A LOWER BOUND FOR THE CHUNG-DIACONIS-GRAHAM RANDOM PROCESS

MARTIN HILDEBRAND

(Communicated by Richard C. Bradley)

Abstract

Chung, Diaconis, and Graham considered random processes of the form $X_{n+1}=a_{n} X_{n}+b_{n}(\bmod p)$ where p is odd, $X_{0}=0, a_{n}=2$ always, and b_{n} are i.i.d. for $n=0,1,2, \ldots$ In this paper, we show that if $P\left(b_{n}=-1\right)=P\left(b_{n}=0\right)=P\left(b_{n}=1\right)=1 / 3$, then there exists a constant $c>1$ such that $c \log _{2} p$ steps are not enough to make X_{n} get close to being uniformly distributed on the integers $\bmod p$.

1. Introduction

In [2], Chung, Diaconis, and Graham considered random processes of the form

$$
X_{n+1}=2 X_{n}+b_{n} \quad(\bmod p)
$$

where $X_{0}=0, b_{n}$ are i.i.d. for $n=0,1,2, \ldots$, and p is odd. They focussed on the case where $P\left(b_{n}=1\right)=P\left(b_{n}=0\right)=P\left(b_{n}=-1\right)=1 / 3$. These random processes have some similarity to certain pseudorandom sequences used by computers. Subsequently some generalizations of this random process have been considered. See, for example, [1], [4], [5], and [6]. Suppose $P_{n}(s)=P\left(X_{n}=s\right)$ where $s \in \mathbb{Z} / p \mathbb{Z}$. Define the variation distance of a probability P on $\mathbb{Z} / p \mathbb{Z}$ from the uniform distribution U on $\mathbb{Z} / p \mathbb{Z}$ by

$$
\|P-U\|=\frac{1}{2} \sum_{s \in \mathbb{Z} / p \mathbb{Z}}|P(s)-1 / p|=\max _{A \subseteq \mathbb{Z} / p \mathbb{Z}}|P(A)-U(A)|
$$

Chung, Diaconis, and Graham showed that for almost all odd p, if $N \geq \frac{\log p}{\log (9 / 5)}+c$, then $\left\|P_{N}-U\right\|=O\left((5 / 9)^{c}\right)$. They also state that more complicated arguments give the following result: For any $\epsilon>0$ and almost all odd p, if $N \geq(\hat{c}+\epsilon) \log _{2} p$, then $\left\|P_{N}-U\right\|<\epsilon$ where

$$
\hat{c}=\left(1-\log _{2}\left(\frac{5+\sqrt{17}}{9}\right)\right)^{-1}=1.01999186 \ldots
$$

Note that the values of X_{N}, when viewed as integers, range from $-2^{N}+1$ to $2^{N}-1$, inclusive. Thus, if $N<(1-\epsilon) \log _{2} p$ where $\epsilon>0$ is given, the number of values in this range is at most $2 p^{1-\epsilon}-1$, and $\left\|P_{N}-U\right\|>1-\left(2 p^{1-\epsilon}-1\right) / p \rightarrow 1$ as $p \rightarrow \infty$.

[^0]Chung, Diaconis, and Graham [2] speculate, "It is conceivable that in fact $(1+o(1)) \log _{2} p$ steps are enough for almost all [odd] p to force P_{N} to converge to uniform." However, we shall show that this statement, although described as conceivable in [2], is in fact false. In particular, we shall prove the following theorem:
Theorem 1. If $P\left(b_{n}=1\right)=P\left(b_{n}=0\right)=P\left(b_{n}=-1\right)=1 / 3$ and X_{n} and P_{n} are as above, then there exists a value $c_{1}>1$ such that if $n=n(p)<c_{1} \log _{2} p$, then $\left\|P_{n}-U\right\| \rightarrow 1$ as $p \rightarrow \infty$.

To motivate somewhat the proof of this theorem, we shall also prove the following theorem:

Theorem 2. If $P\left(b_{n}=1\right)=0.4, P\left(b_{n}=0\right)=0.6$, and X_{n} and P_{n} are as above, then there exists a value $c_{2}>1$ such that if $n=n(p)<c_{2} \log _{2} p$, then $\left\|P_{n}-U\right\| \rightarrow 1$ as $p \rightarrow \infty$.

