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MULTIPLES OF HYPERCYCLIC OPERATORS

CATALIN BADEA, SOPHIE GRIVAUX, AND VLADIMIR MÜLLER

(Communicated by Nigel J. Kalton)

Abstract. We give a negative answer to a question of Prăjitură by showing
that there exists an invertible bilateral weighted shift T on �2(Z) such that
T and 3T are hypercyclic but 2T is not. Moreover, any Gδ set M ⊆ (0,∞)
which is bounded and bounded away from zero can be realized as M = {t >
0 | tT is hypercyclic} for some invertible operator T acting on a Hilbert space.

1. Introduction

This note is devoted to the study of multiples of hypercyclic operators acting
on a real or complex separable Banach space X. An operator T ∈ B(X) is said to
be hypercyclic if there exists a vector x ∈ X which has a dense orbit, i.e. the set
{Tnx | n ≥ 0} is dense in X. Hypercyclic operators have been the subject of an
active investigation in the past twenty years, and we refer the reader to the book
[1] for a thorough survey of this area. The first examples of hypercyclic operators
were given by Rolewicz in 1969: if B is the backward shift on �p(N), 1 ≤ p < +∞,
or c0(N), with the canonical basis (en)n≥0, defined by Be0 = 0 and Ben = en−1

for n ≥ 1, then λB is hypercyclic for any complex number λ such that |λ| > 1.
This can be seen very easily using the Hypercyclicity Criterion, which is the most
useful tool for proving that a given operator is hypercyclic. We recall it here in the
version of Bès and Peris [2]:

Hypercyclicity Criterion. Suppose that there exist a strictly increasing sequence
(nk) of positive integers, two dense subsets V and W of X and a sequence (Sk) of
maps (not necessarily linear nor continuous) Sk : W → W such that:

(1) for every x ∈ V , Tnkx → 0,
(2) for every x ∈ W , Skx → 0,
(3) for every x ∈ W , TnkSkx → x.

Then the operator T is hypercyclic.

Despite its somewhat involved aspect, the Hypercyclicity Criterion follows di-
rectly from a simple Baire Category argument, using the fact that T is hypercyclic
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if and only if it is topologically transitive (i.e., for every pair (U, V ) of nonempty
open subsets of X there exists an integer n such that T−n(U) ∩ V �= ∅). The “le-
gitimacy” of the Hypercyclicity Criterion comes from the fact [2] that T ∈ B(X)
satisfies the Hypercyclicity Criterion if and only if T ⊕ T is hypercyclic on X ⊕X.
Until very recently it was unknown whether every hypercyclic operator satisfied the
Hypercyclicity Criterion or not: the answer is no; see [3].

Let T ∈ B(X) satisfy the Hypercyclicity Criterion. Note that for any 0 < t < 1
the operator tT satisfies condition (1) (for the same sequence (nk) and set V ).
Similarly, the operator tT for t > 1 satisfies conditions (2) and (3) (for the same
set W and for the mappings t−nkSk). Therefore in many concrete examples the
set {t > 0 | tT is hypercyclic} is convex. This motivates the following question of
Prăjitură [6, 5] about multiples of hypercyclic operators:

Question 1.1. Let T be a bounded operator on X. Suppose that there exist two
positive numbers t1 and t2, 0 < t1 < t2, such that t1T and t2T are hypercyclic. Is
it true that tT is hypercyclic for every t ∈ [t1, t2]?

We give a negative answer to this question and prove the following stronger
result:

Theorem 1.2. Let M be a subset of (0, +∞). The following assertions are equiv-
alent:

(1) M is a Gδ subset of (0, +∞) which is bounded and bounded away from zero;
(2) there exists an invertible operator T acting on a Hilbert space such that

M = {t > 0 | tT is hypercyclic}.

Remark that as soon as M coincides with the set of positive t’s such that tT
is hypercyclic, M must be bounded away from zero, since tT is a contraction for
small enough t. As a corollary to Theorem 1.2 we obtain for instance:

Corollary 1.3. There exists an operator T acting on a Hilbert space such that T
and 3T are hypercyclic but 2T is not.

