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Abstract. Let (R, m) denote an n-dimensional complete local Gorenstein
ring. For an ideal I of R let Hi

I(R), i ∈ Z, denote the local cohomology

modules of R with respect to I. If Hi
I(R) = 0 for all i �= c = height I, then

the endomorphism ring of Hc
I (R) is isomorphic to R. Here we prove that this

is true if and only if Hi
I(R) = 0 for i = n, n − 1, provided c ≥ 2 and R/I has

an isolated singularity, resp. if I is set-theoretically a complete intersection in
codimension at most one. Moreover, there is a vanishing result of Hi

I(R) for

all i > m, m a given integer, and an estimate of the dimension of Hi
I(R).

1. Main results

Let (R, m) denote a local Noetherian ring with n = dimR. For the ideal I ⊂ R
let Hi

I(·), i ∈ Z, denote the local cohomology functor with respect to I; see [2]
for its definition and basic results. It is a difficult question to describe sup{i ∈
Z|Hi

I(R) �= 0}, the cohomological dimension cd I of I with respect to R. Recall that
height I ≤ cd I. Recently some interesting results for ideals with c = height I = cd I,
the so-called cohomologically complete intersections have been proved. If (R, m) is
a complete local ring, Hellus and Stückrad [5] have shown that the endomorphism
ring HomR(Hc

I (R), Hc
I (R)) is isomorphic to R. See also [4, Lemma 2.8] for a more

functorial proof and a slight extension in the case where (R, m) is a Gorenstein ring.
The first aim of the consideration here is a characterization of when the en-

domorphism ring of Hc
I (R) is isomorphic to R. To this end we call I locally a

cohomologically complete intersection provided cd IRp = height I for all prime
ideals p ∈ V (I) \ {m}. For instance, if I has an isolated singularity, it is locally a
cohomologically complete intersection.

Theorem 1.1. Let (R, m) denote a complete local Gorenstein ring with n = dimR.
Let I be an ideal of height I = c. Suppose that I is locally a cohomologically complete
intersection. Then the following conditions are equivalent:

(i) The natural homomorphism R → HomR(Hc
I (R), Hc

I (R)) is an isomor-
phism.

(ii) Hi
I(R) = 0 for i = n − 1, n.
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In a certain sense, condition (ii) of Theorem 1.1 provides a numerical condition
for the property that the endomorphism ring of Hc

I (R) is R. In the case of R being
a regular local ring containing a field, Huneke and Lyubeznik [6, Theorem 2.9] have
given a topological characterization of the above condition (ii).

Theorem 1.2. Let (R, m) be a local Gorenstein ring. Let J ⊂ I denote two ideals
of height c.

(a) There is a natural homomorphism

HomR(Hc
J(R), Hc

J(R)) → HomR(Hc
I (R), Hc

I (R)).

(b) Suppose that Rad JRp = Rad IRp for all p ∈ V (I) with dimRp ≤ c + 1.
Then the homomorphism in (a) is an isomorphism.

(c) Let R be in addition complete. Let J denote a cohomologically complete
intersection contained in I and satisfying the assumptions of (b). Then
R → HomR(Hc

I (R), Hc
I (R)) is an isomorphism.

Our results are based on a certain estimate of dimHi
I(R), i > c; see Theorem 3.1.

In the case of a regular local ring, partial results of this type have been used by Ken-
Ichiroh Kawasaki [7] for the study of Lyubeznik numbers (see [8] for their definition).
Here we use the truncation complex as invented in [4, Section 2] (see Definition 2.1).
Moreover it provides some technical statements about the endomorphism ring of
Hc

I (R), c = height I (see Lemma 2.2).
In terminology the author follows the paper [4].

2. The truncation complex

Let (R, m, k) denote a local Gorenstein ring with n = dimR. First of all we will
recall the truncation complex as it was introduced in [4, Section 2] and in a different
context in [9, §4]. Let R

∼−→ E· denote a minimal injective resolution of R as an
R-module. It is a well-known fact that

Ei �
⊕

p∈Spec R,height p=i

ER(R/p),

where ER(R/p) denotes the injective hull of R/p (see [1] for these and related results
about Gorenstein rings).

