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SMOOTHNESS OF RADIAL SOLUTIONS
TO MONGE-AMPÈRE EQUATIONS

CRISTIAN RIOS AND ERIC T. SAWYER

(Communicated by Matthew J. Gursky)

Abstract. We prove that generalized convex radial solutions to the genera-
lized Monge-Ampère equation det D2u = f(|x|2/2, u, |∇u|2/2) with f smooth
are always smooth away from the origin. Moreover, we characterize the global
smoothness of these solutions in terms of the order of vanishing of f at the
origin.

1. Introduction

It is well known that the radial homogeneous functions u = cm,n |x|2+
2m
n provide

nonsmooth solutions to the Monge-Ampère equation detD2u = |x|2m with smooth
right-hand side when m ∈ N \nN. This raises the question of when radial solutions
u to the generalized equation

(1.1) detD2u = k (x, u, Du) , x ∈ Bn,

are smooth, given that k is smooth and nonnegative. When u is radial, (1.1)
reduces to a nonlinear ODE on [0, 1) that is singular at the endpoint 0. It is thus
easy to prove that u is always smooth away from the origin, even where k vanishes,
but smoothness at the origin is more complicated and determined by the order of
vanishing of k there.

In fact, Monn [9] proves that if k = k (x) is independent of u and Du, then a
radial solution u to (1.1) is smooth if k

1
n is smooth, and Derridj [4] has extended

this criterion to the case when k (x, u, Du) = f
(

|x|2
2 , u, |∇u|2

2

)
factors as

(1.2) f (t, ξ, ζ) = κ (t)φ (t, ξ, ζ)

with κ smooth and nonnegative on [0, 1), κ (0) = 0, and φ smooth and positive
on [0, 1) × R × [0,∞). Moreover, Monn also shows that u is smooth if k = k (x)
vanishes to infinite order at the origin.

These results leave open the case when k has the general form k (x, u, Du) and
vanishes to infinite order at the origin. The purpose of this paper is to show that
radial solutions u are smooth in this remaining case as well. The following theorem
encompasses all of the aforementioned results and applies to generalized convex
solutions u and also with f = κφ as in (1.2) but where φ is only assumed positive
and bounded, not smooth.
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Theorem 1.1. Suppose that u is a generalized convex radial solution (in the sense
of Alexandrov) to the generalized Monge-Ampère equation (1.1) with

k (x, u, Du) = f

(
|x|2

2
, u,

|∇u|2

2

)
,

where f is smooth and nonnegative on [0, 1)×R× [0,∞). Then u is smooth in the
deleted ball Bn \ {0}.

Suppose moreover that there are positive constants c, C such that

(1.3) cf (t, 0, 0) ≤ f (t, ξ, ζ) ≤ Cf (t, 0, 0)

for (ξ, ζ) near (0, 0). Let τ ∈ Z+ ∪ {∞} be the order of vanishing of f (t, 0, 0) at 0.
Then u is smooth at the origin if and only if τ ∈ nZ+ ∪ {∞}.

The case when k = k (x) is independent of u and Du is handled by Monn in [9]
using an explicit formula for u in terms of k:

(1.4) g (t) = C +
(n

2

) 1
n

∫ t

0

(∫ s

0
w

n
2 f (w) dw

w

) 1
n

√
s

ds,

where u (x) = g
(

r2

2

)
and k (x) = f

(
r2

2

)
≥ 0 with r = |x|, x ∈ R

n. In the case
that k vanishes to infinite order at the origin, an inequality of Hadamard is used
as well. The following scale-invariant version follows from Corollary 5.2 in [9]:

(1.5) max
0≤t≤x

∣∣∣F (�) (t)
∣∣∣ ≤ Ck,�F (x)

k−�
k max

0≤t≤x

∣∣∣F (k) (t)
∣∣∣ �

k

, 0 ≤ x ≤ 1,

for all 1 ≤ � ≤ k − 1 and k ∈ N provided F is smooth, nondecreasing on [0, 1) and
vanishes to infinite order at 0.