Note that by [4], if T is a hypercyclic operator on a complex Banach space and
θ ∈ R, then eiθT is hypercyclic (with the same set of hypercyclic vectors as T ).
Thus the set M = {λ ∈ C | λT is hypercyclic} is circularly symmetric (if λ belongs
to M , eiθλ belongs to M for any eiθ in the unit circle). We thus obtain the following
variant of Theorem 1.2:

Theorem 1.4. Let M be a subset of the complex plane C. The following assertions
are equivalent:

(i) there exists an invertible operator T acting on a Hilbert space such that

M = {λ ∈ C | λT is hypercyclic};

(ii) M is circularly symmetric and M∩(0, +∞) is a Gδ subset of (0, +∞) which
is bounded and bounded away from zero.

The operators constructed in Theorem 1.2 are bilateral weighted shifts on the
space �2(Z), and for these shifts the Hypercyclicity Criterion takes a particularly
simple form (see [7] for a necessary and sufficient condition for a general bilateral
weighted shift to be hypercyclic):
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Fact 1.5. Let T be an invertible bilateral weighted shift on the space �2(Z) endowed
with its canonical basis (en)n∈Z. Then T is hypercyclic if and only if there exists
a strictly increasing sequence (nk)k≥0 of positive integers such that ||Tnke0|| and
||T−nke0|| tend to zero as k goes to infinity.

Multiples of the shifts constructed in the proof of Theorem 1.2 are not mixing
(recall that T is said to be mixing if for every pair (U, V ) of nonempty open subsets
of X there exists an integer N such that T−n(U) ∩ V �= ∅ for every n ≥ N): this
is consistent with the next result, which implies that the answer to Question 1.1 is
affirmative for a large class of operators.

Theorem 1.6. Let T ∈ B(X) be such that for some 0 < t1 < t2, t1T ⊕ t2T
is hypercyclic. Then tT is hypercyclic for every t ∈ [t1, t2]. This holds true in
particular if either t1T or t2T is mixing.

2. Proofs of Theorems 1.2 and 1.6

The proof of the implication (2) ⇒ (1) in Theorem 1.2 is quite standard: suppose
that T ∈ B(X) is invertible. Let M = {t > 0 | tT is hypercyclic}. We can suppose
that M is nonempty. As was previously mentioned, ‖tT‖ ≤ 1 for 0 < t ≤ ‖T‖−1

and so tT is not hypercyclic in this case. Hence M is bounded away from zero.
Since T is invertible, the same argument applied to T−1 shows that M must be
bounded above. Let (Uj)j≥1 be a countable basis of open subsets of X (which is
separable). Clearly

M = {t > 0 | tT is hypercyclic} =
⋂
i≥1

⋂
j≥1

⋃
n≥0

{t > 0 | (tT )nUi ∩ Uj �= ∅},

which is a Gδ set.
The first step in the proof of the reverse implication (1) ⇒ (2) of Theorem 1.2

is the following proposition, which proves the result when M is an open set. One
of its interests is that it shows the existence of common subsets V and W in the
Hypercyclicity Criterion for all operators tT with t belonging to this open set.

Proposition 2.1. Let G be an open subset of an interval of the form (K−1, K) for
some K > 1. Then

(i) there exists an invertible bilateral weighted shift on �2(Z) such that ‖T‖ ≤
K3 and G = {t > 0 | tT is hypercyclic};

(ii) write G as a (finite or countable) union

G =
⋃
λ∈Λ

(aλ, bλ)

of open intervals. For each λ ∈ Λ, let Aλ be an infinite subset of N.
Then for each λ ∈ Λ there exists an increasing sequence (mλ,k)k≥1 of in-
tegers belonging to Aλ such that for every t ∈ (aλ, bλ), ‖(tT )mλ,ke0‖ and
‖(tT )−mλ,ke0‖ tend to zero as k tends to infinity (where {en | n ∈ Z} is the
standard orthonormal basis in �2(Z)).