2. Proof of Theorem 2

First observe that the following proposition holds:
Proposition 1. If $X_{0}=0$ and $X_{n+1}=2 X_{n}+b_{n}$ for $n \geq 0$, then

$$
X_{n}=\sum_{i=0}^{n-1} 2^{n-1-i} b_{i}
$$

Now suppose $P\left(b_{n}=1\right)=0.4$ and $P\left(b_{n}=0\right)=0.6$. Let $A_{n}=\mid\{m: 0 \leq m \leq$ $\left.n-1, b_{m}=1\right\} \mid$. By elementary arguments, for any $\epsilon>0, P\left((0.4-\epsilon) n<A_{n}<\right.$ $(0.4+\epsilon) n) \rightarrow 1$ as $n \rightarrow \infty$. Thus, except on a set which has probability approaching 0 as $n \rightarrow \infty, X_{n}$ takes on at most

$$
\sum_{j=\lceil(0.4-\epsilon) n\rceil}^{\lfloor(0.4+\epsilon) n\rfloor}\binom{n}{j}
$$

different values. We shall assume that $0.4+\epsilon<0.5$. Note that Stirling's formula implies

$$
\begin{aligned}
& \sum_{j=\lceil(0.4-\epsilon) n\rceil}^{\lfloor(0.4+\epsilon) n\rfloor}\binom{n}{j} \\
\leq & (2 \epsilon n+1)\binom{n}{\lfloor(0.4+\epsilon) n\rfloor} \\
\leq & \frac{(2 \epsilon n+1) c_{3} n^{n} \sqrt{2 \pi n}}{((0.4+\epsilon) n)^{(0.4+\epsilon) n}((0.6-\epsilon) n)^{(0.6-\epsilon) n} 2 \pi \sqrt{((0.4+\epsilon) n)((0.6-\epsilon) n)}} \\
\leq & \frac{c_{3}(2 \epsilon n+1) \sqrt{2 \pi n}}{2 \pi \sqrt{((0.4+\epsilon) n)((0.6-\epsilon) n)}} \cdot \frac{1}{(0.4+\epsilon)^{(0.4+\epsilon) n}(0.6-\epsilon)^{(0.6-\epsilon) n}}
\end{aligned}
$$

where c_{3} is a positive constant. Note that

$$
(0.4+\epsilon)^{(0.4+\epsilon) n}(0.6-\epsilon)^{(0.6-\epsilon) n}=2^{n\left((0.4+\epsilon) \log _{2}(0.4+\epsilon)+(0.6-\epsilon) \log _{2}(0.6-\epsilon)\right)}
$$

It can be shown that if $0<\epsilon<0.1$, then

$$
-\left((0.4+\epsilon) \log _{2}(0.4+\epsilon)+(0.6-\epsilon) \log _{2}(0.6-\epsilon)\right)<1
$$

If

$$
c_{2}<\frac{1}{-\left((0.4+\epsilon) \log _{2}(0.4+\epsilon)+(0.6-\epsilon) \log _{2}(0.6-\epsilon)\right)}
$$

and $n=n(p)<c_{2} \log _{2} p$, then

$$
\frac{\sum_{j=\lceil(0.4-\epsilon) n\rceil}^{\lfloor(0.4+\epsilon) n\rfloor}\binom{n}{j}}{p} \rightarrow 0
$$

as $p \rightarrow \infty$. Thus $\left\|P_{n}-U\right\| \rightarrow 1$ as $p \rightarrow \infty$ if $n=n(p)<c_{2} \log _{2} p$. Note that c_{2} can be chosen so that $c_{2}>1$, since

$$
\frac{1}{-\left((0.4+\epsilon) \log _{2}(0.4+\epsilon)+(0.6-\epsilon) \log _{2}(0.6-\epsilon)\right)}>1 .
$$

3. Overview of the proof of Theorem 1

By Proposition 11 X_{n} is determined by the n-tuple $\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$. However, if $P\left(b_{n}=1\right)=P\left(b_{n}=0\right)=P\left(b_{n}=-1\right)$, then many possible n-tuples $\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$ may give the same value for X_{n}. For example, if $n=3$, the 3 -tuples $(1,-1,-1),(0,1,-1)$, and $(0,0,1)$ all give $X_{3}=1$. We shall place the n-tuple in a standard form $\left(\tilde{b}_{0}, \tilde{b}_{1}, \ldots, \tilde{b}_{n-1}\right)$ so that

$$
2^{n-1} \tilde{b}_{0}+2^{n-2} \tilde{b}_{1}+\cdots+\tilde{b}_{n-1}=2^{n-1} b_{0}+2^{n-2} b_{1}+\cdots+b_{n-1}
$$

In this standard form, either none of $\tilde{b}_{0}, \tilde{b}_{1}, \ldots, \tilde{b}_{n-1}$ are -1 or none of $\tilde{b}_{0}, \tilde{b}_{1}, \ldots$, \tilde{b}_{n-1} are 1 . In the first case (excluding the event where $b_{0}, b_{1}, \ldots, b_{n-1}$ are all 0), we shall show that for every $\epsilon>0$, the number of values a in $\{1, \ldots, n-1\}$ such that both \tilde{b}_{a-1} and \tilde{b}_{a} are 1 lies between $(4 / 18-\epsilon) n$ and $(4 / 18+\epsilon) n$, except for events which have probability approaching 0 as $n \rightarrow \infty$. Likewise, in the second case (excluding the event where $b_{0}, b_{1}, \ldots, b_{n-1}$ are all 0), the number of values a in $\{1,2, \ldots, n-1\}$ such that both \tilde{b}_{a-1} and \tilde{b}_{a} are -1 lies between $((4 / 18)-\epsilon) n$ and $((4 / 18)+\epsilon) n$, except for events which have probability approaching 0 as $n \rightarrow \infty$. A Stirling's formula argument will give the theorem.

