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INVARIANT SUBSPACES OF SUPER LEFT-COMMUTANTS

HAILEGEBRIEL E. GESSESSE

(Communicated by Nigel J. Kalton)

Abstract. For a positive operator Q on a Banach lattice, one defines 〈Q] =
{T ≥ 0 : TQ ≤ QT} and [Q〉 = {T ≥ 0 : TQ ≥ QT}. There have been
several recent results asserting that, under certain assumptions on Q, [Q〉 has
a common invariant subspace. In this paper, we use the technique of minimal
vectors to establish similar results for 〈Q].

Throughout this paper, we assume that X is a real Banach lattice with pos-
itive cone X+; L(X) stands for the space of all (bounded linear) operators on
X. Let Q be a positive operator on X. By an invariant subspace of Q we
mean a closed subspace V of X such that V �= {0}, V �= X and QV ⊆ V . The
super left-commutant 〈Q] and the super right-commutant of [Q〉 of Q are
defined as follows:

〈Q] = {T ≥ 0 : TQ ≤ QT}, [Q〉 = {T ≥ 0 : TQ ≥ QT}.
The symbol B(x, r) stands for the closed ball of radius r centered at x. If a < b

in X, we write [a, b] = {x ∈ X : a ≤ x ≤ b}. A subspace Y ⊆ X is an (order)
ideal if |y| ≤ |x| and x ∈ Y imply y ∈ Y . For K ∈ L(X) we say that K is
dominated by Q if |Kx| ≤ Q|x| for every x ∈ X. Obviously, every operator in
[0, Q] =

{
K ∈ L(X) : 0 ≤ K ≤ Q

}
is dominated by Q. For more details on

positive operators, we refer the reader to [AA02].
Suppose that Q is compact-friendly (see the definition below) and quasinilpo-

tent. It was shown in [AA02] that every sequence in [Q〉 has a (common) invariant
subspace, which is also invariant under Q. Furthermore, if X is order complete,
then the entire [Q〉 has an invariant subspace. Using the technique of minimal
vectors (see [AE98, Tr04, AT05, GT]) we prove in this paper that the same results
hold for 〈Q]. First we prove an extension of a fact in [AT05].

Definition 1. A collection of operators F ⊆ L(X) localizes a set A ⊆ X if for
every sequence (xn) in A there exists a subsequence (xni

) and a sequence (Ki) in F
such that Kixni

converges to a non-zero vector.

Theorem 2 ([AT05]). Suppose that Q is a positive quasinilpotent one-to-one op-
erator with dense range and x0 ∈ X+ with ‖x0‖ > 1. If the set of all operators
dominated by Q localizes B(x0, 1) ∩ [0, x0], then there exists an invariant subspace
for 〈Q]. Moreover, if [0, Q] localizes B(x0, 1) ∩ [0, x0], then 〈Q] has an invariant
closed ideal.
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We extend Theorem 2 as follows.

Theorem 3. Suppose that Q is a positive quasinilpotent operator and x0 ∈ X+ with
‖x0‖ > 1. If there exists R in 〈Q] such that the set of all operators dominated by R
localizes B(x0, 1)∩[0, x0], then there exists an invariant subspace for 〈Q]. Moreover,
if [0, R] localizes B(x0, 1) ∩ [0, x0], then 〈Q] has an invariant closed ideal.

Proof. Suppose R ∈ 〈Q] such that the set of all operators dominated by R localizes
B(x0, 1) ∩ [0, x0]. Since the ideal generated by Range Q is invariant under 〈Q] by
[GT, Lemma 0.5], we assume that this ideal is dense in X. As in the proof of [AT05,
Theorem 8] and [GT, Theorem 5.5], we find a sequence (Ki) of operators dominated
by R and an increasing sequence of integers (ni) such that Ki(x0 ∧ Qni−1yni−1)
converges to some vector w �= 0, and (fni

) w*-converges to a positive functional
g �= 0, where (yn) is a sequence of 2-minimal vectors and (fn) is a sequence of
2-minimal functionals for Q and B(x0, 1) + X+.