Proof. The statement is trivial if G is empty, so suppose that G is nonempty.
Order the intervals (aλ, bλ) into a sequence (ak, bk) in which every interval (aλ, bλ)
appears infinitely many times. Then fix a function f : N → Λ such that (ak, bk) =
(af(k), bf(k)) and for each λ ∈ Λ, f(k) = λ for infinitely many k’s.
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Set formally n0 = 1 and choose inductively a sequence (nk)k≥1 such that nk ∈
Af(k) and nk ≥ 4nk−1 for each k ≥ 1.

The operator T will be the weighted bilateral shift defined on �2(Z) by

Tei = ci+1ei+1 and T−1e−i = c̃i+1e−i−1 for i ≥ 0;

i.e. Tei = (1/c̃−i)ei+1 for i < 0. The weights ci and c̃i are defined for i ≥ 1 in the
following way:

• c1 = c2 = c̃1 = c̃2 = K;
• for k ∈ N and 2nk−1 < j ≤ nk,

cj =
(

1
K2nk−1bnk

k

) 1
nk−2nk−1

and c̃j =
(

ank

k

K2nk−1

) 1
nk−2nk−1

;

• for k ∈ N and nk < j ≤ 2nk,

cj = K2bk and c̃j =
K2

ak
·

For n ∈ N write the products of the first n coefficients ci or c̃i as wn =
∏n

i=1 ci and
w̃n =

∏n
i=1 c̃i. It is easy to show by induction that for every k ∈ N,

w2nk
= w̃2nk

= K2nk , wnk
= b−nk

k and w̃nk
= ank

k .

Since 1/K < ak < bk < K for every k, we have for every k and every j such that
nk < j ≤ 2nk,

K ≤ cj ≤ K3 and K ≤ c̃j ≤ K3.

Then since nk ≥ 4nk−1, we have for 2nk−1 < j ≤ nk:

1
cj

=
(
K2nk−1bnk

k

) 1
nk−2nk−1 ≤ K

2nk−1+nk
nk−2nk−1 ≤ K3,

1
c̃j

=
(

K2nk−1

ank

k

) 1
nk−2nk−1

≤ K
2nk−1+nk
nk−2nk−1 ≤ K3,

c̃j ≤ K
nk−2nk−1
nk−2nk−1 ≤ K

and similarly, cj ≤ K. Hence K ≤ cj ≤ K3 and K ≤ c̃j ≤ K3 for every j, and this
proves that T is bounded and invertible with ‖T‖ ≤ K3 and ||T−1|| ≤ K3. Note
that for t ∈ (ak, bk) we have

‖(tT )nke0‖ = tnkb−nk

k = (t/bk)nk and ‖(tT )−nke0‖ = t−nkank

k = (ak/t)nk ,

where t/bk < 1 and ak/t < 1.
Now let λ ∈ Λ. Since the interval (aλ, bλ) appears in the sequence (ak, bk)

infinitely many times, let (mλ,i)i≥1 be the increasing sequence consisting of the
integers of the set {nk} for which f(k) = λ. Then each mλ,i belongs to Aλ since
nk ∈ Af(k) for every k.

Let t belong to the interval (aλ, bλ). Then by the computation above,
||(tT )mλ,ie0|| and ||(tT )−mλ,ie0|| tend to zero as i tends to infinity, and, by Fact 1.5,
tT is hypercyclic. Since this is true for every λ ∈ Λ, this shows that G ⊆ {t > 0 |
tT is hypercyclic}.

Conversely, suppose that t does not belong to G. In order to show that tT is not
hypercyclic, it suffices to prove that for each j ∈ N, max{‖(tT )je0‖, ‖(tT )−je0‖} ≥
1. Let 2nk−1 < j ≤ 2nk for some k ≥ 1. Since t /∈ G, either t ≤ ak or t ≥ bk.
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• If nk < j ≤ 2nk and t ≥ bk, then

‖(tT )je0‖ = tj‖T je0‖ ≥ bj
k‖Tnke0‖ · (K2bk)j−nk

= bj−nk

k (K2bk)j−nk = (Kbk)2(j−nk) ≥ 1.