2. Proof of Theorem 1.1

We begin by considering Theorem 1.1 in the case that u is a classical C2 solution
to (1.1) and f satisfies (1.2) where f (t, 0, 0) vanishes to finite order � at 0. If k is
independent of u and Du, Monn uses formula (1.4) in [9] to show that u is smooth
when f (w)

1
n is smooth. In particular this applies when � ∈ nZ+. In the general

case, we note that (1.3) implies (1.2), the assumption made in [4]. Indeed, using
f (k) (0, ξ, ζ) = 0 for 0 ≤ k ≤ � − 1 we can write

f (s, ξ, ζ) =
∫ 1

0

(1 − t)�−1

(� − 1)!
d�

dt�
f (ts, ξ, ζ) dt = s�ψ (s, ξ, ζ) ,

where ψ (s, ξ, ζ) is smooth and ψ (0, ξ, ζ) = f(�)(0,ξ,ζ)
�! > 0. Thus the results of

Derridj [4] apply to show that u is smooth for general k when � ∈ nZ+.

2.1. Generalized Monge-Ampère equations. We now consider radial general-
ized convex solutions u to the generalized Monge-Ampère equation (1.1), where we
assume k (·, u, q) and k (x, u, ·) are radial. We first establish that u ∈ C2 (Bn) ∩
C∞ (Bn \ {0}). We note that results of Guan, Trudinger and Wang in [6] and [8]
yield u ∈ C1,1 (Bn) for many k in (1.1), but not in the generality possible in the
radial case here. In order to deal with general k it would be helpful to have a
formula for u in terms of k, but this is problematic. Instead we prove Theorem 1.1
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for general k without solving for the solution explicitly, but using an inductive ar-
gument that is based on estimates (1.5) when k vanishes to infinite order at the
origin.

Assume that u is a generalized convex solution of (1.1) in the sense of Alexandrov
(see [1] and [3]) and define ϕ (t) by

(2.1) ϕ

(
r2

2

)
= k (x, u (x) , Du (x)) = f

(
|x|2

2
, u (x) ,

|∇u (x)|2

2

)
.

Then ϕ is bounded since u is Lipschitz continuous. It follows that the convex radial
function u is continuously differentiable at the origin, since otherwise it would have
a conical singularity there and its representing measure µu would have a Dirac
component at the origin. Let g be given by formula (1.4) with ϕ in place of f , i.e.

(2.2) g (t) = Cu +
(n

2

) 1
n

∫ t

0

(∫ s

0
w

n
2 ϕ (w) dw

w

) 1
n

√
s

ds,

and with constant Cu chosen so that u and ũ agree on the unit sphere where

(2.3) ũ (x) = g

(
r2

2

)
, 0 ≤ r < 1.

We claim that ũ is a generalized convex solution to (1.1) in the sense of Alexan-
drov. To see this we first note that

D2ũ (re1) =

⎡⎢⎢⎢⎣
g′′r2 + g′ 0 · · · 0
0 g′ · · · 0
...

...
. . .

...
0 0 · · · g′

⎤⎥⎥⎥⎦
is positive semidefinite; hence ũ is convex. To prove that the representing measure
µũ of ũ is kdx it suffices to show, since both g and f are radial, that

µũ (E) = |Bũ (E)| =
∫

E

k

for all annuli E = {x ∈ Bn : r1 < |x| < r2}, 0 < r1 < r2 < 1 where

Bũ (E) =
⋃

r1<|x|<r2

{∇ũ1 (x)} =
{

a ∈ Bn :
∂

∂r
ũ (r1e1) < |a| <

∂

∂r
ũ (r2e1)

}
.

Since ∂
∂r ũ (riei) = g′

(
r2

i

2

)
ri = g′ (ti)

√
2ti with ti = r2

i

2 , we thus have

|Bũ (E)| =
∣∣{a ∈ Bn : g′ (t1)

√
2t1 < |a| < g′ (t2)

√
2t2

}∣∣
=

ωn

n

{
g′ (t2)

n (2t2)
n
2 − g′ (t1)

n (2t1)
n
2

}
=

ωn

n

n

2
2

n
2

∫ t2

t1

w
n
2 ϕ (w)

dw

w

= ωn

∫ r2

r1

rn−1ϕ

(
r2

2

)
dr =

∫
E

k.

In particular the convex radial function ũ must be continuously differentiable, since
otherwise there is a jump discontinuity in the radial derivative of ũ at some distance
r from the origin that results in a singular component in µũ supported on the sphere
of radius r.
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Now the uniqueness of Alexandrov solutions to the Dirichlet problem (see e.g.
[3]) yields u = ũ, and hence u ∈ C1 (Bn). Thus ϕ ∈ C [0, 1), and from (2.3) we have
u (x) = g

(
|x|2
2

)
and

(2.4) ϕ (t) = f
(
t, g (t) , tg′ (t)2

)
,

where using (2.2) we compute that

(2.5) g′ (t) =
{

n

2
t−

n
2

∫ t

0

s
n
2 −1ϕ (s) ds

} 1
n

.