Suppose T ∈ 〈Q]. Using the facts that Ki is dominated by R for each i, TQ ≤
QT , RQ ≤ QR, and by Propositions 5.3(v) and 5.4 of [GT], we have

∣∣∣fni

(
QTKi(x0 ∧ Qni−1yni−1)

)∣∣∣ ≤ fni

(
QT

∣∣Ki(x0 ∧ Qni−1yni−1)
∣∣)

≤ fni

(
QTR(x0 ∧ Qni−1yni−1)

)
≤ fni

(
QTRQni−1yni−1

)

≤ fni

(
QniTRyni−1

)
≤

∥∥Q∗nifni

∥∥ · ‖TR‖ · ‖yni−1‖ ≤ 4‖x0‖‖TR‖‖yni−1‖
‖yni

‖ → 0.

Thus,
fni

(
QTKi(x0 ∧ Qni−1yni−1)

)
→ 0.

On the other hand,
QTKi(x0 ∧ Qni−1yni−1) → QTw

in norm. Since fni

w∗
−−→ g, we conclude that g(QTw) = 0; hence (Q∗g)(Tw) = 0.

Since the ideal generated by Range Q is dense and g �= 0 is positive, we have
Q∗g �= 0. Let Y be the linear span of 〈Q]w, that is, Y = lin{Tw : T ∈ 〈Q]}. Since
〈Q] is a multiplicative semigroup, Y is invariant under every T ∈ 〈Q]. It follows
from 0 �= w ∈ Y that Y is non-zero. Finally, Y �= X because Q∗g vanishes on Y .

Suppose that [0, R] localizes B(x0, 1) ∩ [0, x0] for some x0 ≥ 0 and ‖x0‖ > 1.
Then the vector w constructed in the previous argument is positive. Let E be the
ideal generated by 〈Q]w, that is,

E =
{
y ∈ X : |y| ≤ Tw for some T ∈ 〈Q]

}
.

The ideal E is non-trivial since w ∈ E, and it is easy to see that E is invariant
under 〈Q]. Since the positive functional Q∗g vanishes on Tw it must also vanish
on E; consequently E �= X since Q∗g �= 0. �

Remark 4. It was shown in [GT] that with some minor adjustments, Theorem 2
can be extended from Banach lattices to ordered Banach spaces with generating
cones. In a similar fashion, Theorem 3 can be extended to such spaces as well.

Next we present several applications of Theorem 3. Recall that an operator on a
Banach lattice is AM-compact if it maps order bounded sets to relatively compact
sets. In [FTT08], the authors proved the following extension of earlier results by
R. Drnovšek (see [AA02, Theorems 10.44 and 10.50]): if Q is a quasinilpotent
positive operator on a Banach lattice with a quasiinterior point such that some
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operator in [Q〉 dominates a non-zero AM-compact operator, then [Q〉 has an
invariant closed ideal. Our next theorem provides a similar result for 〈Q].

Theorem 5. If Q is a positive quasinilpotent operator and there exists a non-
zero AM -compact operator K dominated by an operator in 〈Q], then 〈Q] has an
invariant subspace. Furthermore, if K ≥ 0, then 〈Q] has a closed invariant ideal.

Proof. Let K be a non-zero AM -compact operator dominated by an operator
R ∈ 〈Q]. We can find x0 ≥ 0 with ‖x0‖ > 1 such that 0 /∈ K(B(x0, 1) ∩ [0, x0]).
Therefore, the set of operators dominated by R localizes B(x0, 1) ∩ [0, x0]. Theo-
rem 3 completes the proof. �

Since every compact operator is an AM -compact operator, we have the following
simple consequence of Theorem 5.

Corollary 6. If Q is a positive quasinilpotent operator and there exists a non-zero
compact operator K dominated by an operator in 〈Q], then 〈Q] has an invariant
subspace. Furthermore, if K ≥ 0, then 〈Q] has a closed invariant ideal.

Following [AA02] we give the following definition.

Definition 7. A positive operator Q : X → X is compact-friendly if there exist
three operators R, K, and C �= 0 such that RQ = QR, K is compact, and C is
dominated by both R and K.

Remark 8. If Q is a quasinilpotent compact-friendly operator and C3 �= 0, where
C is as in Definition 7, then 〈Q] has a common invariant subspace. Indeed, by
Theorem 16.14 of [AB85], C3 is compact and C3 is dominated by R3 which is in
〈Q]. Then we use Corollary 6. Furthermore, if C is positive, then by Theorem 3
and Corollary 6, 〈Q] has a common invariant ideal.