We shall divide the n-tuples $\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$ into three cases. In the first case, there exists a value j in $\{0,1, \ldots, n-1\}$ such that $b_{j}=1$ and $b_{k}=0$ if $0 \leq k<j$. We call this case "first 1 ". In the second case, there exists a value j in $\{0,1, \ldots, n-1\}$ such that $b_{j}=-1$ and $b_{k}=0$ if $0 \leq k<j$. We call this case "first -1 ". In the third case, $b_{0}=b_{1}=\cdots=b_{n-1}=0$. As $n \rightarrow \infty$, the probability of "first 1 " approaches $1 / 2$, and the probability of "first -1 " approaches $1 / 2$. (Both probabilities are $(1 / 2)\left(1-(1 / 3)^{n}\right)$.) In "first 1 ", none of $\tilde{b}_{0}, \tilde{b}_{1}, \ldots, \tilde{b}_{n-1}$ are -1 . In "first -1 ", none of $\tilde{b}_{0}, \tilde{b}_{1}, \ldots, \tilde{b}_{n-1}$ are 1 . We shall give detailed arguments for "first 1 "; the arguments for "first -1 " are similar.

If we are in "first 1 ", consider the infinite sequence $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$. After some leading zeroes, with probability 1 this sequence consists of strings of "blocks" B_{1}, B_{2}, \ldots where each B_{i} is a finite string starting with 1 and having no other 1 's in it. For example, if $\left(b_{0}, b_{1}, \ldots, b_{10}\right)=(0,0,1,-1,0,1,0,1,-1,1,1)$, then there are two leading zeroes, followed by $B_{1}=(1,-1,0), B_{2}=(1,0), B_{3}=(1,-1)$, and $B_{4}=(1)$. Also we say that the first coordinate of B_{1} is b_{2} and that B_{1} has b_{2}, b_{3}, and b_{4} as its coordinates. Note that the blocks B_{1}, B_{2}, \ldots are i.i.d. given that we are in "first 1 ".

Given an infinite series $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$, technically the values $\tilde{b}_{0}, \tilde{b}_{1}, \ldots, \tilde{b}_{n-1}$ may depend on n. For example, if $\left(b_{0}, b_{1}, b_{2}\right)=(0,0,1)$, then $\left(\tilde{b}_{0}, \tilde{b}_{1}, \tilde{b}_{2}\right)=(0,0,1)$ and $\tilde{b}_{2}=1$ if $n=3$. If $\left(b_{0}, b_{1}, \ldots, b_{10}\right)=(0,0,1,-1,0,1,0,1,-1,1,1)$, then $\left(\tilde{b}_{0}, \tilde{b}_{1}, \ldots, \tilde{b}_{10}\right)=(0,0,0,1,0,1,0,0,1,1,1)$ and $\tilde{b}_{2}=0$ if $n=11$ even though b_{0}, b_{1}, and b_{2} are unchanged. Suppose a is such that B_{i} has b_{a} as one of its coordinates. Then for all $n>a$ such that B_{i} does not also have b_{n} as one of its coordinates, $\left(\tilde{b}_{0}, \tilde{b}_{1}, \ldots, \tilde{b}_{a}\right)$ will no longer vary with n.

$$
\text { 4. NUMBER OF } a \text { SUCH THAT } \tilde{b}_{a-1}=\tilde{b}_{a}=1
$$