Now let I ⊂ R denote an ideal and let c = height I. Then d = dimR/I = n − c.
The local cohomology modules Hi

I(R), i ∈ Z, are, by definition, the cohomology
modules of the complex ΓI(E·). Because ΓI(ER(R/p)) = 0 for all p �∈ V (I), it fol-
lows that ΓI(E·)i = 0 for all i < c. Therefore Hc

I (R) = Ker(ΓI(E·)c → ΓI(E·)c+1).
This observation provides an embedding Hc

I (R)[−c] → ΓI(E·) of complexes of R-
modules.

Definition 2.1. The cokernel of the embedding Hc
I (R)[−c] → ΓI(E·) is defined as

C ·
R(I), the truncation complex with respect to I. So there is a short exact sequence

of complexes of R-modules

0 → Hc
I (R)[−c] → ΓI(E·) → C ·

R(I) → 0.

In particular it follows that Hi(C ·
R(I)) = 0 for i ≤ c or i > n and Hi(C ·

R(I)) �
Hi

I(R) for c < i ≤ n.

First we need to establish some basic results about the truncation complex. For
more details we refer to the exposition in [4, Section 2].
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Lemma 2.2. With the previous notation, the following results hold:

(a) There exist an exact sequence

0 → Hn−1
m (C ·

R(I)) → Hd
m(Hc

I (R)) → E → Hn
m(C ·

R(I)) → 0

and isomorphisms Hi−c
m (Hc

I (R)) � Hi−1
m (C ·

R(I)) for i < n.
(b) Hd

m(Hc
I (R)) �= 0 and Hi−c

m (Hc
I (R)) = 0 for i > n.

(c) Let p ∈ V (I) denote a prime ideal. Then there is an isomorphism

C ·
R(I) ⊗R Rp � C ·

Rp
(IRp)

provided height I = height IRp.
(d) There is a natural isomorphism HomR(Hc

I (R), Hc
I (R)) � Extc

R(Hc
I (R), R).

Proof. For the proof of (a) apply the derived functor RΓm(·) to the short exact
sequence given in Definition 2.1. Then RΓm(ΓI(E·)) � E[−n]. So the long exact
cohomology sequence of the corresponding exact sequence of complexes provides
what is claimed (see [4, Lemma 2.2] for the details). Statement (b) is shown in [4,
Corollary 2.9] and [4, Lemma 1.2].

For the proof of (c) localize the exact sequence in Definition 2.1 at p. Then there
is a short exact sequence of complexes

0 → Hc
IRp

(Rp)[−c] → ΓIRp
(E·

Rp
) → C ·

R(I) ⊗R Rp → 0.

To this end recall first that c = height IRp = height I and that the local cohomology
commutes with localization. Furthermore E· ⊗ Rp is isomorphic to the minimal
injective resolution E·

Rp
of Rp. Then the definition of the truncation complex proves

the claim.
Finally, we prove (d). As shown at the beginning of this section, there is an exact

sequence 0 → Hc
I (R) → ΓI(E·)c → ΓI(E·)c+1. This induces a natural commutative

diagram with exact rows

0 �� HomR(Hc
I (R), Hc

I (R)) ��

��

HomR(Hc
I (R), ΓI(E·))c ��

��

HomR(Hc
I (R,ΓI(E·))c+1

��

0 �� Extc
R(Hc

I (R), R) �� HomR(Hc
I (R), E·)c �� HomR(Hc

I (R), E·)c+1

because ΓI(E·) is a subcomplex of E·. The last two vertical homomorphisms are iso-
morphisms because HomR(X, ER(R/p)) = 0 for an R-module X with SuppR X ⊂
V (I) and p �∈ V (I). Therefore the first vertical map is also an isomorphism. �

In order to compute the local cohomology of the truncation complex C ·
R(I),

there is the following spectral sequence for computation of the hyper cohomology
of a complex.

Proposition 2.3. With the notation of Definition 2.1, there is the spectral sequence

Ep,q
2 = Hp

m(Hq(C ·
R(I))) =⇒ Ep+q

∞ = Hp+q
m (C ·

R(I)),

where Hq(C ·
R(I)) = 0 for i ≤ c and i > n, and Hq(C ·

R(I)) � Hq
I (R) for c < i ≤ n.

