − ej(xj , r), h〉| � |〈ej0(xj0 , r), h〉+ uj0(xj0) − uj0(xj0 + h)|
+ |〈ej(xj , r), h〉 − uj(xj) + uj(xj + h)|
+ |uj0(xj0 + h) − uj(xj0 + h)|
+ |uj(xj0 + h) − uj(xj + h)|
+ |uj(xj) − uj(xj0)|
+ |uj(xj0) − uj0(xj0)|

� 2εr + 4 .

It follows that e1(x1, r), e2(x2, r), . . . is a bounded sequence in R
m and thus that

a convergent subsequence, still denoted e1(x1, r), e2(x2, r), . . ., exists with limit
e(x, r) ∈ R

m. Now let η > 0 and choose δ > 0 such that |uj(y) − uj(z)| � η
for every j = 1, 2, . . . and y, z ∈ B(S, r0) with |y − z| � δ. Next take k such that
|uk(y)− u(y)| � η for all y ∈ U and such that max{|xk − x|, |ek(xk, r)− e(x, r)|} �
min{η, δ}. Then, for all h ∈ B(0, r),

|u(x + h) − u(x) − 〈e(x, r), h〉| � |uk(xk + h) − uk(xk) − 〈ek(xk, r), h〉|
+ |u(x + h) − uk(x + h)|
+ |uk(x + h) − uk(xk + h)|
+ |uk(xk) − u(xk)|
+ |u(xk) − u(x)|
+ |〈ek(xk, r) − e(x, r), h〉|

� εr + η(4 + |h|).
Since this is true for all η > 0, u is linearly ε-approximatable at (x, r). The
conclusion follows from the arbitrariness of r. �

Theorem 3.3. Let U ⊂ R
m be open and let I denote the collection of those

functions u ∈ Höld(U) with the property that for each x ∈ U and each ε > 0 there
are rj ↓ 0 as j ↑ ∞ such that u is not linearly ε-approximatable at (x, rj). Then I
is residual in Höld(U).

Proof. For each k = 1, 2, . . . we define Sk := U ∩ B(0, k) ∩ {x : dist(x, Rm \ U) �
k−1}. We observe that

I = Höld(U) \

⎛
⎝ ∞⋃

k=1

∞⋃
j=1

∞⋃
i=1

LA

(
j,

1
2ki

, Sk, U

)⎞
⎠ .

According to the Baire Category Theorem, it therefore suffices to show that each
LA(ε, r0, S, U) is meager in Höld(U).
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We first observe that LA(ε, r0, S, U) is closed in Höld(U), as readily follows
from Lemma 3.2. We now need to show that Höld(U) \ LA(ε, r0, S, U) is dense in
Höld(U). Let u ∈ Höld(U) and η > 0 be fixed for the remaining part of this proof.
We need to find u∗ ∈ Höld(U) such that d(u, u∗) � η and u∗ �∈ LA(ε, r0, S, U).

We see first that there exists an integer j0 ∈ N such that for any v ∈ Höld(U),
∞∑

j=j0+1

1
2j

(
�v�αj

1 + �v�αj

)
<

η

4
.

Put α := αj0 + 1
2(j0+1) = 1 − 1

2(j0+1) and notice that α < 1. Since u ∈ C0,α(U)
it admits an extension û ∈ C0,α(Rm); see [6]. Given δ > 0 we let Φδ denote a
smooth regularization kernel such that spt Φδ ⊂ B(0, δ). We notice that for every
y, z ∈ R

m,

|(Φδ ∗ û − û)(y) − (Φδ ∗ û − û)(x)|

�
∫

Rm

Φδ(z) |û(y − z) − û(y) − û(x − z) + û(x)| dz

� 2Höldα(û)
∫

B(0,δ)

Φδ(z) min{|z|α, |y − x|α}dz

� δ
1

2(j0+1) 2Höldα(û)|y − x|αj0 .

(The last inequality follows after distinguishing between the cases when |y−x| � δ
and when |z| � δ � |y − x|.) It readily follows that there exists δ > 0 small enough
for �u − (Φδ ∗ û) � U�αj

< η/4 whenever j = 1, . . . , j0. Letting u′ := (Φδ ∗ û) � U
we infer that

d(u, u′) =
j0∑

j=1

1
2j

(
�u − u′�αj

1 + �u − u′�αj

)
+

∞∑
j=j0+1

1
2j

(
�u − u′�αj

1 + �u − u′�αj

)
<

η

2
.