We shall consider several distinct ways to get values a such that $\tilde{b}_{a-1}=\tilde{b}_{a}=1$. These ways are detailed in the following lemmas.
Lemma 1. Let n_{1} be the number of a in $\{1, \ldots, n-1\}$ such that $\tilde{b}_{a-1}=1, \tilde{b}_{a}=1$, $b_{a-1}=1$, and $b_{a}=1$. Let $\epsilon>0$ be given. Given that we are in "first 1 ", the probability that $((1 / 18)-\epsilon) n<n_{1}<((1 / 18)+\epsilon) n$ approaches 1 as $n \rightarrow \infty$.
Lemma 2. Let n_{2} be the number of a in $\{1, \ldots, n-1\}$ such that $\tilde{b}_{a-1}=1, \tilde{b}_{a}=1$, $b_{a-1}=1$, and $b_{a} \neq 1$. Then $n_{2}=0$.
Lemma 3. Let n_{3} be the number of a in $\{1, \ldots, n-1\}$ such that $\tilde{b}_{a-1}=1, \tilde{b}_{a}=1$, $b_{a-1} \neq 1$, and $b_{a}=1$. Let $\epsilon>0$ be given. Given that we are in "first 1 ", the probability that $((1 / 18)-\epsilon) n<n_{3}<((1 / 18)+\epsilon) n$ approaches 1 as $n \rightarrow \infty$.
Lemma 4. Let n_{4} be the number of a in $\{1, \ldots, n-1\}$ such that $\tilde{b}_{a-1}=1, \tilde{b}_{a}=1$, $b_{a-1} \neq 1$, and $b_{a} \neq 1$. Let $\epsilon>0$ be given. Given that we are in "first 1 ", the probability that $((1 / 9)-\epsilon) n<n_{4}<((1 / 9)+\epsilon) n$ approaches 1 as $n \rightarrow \infty$.
Proof of Lemma 2. If we are not in "first 1 ", then \tilde{b}_{a} is never 1. If we are in "first 1 ", then one obtains ($\left.\tilde{b}_{0}, \tilde{b}_{1}, \ldots, \tilde{b}_{n-1}\right)$ from ($b_{0}, b_{1}, \ldots, b_{n-1}$) as follows. If j is such that $b_{j}=1$ and $b_{k}=0$ whenever $0 \leq k<j$, then $\tilde{b}_{k}=0$ whenever $0 \leq k<j$. Otherwise, for each j_{0} such that $b_{j_{0}}=1$, let $j_{1}=\min \left(n, \min \left\{\ell: \ell>j_{0}, b_{\ell}=1\right\}\right)$. (By convention, assume that the minimum of an empty set is ∞.) If $b_{k}=0$ for all k with $j_{0}<k<j_{1}$, then $\tilde{b}_{j_{0}}=1$ and $\tilde{b}_{k}=0$ for all k with $j_{0}<k<j_{1}$. Otherwise $\tilde{b}_{j_{0}}=0$, and one can figure out the unique values for \tilde{b}_{k} in $\{0,1\}$ when $j_{0}<k<j_{1}$. Lemma 2 follows.

Proof of Lemma 4. To prove Lemma 4. let j be such that $b_{j}=1$ and $b_{k}=0$ whenever $0 \leq k<j$. Suppose that $a-1>j$ and $a<n$. Then $P\left(b_{a-1} \neq 1, b_{a} \neq 1\right)=$ 4/9. Suppose $j_{0}<a<j_{1}$ with $b_{j_{0}}=1$ and $j_{1}=\min \left(n, \min \left\{\ell: \ell>j_{0}, b_{\ell}=1\right\}\right)$. Given j_{0} and j_{1}, there are $2^{j_{1}-j_{0}-1}$ possibilities for $\left(b_{j_{0}+1}, \ldots, b_{j_{1}-1}\right)$ and $2^{j_{1}-j_{0}-1}$ possibilities for $\left(\tilde{b}_{j_{0}+1}, \ldots, \tilde{b}_{j_{1}-1}\right)$. The possibilities for $\left(b_{j_{0}+1}, \ldots, b_{j_{1}-1}\right)$, which range from $(0, \ldots, 0)$ to $(-1, \ldots,-1)$, are in one-to-one correspondence with the possibilities for $\left(\tilde{b}_{j_{0}+1}, \ldots, \tilde{b}_{j_{1}-1}\right)$, which range from $(0, \ldots, 0)$ to $(1, \ldots, 1)$. Thus $P\left(\tilde{b}_{a-1}=1, \tilde{b}_{a}=1 \mid b_{a-1} \neq 1, b_{a} \neq 1\right)=1 / 4$, and $P\left(\tilde{b}_{a-1}=1, \tilde{b}_{a}=1, b_{a-1} \neq 1, b_{a} \neq\right.$ 1) $=1 / 9$. Let $C_{a}=\left\{\tilde{b}_{a-1}=1, \tilde{b}_{a}=1, b_{a-1} \neq 1, b_{a} \neq 1\right\}$. Conditioned on j such that $b_{j}=1$ and $b_{k}=0$ for $0 \leq k<j$, the events C_{a} for $a-1>j, a<n$, and a even are independent, and the events C_{a} for $a-1>j, a<n$, and a odd are independent. Since $P\left(j>\epsilon_{1} n\right) \rightarrow 0$ as $n \rightarrow \infty$ (given that we are in "first 1") for each $\epsilon_{1}>0$, Lemma 4 follows by elementary arguments.

