INVARIANT SUBSPACES OF SUPER LEFT-COMMUTANTS

HAILEGEBRIEL E. GESSESSE

(Communicated by Nigel J. Kalton)

ABSTRACT. For a positive operator Q on a Banach lattice, one defines $\langle Q|=\{T\geq 0: TQ\leq QT\}$ and $[Q\rangle=\{T\geq 0: TQ\geq QT\}$. There have been several recent results asserting that, under certain assumptions on Q, $[Q\rangle$ has a common invariant subspace. In this paper, we use the technique of minimal vectors to establish similar results for $\langle Q|$.

Throughout this paper, we assume that X is a real Banach lattice with positive cone X_+ ; $\mathcal{L}(X)$ stands for the space of all (bounded linear) operators on X. Let Q be a positive operator on X. By an *invariant subspace of* Q we mean a closed subspace V of X such that $V \neq \{0\}$, $V \neq X$ and $QV \subseteq V$. The *super left-commutant* $\langle Q \rangle$ and the *super right-commutant* of $\langle Q \rangle$ of Q are defined as follows:

$$\langle Q| = \{T \ge 0 : TQ \le QT\}, \qquad [Q\rangle = \{T \ge 0 : TQ \ge QT\}.$$

The symbol B(x,r) stands for the closed ball of radius r centered at x. If a < b in X, we write $[a,b] = \{x \in X : a \le x \le b\}$. A subspace $Y \subseteq X$ is an (order) **ideal** if $|y| \le |x|$ and $x \in Y$ imply $y \in Y$. For $K \in \mathcal{L}(X)$ we say that K is **dominated** by Q if $|Kx| \le Q|x|$ for every $x \in X$. Obviously, every operator in $[0,Q] = \{K \in \mathcal{L}(X) : 0 \le K \le Q\}$ is dominated by Q. For more details on positive operators, we refer the reader to [AA02].

Suppose that Q is compact-friendly (see the definition below) and quasinilpotent. It was shown in [AA02] that every sequence in $[Q\rangle$ has a (common) invariant subspace, which is also invariant under Q. Furthermore, if X is order complete, then the entire $[Q\rangle$ has an invariant subspace. Using the technique of minimal vectors (see [AE98, Tr04, AT05, GT]) we prove in this paper that the same results hold for $\langle Q \rangle$. First we prove an extension of a fact in [AT05].

Definition 1. A collection of operators $\mathcal{F} \subseteq \mathcal{L}(X)$ *localizes* a set $A \subseteq X$ if for every sequence (x_n) in A there exists a subsequence (x_{n_i}) and a sequence (K_i) in \mathcal{F} such that $K_i x_{n_i}$ converges to a non-zero vector.

Theorem 2 ([AT05]). Suppose that Q is a positive quasinilpotent one-to-one operator with dense range and $x_0 \in X_+$ with $||x_0|| > 1$. If the set of all operators dominated by Q localizes $B(x_0, 1) \cap [0, x_0]$, then there exists an invariant subspace for $\langle Q]$. Moreover, if [0, Q] localizes $B(x_0, 1) \cap [0, x_0]$, then $\langle Q]$ has an invariant closed ideal.

Received by the editors April 11, 2008.

2000 Mathematics Subject Classification. Primary 47A15; Secondary 46B42, 47B65.

Key words and phrases. Invariant subspace, quasinilpotent operator, positive operator.

We extend Theorem 2 as follows.

Theorem 3. Suppose that Q is a positive quasinilpotent operator and $x_0 \in X_+$ with $||x_0|| > 1$. If there exists R in $\langle Q|$ such that the set of all operators dominated by R localizes $B(x_0, 1) \cap [0, x_0]$, then there exists an invariant subspace for $\langle Q|$. Moreover, if [0, R] localizes $B(x_0, 1) \cap [0, x_0]$, then $\langle Q|$ has an invariant closed ideal.