Proof. The spectral sequence is a particular case of the spectral sequence of hyper
cohomology (cf. [10]). For the initial terms check the definition of the truncation
complex. �
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In the following we shall use the notion of the dimension dim X for R-modules X
which are not necessarily finitely generated. This is defined by dimX =
dim SuppR X, where the dimension of the support is understood in the Zariski
topology of SpecR. In particular, dim X < 0 means X = 0.

Lemma 2.4. With the notation above, we have the following results:

(a) dim Hi
I(R) ≤ n − i for all i ≥ c = height I.

(b) dimHc
I (R) = dim R/I.

(c) If dimHi
I(R) < n−i for all i > c, then R/I is unmixed, i.e. c = height IRp

for all minimal p ∈ V (I).

Proof. (a): This result is well-known (see for instance [7]).
(b): Let p ∈ V (I) denote a minimal prime ideal in V (I) such that dimRp = c.

Then Hc
I (R) ⊗R Rp � Hc

pRp
(Rp) �= 0 by the Grothendieck non-vanishing result.

So, p ∈ Supp Hc
I (R) and dimR/p = d. Together with (a) this proves the claim.

(c): Let p ∈ V (I) be minimal with h := height IRp > c. Then h = dimRp and

0 �= Hh
pRp

(Rp) � Hh
I (R) ⊗R Rp.

This implies that p ∈ SuppHh
I (R) with dimR/p + h = n, a contradiction. �

Proof of Theorem 1.2. Let α ≥ 1 denote an integer. The inclusion J ⊂ I induces
a short exact sequence 0 → Iα/Jα → R/Jα → R/Iα → 0. By applying the long
exact cohomology sequence with respect to Ext·R(·, R) and passing to the direct
limit, we get the following exact sequence:

0 → Hc
I (R) → Hc

J (R)
φ→ lim−→Extc

R(Iα/Jα, R).

Recall that grade Iα/Jα ≥ c for all α. Let X = Im φ. The short exact sequence
0 → Hc

I (R) → Hc
J (R) → X → 0 provides (after applying Ext·R(·, R)) a natural

homomorphism

Extc
R(Hc

J(R), R) → Extc
R(Hc

I (R), R).

By Lemma 2.2 (d) this proves the statement in (a).
In order to prove (b) we may assume that JRp = IRp for all p ∈ V (I) with

dim Rp ≤ c + 1. This is possible because local cohomology does not change by
passing to the radical. Next we claim that dim X ≤ d − 2. This follows because
dimR Iα/Jα ≤ d − 2 for all α ∈ N under the additional assumption of J ⊂ I.
Moreover, dim X ≤ d − 2 is true by a localization argument and the embedding
X → lim−→Extc

R(Iα/Jα, R).
By passing to the completion and because of the Matlis duality (see [4, Lem-

ma 1.2]), it will be enough to show that the natural homomorphism Hd
m(Hc

I (R)) →
Hd

m(Hc
J(R)) is an isomorphism. Now this is true by virtue of the local cohomology

with respect to the maximal ideal applied to the short exact sequence 0 → Hc
I (R) →

Hc
J (R) → X → 0 and the fact that dimX ≤ d − 2.
For the proof of (c) recall that for a cohomologically complete intersection J it

is known that the endomorphism ring of Hc
J(R) is isomorphic to R (see [5] or [4,

Lemma 3.3]). �
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3. Dimensions of local cohomology

As before let (R, m) denote a n-dimensional Gorenstein ring. Let I ⊂ R be an
ideal with c = height I and dimR/I = n − c. We prove the following theorem in
order to estimate the dimension of local cohomology modules. To this end let us
fix the abbreviation h(p) = dim Rp − c for a prime ideal p ∈ V (I).

Theorem 3.1. Let l ≥ 1 denote an integer. With the previous notation the follow-
ing conditions are equivalent:

(i) dim Hi
I(R) ≤ n − l − i for all i > c.

(ii) For all p ∈ V (I) the natural map

H
h(p)
pRp

(Hc
IRp

(Rp)) → E(k(p))

is bijective (resp. surjective if l = 1) and

Hi
pRp

(Hc
IRp

(Rp)) = 0

for all h(p) − l + 1 < i < h(p).