Proof of Lemma 1. To prove this lemma, suppose that we are in "first 1 " and $b_{a-1}=$ 1 with a in $\{1, \ldots, n-1\}$. Then $\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=1$ if and only if $b_{a}=1$ and $b_{k}=0$ for all k with $a<k<j_{1}$ where $j_{1}=\min \left(n, \min \left\{\ell>a: b_{\ell}=1\right\}\right)$. Let us consider the infinite sequence $\left(b_{0}, b_{1}, \ldots\right)$. For positive integers i, let D_{i} be the event that $B_{i}=(1)$ and B_{i+1} has no -1 's in it. Note that $P\left(D_{i}\right)=(1 / 3)\left(\sum_{i=1}^{\infty}(1 / 3)^{i}\right)=1 / 6$. Observe that D_{1}, D_{3}, D_{5}, etc. are independent and that D_{2}, D_{4}, D_{6}, etc. are independent. Furthermore, given $\epsilon_{1}>0$, with probability approaching 1 as $n \rightarrow \infty$, the number of a in $\{1, \ldots, n-1\}$ such that $b_{a-1}=1$ lies between $\left((1 / 3)-\epsilon_{1}\right) n$ and $\left((1 / 3)+\epsilon_{1}\right) n$ given that we are in "first 1". Suppose we are given $\epsilon^{\prime}>0$. Choose $\epsilon_{1}>0$ so that $\epsilon_{1}<6 \epsilon^{\prime}$. Then with probability approaching 1 as $n \rightarrow \infty$, at least $\left((1 / 18)-\epsilon^{\prime}\right) n$ events D_{i} occur with $i<\left((1 / 3)-\epsilon_{1}\right) n$, while at most $\left((1 / 18)+\epsilon^{\prime}\right) n$ events D_{i} occur with $i \leq\left((1 / 3)+\epsilon_{1}\right) n$. Thus, given $\epsilon^{\prime}>0$, the number of i such that D_{i} occurs and the first coordinate of B_{i+1} is b_{ℓ} for some $\ell<n$ is, with probability approaching 1 as $n \rightarrow \infty$, between $\left((1 / 18)-\epsilon^{\prime}\right) n$ and $\left((1 / 18)+\epsilon^{\prime}\right) n$. This number of i is within 1 of the number of a in Lemma 1 the only possible difference occurs when the block B_{i+1} has b_{n} as one of its coordinates.

Proof of Lemma 3. To prove this lemma, suppose we are in "first 1 ", $b_{a-1} \neq 1$, and $b_{a}=1$ with a in $\{1, \ldots, n-1\}$. Then $\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=1$ if and only if $b_{a-1}=-1$ and $b_{k}=0$ for all k with $a<k<j_{1}$ where $j_{1}=\min \left(n, \min \left\{\ell>a: b_{\ell}=1\right\}\right)$. Let us consider the infinite sequence $\left(b_{0}, b_{1}, \ldots\right)$. For positive integers i, let E_{i} be the event that B_{i+1} has no -1 's in it and that B_{i} ends with -1 . Note that $P\left(E_{i}\right)=1 / 6$, that $E_{1}, E_{3}, E_{5}, \ldots$ are independent, and that $E_{2}, E_{4}, E_{6}, \ldots$ are independent. Furthermore, given $\epsilon_{1}>0$, with probability approaching 1 as $n \rightarrow \infty$, the number of a in $\{1, \ldots, n-1\}$ with $b_{a}=1$ lies between $\left((1 / 3)-\epsilon_{1}\right) n$ and $\left((1 / 3)+\epsilon_{1}\right) n$ given that we are in "first 1 ". Thus, given $\epsilon^{\prime}>0$, the number of i such that E_{i} occurs and the first coordinate of B_{i+1} is b_{ℓ} for some $\ell<n$ is, with probability approaching 1 as $n \rightarrow \infty$, between $\left((1 / 18)-\epsilon^{\prime}\right) n$ and $\left((1 / 18)+\epsilon^{\prime}\right) n$. This number of i is within 1 of the number of a in Lemma 3 the only possible difference occurs when B_{i+1} has b_{n} as one of its coordinates.

In conclusion, the number of a in $\{1, \ldots, n-1\}$ such that $\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=1$ (given that we are in "first 1") lies, with probability approaching 1 as $n \rightarrow \infty$, between $((4 / 18)-\epsilon) n$ and $((4 / 18)+\epsilon) n$ for each $\epsilon>0$.

5. Stirling's formula argument

If the number of a in $\{1, \ldots, n-1\}$ with $\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=1$ is no more than $((4 / 18)+\epsilon) n$, then either the number of odd a in $\{1, \ldots, n-1\}$ with $\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=1$ is no more than $((2 / 18)+\epsilon / 2) n$ or the number of even a in $\{1, \ldots, n-1\}$ with $\tilde{b}_{a-1}=1$ and \tilde{b}_{a} is no more than $((2 / 18)+\epsilon / 2) n$.

Let us suppose that n is even and the number of odd a in $\{1, \ldots, n-1\}$ with $\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=1$ is no more than $((2 / 18)+\epsilon / 2) n$, where $\epsilon>0$ is such that $(2 / 18)+\epsilon / 2<1 / 8$. Then, the number of possible values of $\sum_{i=0}^{n-1} 2^{n-1-i} b_{i}$ if we have "first 1 " is at most

$$
\sum_{\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right) \in R_{n}} \frac{((1 / 2) n)!}{\ell_{1}!\ell_{2}!\ell_{3}!\ell_{4}!}
$$

where $R_{n}=\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right): \ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}=(1 / 2) n, \ell_{1} \leq((2 / 18)+\epsilon / 2) n\right\}$. The values $\ell_{1}, \ell_{2}, \ell_{3}$, and ℓ_{4} represent the number of odd a in $\{1, \ldots, n-1\}$ such that
$\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=1, \tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=0, \tilde{b}_{a-1}=0$ and $\tilde{b}_{a}=1$, and $\tilde{b}_{a-1}=0$ and $\tilde{b}_{a}=0$, respectively.