Proof. Suppose $R \in \langle Q]$ such that the set of all operators dominated by R localizes $B(x_0,1) \cap [0,x_0]$. Since the ideal generated by Range Q is invariant under $\langle Q]$ by [GT, Lemma 0.5], we assume that this ideal is dense in X. As in the proof of [AT05, Theorem 8] and [GT, Theorem 5.5], we find a sequence (K_i) of operators dominated by R and an increasing sequence of integers (n_i) such that $K_i(x_0 \wedge Q^{n_i-1}y_{n_i-1})$ converges to some vector $w \neq 0$, and (f_{n_i}) w*-converges to a positive functional $g \neq 0$, where (y_n) is a sequence of 2-minimal vectors and (f_n) is a sequence of 2-minimal functionals for Q and $B(x_0, 1) + X_+$.

Suppose $T \in \langle Q \rangle$. Using the facts that K_i is dominated by R for each $i, TQ \leq QT, RQ \leq QR$, and by Propositions 5.3(v) and 5.4 of [GT], we have

$$\begin{split} \left| f_{n_i} \big(QTK_i(x_0 \wedge Q^{n_i-1} y_{n_i-1}) \big) \right| &\leq f_{n_i} \Big(QT \big| K_i(x_0 \wedge Q^{n_i-1} y_{n_i-1}) \big| \Big) \\ &\leq f_{n_i} \big(QTR(x_0 \wedge Q^{n_i-1} y_{n_i-1}) \big) \leq f_{n_i} \big(QTRQ^{n_i-1} y_{n_i-1} \big) \\ &\leq f_{n_i} \big(Q^{n_i} TRy_{n_i-1} \big) \leq \left\| Q^{*n_i} f_{n_i} \right\| \cdot \|TR\| \cdot \|y_{n_i-1}\| \leq \frac{4 \|x_0\| \|TR\| \|y_{n_i-1}\|}{\|y_{n_i}\|} \to 0. \end{split}$$

Thus,

$$f_{n_i}(QTK_i(x_0 \wedge Q^{n_i-1}y_{n_i-1})) \to 0.$$

On the other hand,

$$QTK_i(x_0 \wedge Q^{n_i-1}y_{n_i-1}) \to QTw$$

in norm. Since $f_{n_i} \xrightarrow{w^*} g$, we conclude that g(QTw) = 0; hence $(Q^*g)(Tw) = 0$. Since the ideal generated by Range Q is dense and $g \neq 0$ is positive, we have $Q^*g \neq 0$. Let Y be the linear span of $\langle Q]w$, that is, $Y = \lim\{Tw : T \in \langle Q]\}$. Since $\langle Q]$ is a multiplicative semigroup, Y is invariant under every $T \in \langle Q]$. It follows from $0 \neq w \in Y$ that Y is non-zero. Finally, $\overline{Y} \neq X$ because Q^*g vanishes on Y.

Suppose that [0, R] localizes $B(x_0, 1) \cap [0, x_0]$ for some $x_0 \ge 0$ and $||x_0|| > 1$. Then the vector w constructed in the previous argument is positive. Let E be the ideal generated by $\langle Q|w$, that is,

$$E = \{ y \in X : |y| \le Tw \text{ for some } T \in \langle Q] \}.$$

The ideal E is non-trivial since $w \in E$, and it is easy to see that E is invariant under $\langle Q \rangle$. Since the positive functional Q^*g vanishes on Tw it must also vanish on E; consequently $\overline{E} \neq X$ since $Q^*g \neq 0$.

Remark 4. It was shown in [GT] that with some minor adjustments, Theorem 2 can be extended from Banach lattices to ordered Banach spaces with generating cones. In a similar fashion, Theorem 3 can be extended to such spaces as well.

Next we present several applications of Theorem 3. Recall that an operator on a Banach lattice is AM-compact if it maps order bounded sets to relatively compact sets. In [FTT08], the authors proved the following extension of earlier results by R. Drnovšek (see [AA02, Theorems 10.44 and 10.50]): if Q is a quasinilpotent positive operator on a Banach lattice with a quasiinterior point such that some

operator in [Q] dominates a non-zero AM-compact operator, then [Q] has an invariant closed ideal. Our next theorem provides a similar result for $\langle Q]$.