• If nk < j ≤ 2nk and t ≤ ak, then

‖(tT )−je0‖ ≥ a−j
k ‖T−nke0‖ ·

(
K2

ak

)j−nk

= a
−(j−nk)
k

(
K2

ak

)j−nk

=
(

K

ak

)2(j−nk)

≥ 1.

• If 2nk−1 < j ≤ nk for some k ≥ 1, and t ≥ bk, then

‖(tT )je0‖ ≥ bj
k‖T je0‖ = bj

k‖Tnke0‖ · (K2nk−1bnk

k )
nk−j

nk−2nk−1

= bj−nk

k (K2nk−1bnk

k )
nk−j

nk−2nk−1 = (K2nk−1b
2nk−1
k )

nk−j

nk−2nk−1 ≥ 1

since Kbk ≥ 1.
• Finally if 2nk−1 < j ≤ nk and t ≤ ak, then

‖(tT )−je0‖ ≥ a−j
k ‖T−je0‖ = a−j

k ‖T−nke0‖ ·
(

K2nk−1

ank

k

) nk−j

nk−2nk−1

= ank−j
k

(
K2nk−1

ank

k

) nk−j

nk−2nk−1

=

(
K2nk−1

a
2nk−1
k

) nk−j

nk−2nk−1

≥ 1

since K/ak ≥ 1 this time.
Hence max{‖(tT )je0‖, ‖(tT )−je0‖} ≥ 1 for all j, and consequently, tT is not

hypercyclic for t /∈ G. This shows that G = {t > 0 | tT is hypercyclic} and finishes
the proof of Proposition 2.1. �

We are now ready for the proof of Theorem 1.2.

Proof of Theorem 1.2. Let K > 1 be such that M ⊆ (1/K, K). Write M =⋂
j≥1 Gj , where (Gj)j≥1 is a decreasing sequence of nonempty open sets. Then

each Gj can be decomposed as a disjoint union Gj =
⋃

λ∈Λj
(aλ, bλ) of open

intervals, where Λj for j ≥ 1 are suitable finite or infinite sets. By Proposi-
tion 2.1, there exists a bilateral weighted shift T1 such that ‖T1‖ ≤ K3 and
G1 = {t > 0 | tT1 is hypercylic}. Moreover, for each λ ∈ Λ1 there is an increasing
sequence (m(1)

λ,i)i≥1 such that tT1 satisfies the Hypercyclicity Criterion with respect
to this sequence for each t ∈ (aλ, bλ).

We then define a sequence of weighted bilateral shifts Tj , j ≥ 2, in the following
way. For each j ≥ 2 define a (uniquely determined) function gj : Λj → Λj−1 such
that (aλ, bλ) ⊆ (agj(λ), bgj(λ)) for every λ ∈ Λj . By Proposition 2.1 we can define
inductively weighted bilateral shifts Tj such that

• ‖Tj‖ ≤ K3;
• Gj = {t > 0 | tTj is hypercyclic};
• for each λ ∈ Λj there is an increasing sequence (m(k)

λ,i )i≥1 of integers such
that tTj satisfies the Hypercyclicity Criterion with respect to this sequence for each
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t ∈ (aλ, bλ), λ ∈ Λj . Moreover, we may assume that

{m(j)
λ,i | i ≥ 1} ⊆ {m(j−1)

gj(λ),i | i ≥ 1}.

Consider now the direct sum T =
⊕∞

j=1 Tj acting on
⊕∞

j=1 �2(Z). Clearly we
have ‖T‖ ≤ K3. Suppose that tT is hypercyclic for some t > 0. Then tTj is
hypercyclic for each j ≥ 1 and thus t ∈ Gj for every j ≥ 1. Hence t belongs to M .