In particular g′ ∈ C [0, 1). We now obtain by induction that g ∈ C∞ (0, 1); hence
u ∈ C∞ (Bn \ {0}). Indeed, if g ∈ C� (0, 1), then (2.4) implies ϕ ∈ C�−1 (0, 1) and
then (2.2) implies g ∈ C�+1 (0, 1).

It will be convenient to use fractional integral operators at this point. For β > 0
and f continuous define

Tβf (s) =
∫ s

0

(w

s

)β

f (w)
dw

w
, s 	= 0,

Tβf (0) =
1
β

f (0)

so that

(2.6) g (t) = C +
(n

2

) 1
n

∫ t

0

(
Tn

2
f (s)

) 1
n ds.

We claim that for f smooth, nonnegative and of finite type �, � ∈ Z+, the same is
true of Tβf for all β > 0. This follows immediately from the identity

(2.7)
dk

dsk
Tβf (s) = Tβ+kf (k) (s) , k ∈ N,

and the estimate

Tβ+kf (k) (s) =
1

β + k
f (k) (0) + O (|s|) .

When k = 1, (2.7) follows from differentiating and then integrating by parts, and
the general case is then obtained by iteration.

Now suppose that f satisfies (1.3) and let

κ (t) = f (t, 0, 0)

vanish to infinite order at 0. If κ vanishes in a neighbourhood of 0, then so does
g, and we have g ∈ C∞ [0, 1) and u ∈ C∞ (Bn). Thus we will assume

∫ t

0
κ > 0

for t > 0 in what follows. Note that (2.7) then implies that Tn
2
κ (t) is smooth

and positive on (0, 1) and vanishes to infinite order at 0. Since g′ ∈ C [0, 1), it
follows that ϕ (t) ≤ Cκ (t). Thus we have the inequality Tn

2
ϕ (t) ≤ CTn

2
κ (t), and

from (2.5) we now conclude that g′ (t) also vanishes to infinite order at 0. Now
ϕ (t) ≈ κ (t) from (1.3), and so also Tn

2
ϕ (t) ≈ Tn

2
κ (t). From

(2.8) g′′ (t) =
ϕ (t)

2t
(

n
2 Tn

2
ϕ (t)

)1− 1
n

− 1
2t

(n

2
Tn

2
ϕ (t)

) 1
n

,
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we then have

(2.9) |g′′ (t)| ≤ C
κ (t)

2t
(

n
2 Tn

2
κ (t)

)1− 1
n

+ C
1
2t

(n

2
Tn

2
κ (t)

) 1
n

, 0 < t < 1.

An application of (1.5) with � = 1, k > n and F (t) =
∫ t

0
s

n
2 −1κ (s) ds yields

t
n
2 κ (t) = F ′ (t) ≤ CF (t)1−

1
k , and so the first term on the right side of (2.9) is

bounded by a multiple of t−
1
2 F (t)

1
n− 1

k . Thus the right side of (2.9), and hence also
g′′ (t), vanishes to infinite order at 0. In particular g′′ ∈ C [0, 1), and we conclude
u ∈ C2 (Bn) in this case as well.

Summarizing, we have u ∈ C∞ (Bn \ {0}), and in the case that f satisfies (1.3),
we also have u ∈ C2 (Bn). Thus from the above we have that

ϕ (t) = f
(
t, g (t) , tg′ (t)2

)
= κ (t)φ

(
t, g (t) , tg′ (t)2

)
,

where u (x) = g
(

|x|2
2

)
∈ C2 (Bn), g is given by (2.2) and ϕ ∈ C1 [0, 1) by (2.1).