Theorem 5. If Q is a positive quasinilpotent operator and there exists a non-zero AM-compact operator K dominated by an operator in $\langle Q]$, then $\langle Q]$ has an invariant subspace. Furthermore, if $K \geq 0$, then $\langle Q]$ has a closed invariant ideal.

Proof. Let K be a non-zero AM-compact operator dominated by an operator $R \in \langle Q]$. We can find $x_0 \geq 0$ with $||x_0|| > 1$ such that $0 \notin \overline{K(B(x_0, 1) \cap [0, x_0])}$. Therefore, the set of operators dominated by R localizes $B(x_0, 1) \cap [0, x_0]$. Theorem 3 completes the proof.

Since every compact operator is an AM-compact operator, we have the following simple consequence of Theorem 5.

Corollary 6. If Q is a positive quasinilpotent operator and there exists a non-zero compact operator K dominated by an operator in $\langle Q \rangle$, then $\langle Q \rangle$ has an invariant subspace. Furthermore, if $K \geq 0$, then $\langle Q \rangle$ has a closed invariant ideal.

Following [AA02] we give the following definition.

Definition 7. A positive operator $Q: X \to X$ is **compact-friendly** if there exist three operators R, K, and $C \neq 0$ such that RQ = QR, K is compact, and C is dominated by both R and K.

Remark 8. If Q is a quasinilpotent compact-friendly operator and $C^3 \neq 0$, where C is as in Definition 7, then $\langle Q \rangle$ has a common invariant subspace. Indeed, by Theorem 16.14 of [AB85], C^3 is compact and C^3 is dominated by R^3 which is in $\langle Q \rangle$. Then we use Corollary 6. Furthermore, if C is positive, then by Theorem 3 and Corollary 6, $\langle Q \rangle$ has a common invariant ideal.

In Theorems 10.55 and 10.57 of [AA02] it was shown that under certain assumptions, the super right-commutant $[Q\rangle$ of a quasinilpotent compact-friendly operator Q has an invariant subspace. The next two theorems show that under similar assumptions, $\langle Q|$ has an invariant subspace. The proofs are similar to the proofs of Theorems 10.55 and 10.57 in [AA02], but we use Corollary 6 instead of Drnovšek's theorem as we deal with $\langle Q|$ instead of $[Q\rangle$.

Theorem 9. If Q is a quasinilpotent compact-friendly operator, then at least one of the following is true:

- (i) for each sequence $\{T_n\}$ in $\langle Q |$ there exists a non-trivial closed ideal that is invariant under Q and each T_n , or
- (ii) $\langle Q | has an invariant subspace.$

Proof. Without loss of generality we can assume that ||Q|| < 1 and suppose that (T_n) is a sequence in $\langle Q|$. Pick arbitrary scalars $\alpha_n > 0$ that are small enough so that the positive operator $T = \sum_{n=1}^{\infty} \alpha_n T_n$ exists and ||Q + T|| < 1. Since $\langle Q|$ is a norm closed additive semigroup, it follows that the positive operator $A = \sum_{n=0}^{\infty} (Q+T)^n$ belongs to $\langle Q|$.

For each x > 0 we denote by J_x the principal ideal generated by Ax;

$$J_x = \{ y \in X : |y| \le \lambda Ax \text{ for some } \lambda > 0 \}.$$

It follows from $x \leq Ax$ that $x \in J_x$, so that $J_x \neq 0$.

Observe that J_x is (Q+T)-invariant. Since $0 \le Q, T \le Q+T, J_x$ is invariant under Q and T and thus it is also T_n -invariant for each n. Therefore, if $\overline{J_x} \ne X$ for some x > 0, then $\overline{J_x}$ is the desired invariant ideal.

Suppose $\overline{J_x} = X$ for each x > 0. Then following the proof of Theorem 10.55 in [AA02], we can construct a compact operator which is dominated by some $S \in \langle Q \rangle$. Then Corollary 6 guarantees that $\langle Q \rangle$ has an invariant subspace.