Proof. (i) =⇒ (ii): From Lemma 2.4 it follows that R/I is unmixed; i.e. c =
height I = height IRp for all minimal prime ideals p ∈ V (I). In particular this
implies that h(p) = dimRp/IRp for all prime ideals p ∈ V (I). Moreover

dim R/p + dim Hi
IRp

(Rp) ≤ dimHi
I(R)

because the localization commutes with local cohomology. So our assumption (i)
implies that dimHi

pRp
(Rp) ≤ dimRp − l − i for all i > height IRp = c. Therefore

it will be enough to prove the statement in (ii) for p = m, the maximal ideal of
(R, m).

From Lemma 2.2 (a) it will be enough to show the vanishing of Hi
m(C ·

R(I) for
all i > n− l. To this end consider the spectral sequence of Proposition 2.3. By our
assumption we have for the initial terms Ep,q

2 = Hp
m(Hq

I (R)) = 0 for all p+q > n−l,
where q �= c. This provides the vanishing of the limit terms Hi

m(C ·
R(I)) = 0 for all

i > n − l, as required.
(ii) =⇒ (i): Because l ≥ 1 the first statement in (ii) provides that

H
h(p)
pRp

(Hc
IRp

(Rp)) does not vanish. By virtue of Lemma 2.2 (b) it follows that
dim Rp/IRp ≥ h(p) for all p ∈ V (I), whence c = height IRp for all p ∈ V (I). As
a consequence (cf. Lemma 2.2 (c)) we see that C ·

R(I) ⊗R Rp � C ·
Rp

(IRp) for all
p ∈ V (I).

Now we proceed by induction on d = dimR/I. In the case of d = 0 the ideal I
is m-primary. Therefore the statement is true because R is a Gorenstein ring. So
let d > 0. First we show that the inductive hypothesis implies

dim Hi
I(R) ≤ max{n − l − i, 0} for all c < i ≤ n.

To this end assume that dim Hi
I(R) > 0 for a certain i ≥ n−l. Choose a prime ideal

p ∈ Supp Hi
I(R)\{m}. Therefore Hi

pRp
(Rp) �= 0 and i+l ≤ dim Rp by the induction

hypothesis. On the other hand, l+ i ≤ dim Rp < n ≤ l+ i, a contradiction. Second,
suppose that dim Hi

I(R) > n− l− i for a certain c < i < n− l. Choose a prime ideal
p ∈ SuppHi

I(R) such that dim R/p = dim Hi
I(R). Therefore dim R/p > n − l − i

and l + i > dimRp. Moreover Hi
pRp

(Rp) �= 0 and i + l ≤ dim Rp, which is again a
contradiction.
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With this information in mind, the spectral sequence (as given in Proposition 2.3)
degenerates to isomorphisms Hi

m(C ·
R(I)) � Hi(C ·

R(I)) for all i > n− l. Finally the
assumption in (ii) for p = m implies that Hi

m(C ·
R(I)) = 0 for all i > n − l (by

Lemma 2.2). This finishes the proof because Hi(C ·
R(I)) � Hi

I(R) for i > c. �

For l ≥ dimR/I the previous result yields, as a particular case, the equivalence
of the conditions (i) and (ii) of [4, Theorem 3.1]. Another corollary is the following:

Corollary 3.2. Suppose that c ≥ 2. With the above notation suppose that

R̂p → Hom
R̂p

(Hc
IR̂p

(R̂p), Hc
IR̂p

(R̂p))

is an isomorphism for all p ∈ V (I) \ {m} (e.g. this is satisfied in the case where
I is locally a cohomologically complete intersection). Then the following conditions
are equivalent:

(i) Hi
I(R) = 0 for i = n − 1, n.

(ii) The natural homomorphism R̂ → HomR̂(Hc
IR̂

(R̂), Hc
IR̂

(R̂)) is an isomor-
phism.

Proof. By the Local Duality Theorem the assumption is equivalent to the isomor-
phisms

H
h(p)
pRp

(Hc
IRp

(Rp)) → E(k(p))

for all p ∈ V (I)\{m}. By a localization argument and Theorem 3.1 this is equivalent
to dim Hi

I(R) ≤ max{n − 2 − i, 0} for all i > c. Therefore, by Theorem 3.1 the
statement in (ii) holds if and only if Hi

I(R) = 0 for i = n − 1, n. �

Note that Corollary 3.2 proves Theorem 1.1 of the Introduction. Another corol-
lary of Theorem 3.1 is the following vanishing result.