Note that we cannot use (1.5) on the function
∫ t

0
s

n
2 −1ϕ (s) ds here since we have

no a priori control on higher derivatives of ϕ (s) = f
(
s, g (s) , sg′ (s)2

)
. Instead we

will use (1.5) on the function
∫ t

0
s

n
2 −1κ (s) ds together with an inductive argument

to control derivatives of g.
From the above we have that g′′ ∈ C [0, 1) ∩ C∞ (0, 1). Now differentiate (2.8)

for t > 0 using (2.7) to obtain

g′′′ (t) =
1
2

(n

2

) 1
n−1

{
ϕ′ (t)

tTn
2
ϕ (t)1−

1
n

−
(

1
n
− 1

)
ϕ (t)Tn

2 +1ϕ
′ (t)

tTn
2
ϕ (t)2−

1
n

}
(2.10)

−1
2

(n

2

) 1
n−1 ϕ (t)

t2Tn
2
ϕ (t)1−

1
n

− 1
2

(n

2

) 1
n

{
1
n

Tn
2 +1ϕ

′ (t)

tTn
2
ϕ (t)1−

1
n

−
Tn

2
ϕ (t)

1
n

t2

}
,

and then compute that

ϕ′ (t) = κ′ (t) φ
(
t, g (t) , tg′ (t)2

)
(2.11)

+κ (t)φ1

(
t, g (t) , tg′ (t)2

)
+κ (t)φ2

(
t, g (t) , tg′ (t)2

)
g′ (t)

+κ (t)φ3

(
t, g (t) , tg′ (t)2

) {
g′ (t)2 + 2tg′ (t) g′′ (t)

}
.

We will now use ϕ ≈ κ, (2.10), (2.11) and (1.5) applied with F (t) =
∫ t

0
s

n
2 −1κ (s) ds,

to show that g′′′ vanishes to infinite order at 0 and g′′′ ∈ C [0, 1).
To see this, we first note that F is smooth, nonnegative and vanishes to infinite

order at 0 since the same is true of κ. Next, for any � ≥ 1 and ε > 0, (1.5) with k
large enough yields

(2.12) sup
0<s≤t

∣∣∣F (�) (s)
∣∣∣ ≤ Cε,�F (t)1−ε

.
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Moreover we have

|βTβh (t)| ≤ sup
0<s≤t

|h (s)| ,(2.13)

F (t) = t
n
2 Tn

2
κ (t) ,

Tn
2
ϕ (t) ≈ Tn

2
κ (t) .

Now using

F ′ (t) = t
n
2 −1κ (t) ,

F ′′ (t) = t
n
2 −1κ′ (t) +

(n

2
− 1

)
t

n
2 −2κ (t)

we obtain∣∣∣κ′ (t) φ
(
t, g (t) , tg′ (t)2

)∣∣∣ ≤ C |κ′ (t)| = C
∣∣∣t1−n

2 F ′′ (t) −
(n

2
− 1

)
t−

n
2 F ′ (t)

∣∣∣ ,

and an application of (2.12) gives∣∣∣κ′ (t)φ
(
t, g (t) , tg′ (t)2

)∣∣∣ ≤ Cεt
−n

2 F (t)1−ε .

We obtain similar estimates for the remaining terms in (2.11), and all together this
yields

|ϕ′ (t)| ≤ Cεt
−αF (t)1−ε

, for some α > 0.

Using the second and third lines in (2.13) we now show that the first term in braces
in (2.10) satisfies∣∣∣∣∣ ϕ′ (t)

tTn
2
ϕ (t)1−

1
n

∣∣∣∣∣ ≤ Cε
t−αF (t)1−ε

tTn
2
ϕ (t)1−

1
n

≈ Cεt
n
2 (1−ε)−α−1Tn

2
κ (t)

1
n−ε

,

which vanishes to infinite order at 0 if 0 < ε < 1
n . Similar arguments, using (2.11)

and the first line in (2.13) to estimate Tn
2 +1ϕ

′ (t), apply to the remaining terms
in (2.10), and this completes the proof that g′′′ vanishes to infinite order at 0 and
g′′′ ∈ C [0, 1).

We now observe that we can
• continue to differentiate (2.10) to obtain a formula for g(�) involving only

appropriate powers of Tn
2
ϕ (t) ≈ Tn

2
κ (t) in the denominator and derivatives

of ϕ of order at most � − 2 in the numerator,
• and continue to differentiate (2.11) to obtain a formula for ϕ(�−2) involving

derivatives of g of order at most � − 1.
It is now clear that the above arguments apply to prove that derivatives of g (t)

of all orders vanish to infinite order at 0 and are continuous on [0, 1). This shows
that g is smooth on [0, 1) and thus that u is smooth on Bn.
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