For some polynomial $p_{1}(n)$ of n,

$$
\begin{aligned}
& \sum_{\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right) \in R_{n}} \frac{((1 / 2) n)!}{\ell_{1}!\ell_{2}!\ell_{3}!\ell_{4}!} \\
\leq & \left(\left(\frac{2}{18}+\frac{\epsilon}{2}\right) n+1\right) n^{2} \frac{\left(\frac{1}{2} n\right)!}{\left\lfloor\left(\frac{2}{18}+\frac{\epsilon}{2}\right) n\right\rfloor!\left(\left\lfloor\left(\frac{7}{54}-\frac{\epsilon}{6}\right) n\right\rfloor!\right)^{3}} \\
\leq & p_{1}(n) \frac{\left(\frac{1}{2} n\right)^{(1 / 2) n}}{\left(\left(\frac{2}{18}+\frac{\epsilon}{2}\right) n\right)^{((2 / 18)+\epsilon / 2) n}\left(\left(\frac{7}{54}-\frac{\epsilon}{6}\right) n\right)^{((7 / 54)-\epsilon / 6) 3 n}} \\
= & p_{1}(n) 2^{\left(0.5 \log _{2}(0.5)-((2 / 18)+\epsilon / 2) \log _{2}((2 / 18)+\epsilon / 2)-((7 / 18)-\epsilon / 2) \log _{2}((7 / 54)-\epsilon / 6)\right) n} .
\end{aligned}
$$

But if

$$
c_{1}<\frac{1}{0.5 \log _{2}(0.5)-\frac{2}{18} \log _{2}\left(\frac{2}{18}\right)-\frac{7}{18} \log _{2}\left(\frac{7}{54}\right)},
$$

where c_{1} is constant and $n=n(p)<c_{1} \log _{2} p$, then we can choose $\epsilon>0$ so that

$$
\frac{p_{1}(n) 2^{\left(0.5 \log _{2}(0.5)-((2 / 18)+\epsilon / 2) \log _{2}((2 / 18)+\epsilon / 2)-((7 / 18)-\epsilon / 2) \log _{2}((7 / 54)-\epsilon / 6)\right) n}}{p} \rightarrow 0
$$

as $p \rightarrow \infty$.
Thus for such values n, at most $o(p)$ values of $\sum_{i=0}^{n-1} 2^{n-1-i} b_{i}$ occur in "first 1 " if n is even and the number of odd a in $\{1, \ldots, n-1\}$ with $\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=1$ is no more than $((2 / 18)+\epsilon / 2) n$. Minor adaptations of this argument apply if n is odd, if we consider the number of even a instead of the number of odd a, or if we consider "first -1 " instead of "first 1 ". (For example, if n is odd but we still consider odd a in "first 1 ", note that there are at most $o(p)$ different values of X_{n-1} and 3 different values of b_{n} to get that there are at most $o(p)$ different values of X_{n} in this case.) There is only one value which is neither in "first 1 " nor in "first -1 ".

Observe that

$$
\frac{1}{0.5 \log _{2}(0.5)-\frac{2}{18} \log _{2}\left(\frac{2}{18}\right)-\frac{7}{18} \log _{2}\left(\frac{7}{54}\right)} \approx 1.001525
$$

Thus we may choose a value $c_{1}>1$ such that if $n=n(p)<c_{1} \log _{2} p$, then X_{n} has, except for events with probability approaching 0 as $p \rightarrow \infty$, at most $o(p)$ values. Thus $\left\|P_{n}-U\right\| \rightarrow 1$ as $p \rightarrow \infty$.

6. A LARGER VALUE FOR c_{1}

A more careful analysis of the proofs of Lemmas 1, 3, and 44 shows that for each $\epsilon>0$, the number of odd a in $\{1, \ldots, n-1\}$ with $\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=1$ and the number of even a in $\{1, \ldots, n-1\}$ with $\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=1$ both lie between $((2 / 18)-\epsilon) n$ and $((2 / 18)+\epsilon) n$ with probability approaching 1 as $n \rightarrow \infty$ given that we are in "first 1". Given j, the events C_{a} are independent when a is odd, $a-1>j$, and $a<n$, and also the events C_{a} are independent when a is even, $a-1>j$, and $a<n$; therefore the extension of Lemma 4 is straightforward. To see how to extend Lemma consider the following argument. Let i_{k} be the k-th odd value of i such that D_{i} occurs, and let m_{k} be the value of a such that b_{a} is the first coordinate of the block $B_{1+i_{k}}$. Note that $m_{2}-m_{1}$, $m_{3}-m_{2}, m_{4}-m_{3}, \ldots$ are i.i.d. Let p be the probability that $m_{2}-m_{1}$ is odd.