Observe also that u′ ∈ Lip(U) ⊂ Höld(U) and define λ := Lip u′.
We now define µ := 4(1+λ+ε), and corresponding to each 0 < r � r0 we define

uµ,r : R
m → R by uµ,r(x) := µ dist(x, rZ × R

m−1). We note that ‖uµ,r‖∞ � µr/2
and that Höldγ(uµ,r) � µr1−γ , 0 < γ < 1 (in order to establish the latter notice that
Lip uµ,r = µ and for every y, z ∈ R

m either |y − z| � r and |uµ,r(y) − uµ,r(z)| �
µr1−γ |y − z|γ or |y − z| > r and there exists z′ ∈ R

m with |y − z′| � r and
uµ,r(z′) = uµ,r(z)). Therefore there exists an 0 < r � r0 sufficiently small for
�uµ,r�αj

< η/4 whenever j = 1, . . . , j0. Letting u∗ := u′+uµ,r we deduce as above
that d(u′, u∗) < η/2, and in turn d(u, u∗) < η.

Assume if possible that u∗ ∈ LA(ε, r0, S, U). There would exist x ∈ S such that
u∗ is linearly ε-approximatable at (x, r). From the definition of uµ,r we infer that
there are r/4 � t± � r such that either

min{u(x + t+e1) − u(x), u(x − t−e1) − u(x)} � µr

4
or

max{u(x + t+e1) − u(x), u(x − t−e1) − u(x)} � −µr

4
.

Pick e ∈ grad(u∗, x, r, ε). Using the vectors h± := ±t±e1 in the definition of linear
approximatability we find, in the first case, that

〈e, t+e1〉 � −λr +
µr

4
− εr = r
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and
−〈e, t−e1〉 � −λr +

µr

4
− εr = r ,

a contradiction. The second case yields to the analogous contradiction. �

4. Level sets

Theorem 4.1. There exists ε(m) > 0 with the following property. Assume that
(A) U ⊂ R

m is open, u : U → R, B(x0, r0) ⊂ U , and λ0 > 0;
(B) 0 < ε � ε(m)λ0;
(C) for every 0 < r � r0 and every x ∈ B(x0, r0) the function u is linearly

ε-approximatable at (x, r);
(D) for every 0 < r � r0 and every x ∈ B(x0, r0) one has |grad|(u, x, r, ε) � λ0.

It follows that a neighborhood of x0 in the level set U ∩ {x : u(x) = u(x0)} is
bi-Hölder homeomorphic to an (m − 1)-dimensional ball.

Proof. Put Σ = U ∩ {x : u(x) = u(x0)}. Given x ∈ Σ ∩ B(x0, r0) and 0 < r � r0

we choose ex,r ∈ grad(u, x, r, ε) with |ex,r| � λ0. Notice that

|〈ex,r, y − x〉| = |u(y) − u(x) − 〈ex,r, y − x〉| � εr

whenever y ∈ Σ ∩ B(x, r). In other words,

y ∈ B(x + Wx,r, λ
−1
0 εr)

where Wx,r := R
m ∩ {h : 〈h, ex,r〉 = 0}. The other way around, assume h0 ∈

Wx,r ∩ B(x, r/2). Letting ht := h0 + tex,r|ex,r|−1 we infer that

u(x + ht) � u(x) + 〈ex,r, ht〉 + εr = u(x) + t|ex,r| + εr

and that
u(x + ht) � u(x) − 〈ex,r, ht〉 − εr � u(x) − t|ex,r| − εr

(notice that |ht| � r provided t2 � 3r2/4). In particular (if λ−1
0 ε is small enough)

u(x + h−2|ex,r|−1εr) < u(x) and u(x + h2|ex,r|−1εr) > u(x). Since t �→ h(x + ht) is
continuous (according to Theorem 2.7) we see that there exists −2λ−1

0 εr � t∗ �
2λ−1

0 εr such that u(x + ht∗) = u(x) = u(x0), i.e. x + ht∗ ∈ Σ. In other words,

x + h0 ∈ B(Σ, 2λ−1
0 εr) .

The conclusion now follows from Reifenberg’s Topological Disk Theorem; see e.g.
[9, 8, 11, 4]. �
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