Remark 10. If X is order complete, then we may assume that the operator C in Definition 7 is positive. Indeed, take $x \geq 0$. For each $y \in [-x,x]$, we have $|Cy| \leq K|y| \leq Kx$. Then $|C|x = \sup_{y \in [-x,x]} |Cy| \leq Kx$, so that $|C| \leq K$. Likewise, $|C| \leq R$.

Theorem 11. If a non-zero compact-friendly operator Q on an order complete Banach lattice is quasinilpotent, then $\langle Q \rangle$ has a non-trivial closed invariant ideal.

Proof. For each x > 0 we denote by J_x the ideal generated by the orbit $\langle Q]$, that is,

$$J_x = \{ y \in X : |y| \le Tx \text{ for some } T \in \langle Q] \}.$$

Since $x \in J_x$, we have $J_x \neq 0$. Note that J_x is invariant under each $T \in \langle Q|$. Therefore, if $\overline{J_x} \neq X$ for some x > 0, then $\overline{J_x}$ is a $\langle Q|$ -invariant closed ideal. So, suppose $\overline{J_x} = X$ for each x > 0.

By Remark 10, there exist three positive non-zero operators R, K and C such that RQ = QR, $C \le R$, $C \le K$, and K is compact.

<u>Claim</u>: For every x > 0, there exists $A \in \langle Q]$ such that CAx > 0. Indeed, since $\overline{J_x} = X$ and $C \neq 0$, there exists a positive $y \in J_x$ such that Cy > 0. Then $y \leq Ax$ for some $A \in \langle Q]$; hence CAx > 0.

Fix any x>0. Applying the claim three times, we find $A_1,A_2,A_3\in \langle Q]$ such that $CA_3CA_2CA_1x>0$. Let $S=CA_3CA_2CA_1$. Then $S\neq 0$ and $CA_i\leq KA_i$ (i=1,2,3); hence S is compact by Theorem 16.14 of [AB85]. Also, $0\leq S\leq RA_3RA_2RA_1\in \langle Q]$. Then Corollary 6 guarantees that $\langle Q]$ has a non-trivial closed invariant ideal.

The arguments in this paper are done for a real Banach lattice for simplicity. However, they work for complex Banach lattices with straightforward modifications.

ACKNOWLEDGEMENT

Special thanks are due to my advisor, Vladimir G. Troitsky, for suggesting the problems to me, helpful discussions, and reviewing the manuscript.

References

- [AA02] Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics, vol. 50, American Mathematical Society, Providence, RI, 2002. MR1921782 (2003h:47072)
- [AB85] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Pure and Applied Mathematics, vol. 119, Academic Press Inc., Orlando, FL, 1985. MR809372 (87h:47086)
- [AT05] R. Anisca and V. G. Troitsky, Minimal vectors of positive operators, Indiana Univ. Math. J., 54(3), 2005, 861-872. MR2151236 (2006c:47041)
- [AE98] S. Ansari and P. Enflo, Extremal vectors and invariant subspaces, Trans. Amer. Math. Soc., 350, 1998, no. 2, 539-558. MR1407476 (98d:47019)
- [D01] R. Drnovšek, Common invariant subspaces for collections of operators, Integral Eq. Oper. Th., 39, 2001, 253-266. MR1818060 (2001m:47012)

- [FTT08] J. Flores, P. Tradacete and V. G. Troitsky, Invariant subspaces of positive strictly singular operators on Banach lattices, J. Math. Anal. Appl., 343, 2008, 743-751.
- [GT] H. Gessesse and V. G. Troitsky, Invariant subspaces of positive quasinilpotent operators on ordered Banach spaces, Positivity, 12, 2008, 193–208.
- [Tr04] V. G. Troitsky, Minimal vectors in arbitrary Banach spaces, Proc. American Math. Soc., 132, 2004, 1177–1180. MR2045435 (2005a:47010)

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T $6G\,2G1,\,Canada$

 $E\text{-}mail\ address: \verb|hgessesse@math.ualberta.ca|$