	$\hat{b}_{a-1}=0$, $\tilde{b}_{a}=0$	$\hat{b}_{a-1}=0$, $\tilde{b}_{a}=1$	$\tilde{b}_{a-1}=1$, $\tilde{b}_{a}=1$	$\tilde{b}_{a-1}=1$, $\tilde{b}_{a}=0$
$b_{a-1}=1, b_{a}=1$	0	0	$1 / 18$	$1 / 18$
$b_{a-1} \neq 1, b_{a} \neq 1$	$1 / 9$	$1 / 9$	$1 / 9$	$1 / 9$
$b_{a-1}=0, b_{a}=1$	$1 / 18$	$1 / 18$	0	0
$b_{a-1}=-1, b_{a}=1$	0	0	$1 / 18$	$1 / 18$
$b_{a-1}=1, b_{a}=0$	0	$1 / 18$	0	$1 / 18$
$b_{a-1}=1, b_{a}=-1$	$1 / 18$	$1 / 18$	0	0

TABLE 1. Cases for $\tilde{b}_{a-1}, \tilde{b}_{a}, b_{a-1}$, and b_{a}

If m_{1} is even, then the sequence $m_{1}, m_{2}, m_{3}, \ldots$ consists of r_{1} consecutive even values, then r_{2} consecutive odd values, then r_{3} consecutive even values, etc., where $r_{1}, r_{2}, r_{3}, \ldots$ are i.i.d. geometric random variables with parameter p. If m_{1} is odd, then the sequence $m_{1}, m_{2}, m_{3}, \ldots$ consists of r_{1} consecutive odd values, then r_{2} consecutive even values, then r_{3} consecutive odd values, etc., where $r_{1}, r_{2}, r_{3}, \ldots$ are i.i.d. geometric random variables with parameter p. Note that for each $\epsilon>0$, by Kolmogorov's maximal inequality (see p. 61 of Durrett [3], for example), $\max \left(\left|r_{1}-r_{2}\right|,\left|\left(r_{1}-r_{2}\right)+\left(r_{3}-r_{4}\right)\right|, \ldots,\left|\left(r_{1}-r_{2}\right)+\left(r_{3}-r_{4}\right)+\cdots+\left(r_{n-1}-r_{n}\right)\right|\right)<\epsilon n$ for even n with probability approaching 1 as $n \rightarrow \infty$. Since for some positive constant $c, \max \left(r_{1}, r_{2}, \ldots, r_{n}\right)<c \ln (n)$ with probability approaching 1 as $n \rightarrow \infty$, this result and a similar result involving D_{i} when i is even imply that, for each $\epsilon>0$, the number of odd a in $\{1, \ldots, n-1\}$ such that $b_{a-1}=1, b_{a}=1, \tilde{b}_{a-1}=1$, and $\tilde{b}_{a}=1$ minus the number of even a in $\{1, \ldots, n-1\}$ with $b_{a-1}=1, b_{a}=1$, $\tilde{b}_{a-1}=1$, and $\tilde{b}_{a}=1$ has absolute value less than ϵn with probability approaching 1 as $n \rightarrow \infty$ given that we are in "first 1 ". Thus, given $\epsilon>0$, the number of such odd a lies between $((1 / 36)-\epsilon) n$ and $((1 / 36)+\epsilon) n$ with probability approaching 1 as $n \rightarrow \infty$ given that we are in "first 1 ". A similar argument applies for Lemma 3,

With arguments resembling the proofs of Lemmas 1, 2, 3, and 4, one can show the following:

Lemma 5. Given that we are in "first 1 ", the number of a in $\{1, \ldots, n-1\}$ such that $\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=0$ lies, for each $\epsilon>0$, between $((5 / 18)-\epsilon) n$ and $((5 / 18)+\epsilon) n$ with probability approaching 1 as $n \rightarrow \infty$.

Lemma 6. Given that we are in "first 1 ", the number of a in $\{1, \ldots, n-1\}$ such that $\tilde{b}_{a-1}=0$ and $\tilde{b}_{a}=0$ lies, for each $\epsilon>0$, between $((4 / 18)-\epsilon) n$ and $((4 / 18)+\epsilon) n$ with probability approaching 1 as $n \rightarrow \infty$.

Lemma 7. Given that we are in "first 1 ", the number of a in $\{1, \ldots, n-1\}$ such that $\tilde{b}_{a-1}=0$ and $\tilde{b}_{a}=1$ lies, for each $\epsilon>0$, between $((5 / 18)-\epsilon) n$ and $((5 / 18)+\epsilon) n$ with probability approaching 1 as $n \rightarrow \infty$.