Conversely, let t belong to M . For each j choose the (uniquely determined)
element λ(j) of Λj such that t ∈ (aλ(j) , bλ(j)). Consider the sequence (mk)k≥1 =
(m(k)

λ(k),k
)k≥1. Then it is easy to check that tT satisfies the Hypercyclicity Criterion

with respect to the sequence (mk)k≥1, and Theorem 1.2 is proved. �

The proof of Theorem 1.6 is a straightforward application of the Hypercyclicity
Criterion:

Proof of Theorem 1.6. Let t ∈ (t1, t2). In order to show that tT satisfies the Hyper-
cyclicity Criterion, it suffices to prove that for all nonempty open subsets U, V of X
and for any open neighborhood W of 0 there exists an n ∈ N such that Tn(W )∩V
and Tn(U) ∩ W are nonempty. Let ε > 0 be such that the open ball of radius
ε is contained in W . Since t1T ⊕ t2T is hypercyclic, there exists a vector x ⊕ y
with ‖x‖ < ε and y ∈ U which is hypercyclic for t1T ⊕ t2T . Thus there exists an
n ∈ N such that (t1T )nx ∈ V and ‖(t2T )ny‖ < ε. Then ‖tn1 t−nx‖ ≤ ‖x‖ < ε,
so tn1 t−nx ∈ W , and (tT )ntn1 t−nx = (t1T )nx ∈ V . Hence (tT )n(W ) ∩ V �= ∅.
Furthermore, ‖(tT )ny‖ ≤ ‖(t2T )ny‖ < ε, and so (tT )n(U) ∩ W �= ∅. Hence tT is
hypercyclic. �

In view of Theorem 1.6, one may wonder whether the condition t1T ⊕ t2T hy-
percyclic is necessary for tT to be hypercyclic whenever t belongs to [t1, t2]. This
is not the case, as shown by the following example:

Example 2.2. There exists a bilateral weighted shift T on �2(Z) such that tT is
hypercyclic for every t ∈ (1, 4) but 2T ⊕ 3T is not hypercyclic.

Proof. We define T using the notation of the proof of Proposition 2.1 with M =
(a1, b1) ∪ (a2, b2), where Λ = {1, 2}, (a1, b1) = (1, 3) and (a2, b2) = (2, 4). Then we
define the function f as f(k) = 1 if k is odd and f(k) = 2 if k is even. Let K = 5 and
construct a sequence (nk) and the operator T as in Proposition 2.1. The proof of
Proposition 2.1 shows that tT is hypercyclic if and only if t ∈ (1, 3)∪ (2, 4) = (1, 4).
Furthermore, it is easy to check that 2T ⊕3T is not hypercyclic. Indeed if k is odd,
then:

• If 2nk−1 < j ≤ nk,

wj = 52nk−1

(
1

52nk−13nk

) j−2nk−1
nk−2nk−1

.

Hence ||(3T )je0|| = 3jwj = (15)2nk−1

(
1

152nk−1

) j−2nk−1
nk−2nk−1 = 15

2nk−1(nk−j)
nk−2nk−1 ≥ 1.

• If nk < j ≤ 2nk, ||(3T )je0|| = 3jwj = 152(j−nk) ≥ 1.
If k is even, then
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• If 2nk−1 < j ≤ nk,

||(2T )−je0|| = 2−jw̃j = (5/2)2nk−1

(
1

(2/5)2nk−1

) j−2nk−1
nk−2nk−1

≥ 1.

• If nk < j ≤ 2nk, ||(2T )−je0|| = 2−jw̃j = (5/2)2(j−nk) ≥ 1.
Hence there is no sequence (mj) such that both ||(2T )mj e0 ⊕ (3T )mj e0|| and

||(2T )−mj e0 ⊕ (3T )−mje0|| tend to zero as j tends to infinity and 2T ⊕ 3T is not
hypercyclic. �
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