Corollary 3.3. Fix the notation as above. Suppose that I is locally a cohomo-
logically complete intersection. For an integer l ≥ 1 the following conditions are
equivalent:

(i) cd I ≤ max{n − l, c}, i.e. Hi
I(R) = 0 for all i > max{n − l, c}.

(ii) The natural homomorphism Hd
m(Hc

I (R)) → E is bijective (resp. surjective
if l = 1) and Hi

m(Hc
I (R)) = 0 for d − l + 1 < i < d.

Proof. Note that the ideal I is locally a cohomologically complete intersection if
and only if dimHi

I(R) ≤ 0 for all i > c. This follows from localization and the fact
that Hi

IRp
(Rp) = 0 for all i �= c and all p ∈ V (I)\{m}. Therefore, as a consequence

of Theorem 3.1, the statement is true. �

4. Problems and examples

The first example shows that the assumptions in Corollary 3.2 are not necessary
for the equivalence of the two statements. Moreover, it shows that the isomorphism
R � HomR(Hc

I (R), Hc
I (R)) does not localize.

Example 4.1 (cf. [4, Example 4.1]). Let k be an arbitrary field. Let R =
k[|x0, . . . , x4|] denote the formal power series ring in five variables over k. Let

I = (x0, x1) ∩ (x1, x2) ∩ (x2, x3) ∩ (x3, x4).
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Then c = height I = 2 and Hi
I(R) = 0 for all i �= 2, 3, by use of the Mayer-Vietoris

sequence for local cohomology. Moreover (see [4, Example 4.1]) it can be shown
that H3

I (R) = ER(R/p), p = (x0, x1, x3, x4). The spectral sequence

Ep,q
2 = Hp

m(Hq
I (R)) =⇒ Ep+q

∞ = Hp+q
m (R)

provides an isomorphism H3
m(H2

I (R)) � E. Recall that Hp
m(H3

I (R)) = 0 for
all p ∈ N. By Local Duality it follows that the natural homomorphism R →
HomR(H2

I (R), H2
I (R)) is an isomorphism. On the other hand, it is easily seen

that this is not true for R̂p because

H2
IRp

(Rp) � H2
I1Rp

(Rp) ⊕ H2
I2Rp

(Rp), I1 = (x0, x1), I2 = (x3, x4)

decomposes into two non-zero direct summands. This is seen by using the Mayer-
Vietoris sequence for local cohomology.

The following example shows that the endomorphism ring HomR(Hc
I (R), Hc

I (R)),
c = height I, is in general not a finitely generated R-module.

Example 4.2 (cf. [3, §3]). Let k denote a field and let R = k[|x, y, u, v|]/(xu−yv),
where k[|x, y, u, v|] denotes the power series ring in four variables over k. Let I =
(u, v)R. Then dimR = 3, dimR/I = 2 and c = 1. It follows that Hi

I(R) = 0 for
i �= 1, 2. Moreover SuppH2

I (R) ⊂ {m}. The truncation complex with the short
exact sequence

0 → Hc
I (R)[−c] → ΓI(E·) → C ·

R(I) → 0
(of Definition 2.1) induces a short exact sequence on local cohomology

0 → H2
I (R) → H2

m(H1
I (R)) → E → 0

(see Lemma 2.2). Hartshorne [3, §3] has shown that the socle of H2
I (R) is not a

finite dimensional k-vector space. Therefore, the socle of H2
m(H1

I (R)) is infinite.
Moreover there are the following isomorphisms

HomR(H1
I (R), H1

I (R)) � Ext1R(H1
I (R), R) � HomR(H2

m(H1
I (R)), E)

(from Lemma 2.2 (d) and [4, Lemma 1.2]). By the Nakayama Lemma this means
that HomR(H1

I (R), H1
I (R)) is not a finitely generated R-module.

So, one might ask for a characterization of the finiteness of the endomorphism
ring of Hc

I (R), c = height I.
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