While the details are not shown here, Table 1 outlines the arguments to be shown. For example, the entry $1 / 18$ for $b_{a-1}=1, b_{a}=-1, \tilde{b}_{a-1}=0$, and $\tilde{b}_{a}=0$ means that the number of a in $\{1, \ldots, n-1\}$ with $b_{a-1}=1, b_{a}=-1, \tilde{b}_{a-1}=0$, and $\tilde{b}_{a}=0$ lies, for a given $\epsilon>0$, between $((1 / 18)-\epsilon) n$ and $((1 / 18)+\epsilon) n$ with probability approaching 1 as $n \rightarrow \infty$ given that we are in "first 1 ".

More careful arguments (similar to the extensions of Lemmas 1, 3, and 4) show that the number of odd a in $\{1, \ldots, n-1\}$ with $\tilde{b}_{a-1}=1$ and $\tilde{b}_{a}=0$ lies between $((5 / 36)-\epsilon) n$ and $((5 / 36)+\epsilon) n$ (for a given $\epsilon>0)$ with probability approaching 1 as $n \rightarrow \infty$ given that we are in "first 1". Similar statements hold for even a here; similar statements (where $2 / 18$ replaces $4 / 18$ and $5 / 36$ replaces $5 / 18$) also hold for odd a and even a in Lemmas 6 and 7

The total number of possible values of $\sum_{i=0}^{n-1} 2^{n-1-i} b_{i}$ (except for events with probability approaching 0 as $n \rightarrow \infty$) in "first 1 " is at most (for even n)

$$
\sum_{\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right) \in S_{n}}\binom{\frac{1}{2} n}{\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}}
$$

with $S_{n}=\left\{\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right): \ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}=(1 / 2) n,((4 / 36)-\epsilon) n<\ell_{1}<\right.$ $((4 / 36)+\epsilon) n,((5 / 36)-\epsilon) n<\ell_{2}<((5 / 36)+\epsilon) n,((5 / 36)-\epsilon) n<\ell_{3}<((5 / 36)+$ $\left.\epsilon) n,((4 / 36)-\epsilon) n<\ell_{4}<((4 / 36)+\epsilon) n\right\}$.

A Stirling's formula argument shows that if

$$
c_{1}<\frac{1}{0.5 \log _{2}(0.5)-\frac{4}{18} \log _{2}\left(\frac{4}{36}\right)-\frac{5}{18} \log _{2}\left(\frac{5}{36}\right)}
$$

and $n=n(p)<c_{1} \log _{2} p$ where c_{1} is a constant, then

$$
\sum_{\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right) \in S_{n}}\binom{\frac{1}{2} n}{\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}}
$$

is $o(p)$. For odd n or "first -1 ", similar arguments can be used. Thus if $n=n(p)<$ $c_{1} \log _{2} p, X_{n}$ has $o(p)$ possible different values except for events with probability approaching 0 as $p \rightarrow \infty$. Thus $\left\|P_{n}-U\right\| \rightarrow 1$ as $p \rightarrow \infty$.

Note that

$$
\frac{1}{0.5 \log _{2}(0.5)-\frac{4}{18} \log _{2}\left(\frac{4}{36}\right)-\frac{5}{18} \log _{2}\left(\frac{5}{36}\right)} \approx 1.00448
$$

Thus there is a gap between this lower bound and the best upper bound claimed in Chung, Diaconis, and Graham [2]. Exploring this gap is a potential problem for further study.

Acknowledgments

The author thanks Ron Graham for mentioning this problem in a talk at a conference on the mathematics of Persi Diaconis in 2005. The author also thanks Persi Diaconis for encouragement.

References

[1] Asci, C. "Generating uniform random vectors". J. Theoret. Probab. 14 (2001), 333-356. MR1838732 (2002c:60115)
[2] Chung, F., Diaconis, P., and Graham, R. "Random walks arising in random number generation". Ann. Probab. 15 (1987), 1148-1165. MR893921 (88d:60033)
[3] Durrett, R. Probability: Theory and Examples, third edition. Wadsworth \& Brooks/Cole, Pacific Grove, CA, 2005. MR1068527(91m:60002)
[4] Hildebrand, M. "Random processes of the form $X_{n+1}=a_{n} X_{n}+b_{n}(\bmod p)$ ". Ann. Probab. 21 (1993), 710-720. MR1217562 (94d:60012)
[5] Hildebrand, M. "Random processes of the form $X_{n+1}=a_{n} X_{n}+b_{n}(\bmod p)$ where b_{n} takes on a single value". pp. 153-174, Random Discrete Structures, ed. Aldous and Pemantle. Springer-Verlag, New York, 1996. MR.1395613 (97g:60085)
[6] Hildebrand, M. "On the Chung-Diaconis-Graham random process". Electron. Commun. Probab. 11 (2006), 347-356. MR2274529 (2008g:60017)

Department of Mathematics and Statistics, University at Albany, State University of New York, Albany, New York 12222

[^0]: Received by the editors June 2, 2008.
 2000 Mathematics Subject Classification. Primary 60C05; Secondary 60B15.