In Theorems 10.55 and 10.57 of [AA02] it was shown that under certain assump-
tions, the super right-commutant [Q〉 of a quasinilpotent compact-friendly operator
Q has an invariant subspace. The next two theorems show that under similar as-
sumptions, 〈Q] has an invariant subspace. The proofs are similar to the proofs of
Theorems 10.55 and 10.57 in [AA02], but we use Corollary 6 instead of Drnovšek’s
theorem as we deal with 〈Q] instead of [Q〉.

Theorem 9. If Q is a quasinilpotent compact-friendly operator, then at least one
of the following is true:

(i) for each sequence {Tn} in 〈Q] there exists a non-trivial closed ideal that is
invariant under Q and each Tn, or

(ii) 〈Q] has an invariant subspace.

Proof. Without loss of generality we can assume that ‖Q‖ < 1 and suppose that
(Tn) is a sequence in 〈Q]. Pick arbitrary scalars αn > 0 that are small enough
so that the positive operator T =

∑∞
n=1 αnTn exists and ‖Q + T‖ < 1. Since

〈Q] is a norm closed additive semigroup, it follows that the positive operator A =∑∞
n=0(Q + T )n belongs to 〈Q].
For each x > 0 we denote by Jx the principal ideal generated by Ax;

Jx = {y ∈ X : |y| ≤ λAx for some λ > 0}.
It follows from x ≤ Ax that x ∈ Jx, so that Jx �= 0.
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Observe that Jx is (Q + T )-invariant. Since 0 ≤ Q, T ≤ Q + T , Jx is invariant
under Q and T and thus it is also Tn-invariant for each n. Therefore, if Jx �= X for
some x > 0, then Jx is the desired invariant ideal.

Suppose Jx = X for each x > 0. Then following the proof of Theorem 10.55 in
[AA02], we can construct a compact operator which is dominated by some S ∈ 〈Q].
Then Corollary 6 guarantees that 〈Q] has an invariant subspace. �

Remark 10. If X is order complete, then we may assume that the operator C
in Definition 7 is positive. Indeed, take x ≥ 0. For each y ∈ [−x, x], we have
|Cy| ≤ K|y| ≤ Kx. Then |C|x = supy∈[−x,x]|Cy| ≤ Kx, so that |C| ≤ K. Likewise,
|C| ≤ R.

Theorem 11. If a non-zero compact-friendly operator Q on an order complete
Banach lattice is quasinilpotent, then 〈Q] has a non-trivial closed invariant ideal.

Proof. For each x > 0 we denote by Jx the ideal generated by the orbit 〈Q], that
is,

Jx =
{
y ∈ X : |y| ≤ Tx for some T ∈ 〈Q]

}
.

Since x ∈ Jx, we have Jx �= 0. Note that Jx is invariant under each T ∈ 〈Q].
Therefore, if Jx �= X for some x > 0, then Jx is a 〈Q]-invariant closed ideal. So,
suppose Jx = X for each x > 0.

By Remark 10, there exist three positive non-zero operators R, K and C such
that RQ = QR, C ≤ R, C ≤ K, and K is compact.

Claim: For every x > 0, there exists A ∈ 〈Q] such that CAx > 0. Indeed, since
Jx = X and C �= 0, there exists a positive y ∈ Jx such that Cy > 0. Then y ≤ Ax
for some A ∈ 〈Q]; hence CAx > 0.

Fix any x > 0. Applying the claim three times, we find A1, A2, A3 ∈ 〈Q] such
that CA3CA2CA1x > 0. Let S = CA3CA2CA1. Then S �= 0 and CAi ≤ KAi

(i = 1, 2, 3); hence S is compact by Theorem 16.14 of [AB85]. Also, 0 ≤ S ≤
RA3RA2RA1 ∈ 〈Q]. Then Corollary 6 guarantees that 〈Q] has a non-trivial closed
invariant ideal. �

The arguments in this paper are done for a real Banach lattice for simplicity.
However, they work for complex Banach lattices with straightforward modifications.
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