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Abstract. For a given finite-type quiver Γ , we will consider scalar-removed

representations (Sd, Rd(Γ )), where Sd is a direct product of special linear
algebraic groups and Rd(Γ ) is the representation defined naturally by Γ and
a dimension vector d. In this paper, we give a necessary and sufficient condi-
tion on d that Rd(Γ ) has only finitely many Sd-orbits. This condition can be
paraphrased as a condition concerning lattices of small rank spanned by posi-
tive roots of Γ . To determine such scalar-removed representations having only
finitely many orbits is very fundamental to the open problem of classification
of the so-called semisimple finite prehomogeneous vector spaces. We consider
everything over an algebraically closed field of characteristic zero.

1. Introduction

Let Γ = (Γ0, Γ1) be a quiver with r vertices (here Γ0, respectively Γ1, is the
set of vertices, respectively arrows). Then for an r-tuple of non-negative integers
d = (d(i))i∈Γ0 (we call it a dimension vector), the group Gd =

∏
i∈Γ0

GL(d(i)) acts
naturally on Rd(Γ ) =

⊕
α∈Γ1

M(d(eα), d(sα)), where we consider everything over an
algebraically closed field of characteristic zero, and we denote by M(d(eα), d(sα)) the
vector space consisting of d(eα) × d(sα) matrices and by sα (resp. eα) the starting
(resp. ending) point for an arrow α ∈ Γ1. We will call (Gd, Rd(Γ )) a representation
associated with Γ .

In general, let ρ : G → GL(V ) be a rational representation of a connected linear
algebraic group G on a finite-dimensional vector space V . If V is decomposed into
a finite union of G-orbits, it must have a unique Zariski dense orbit; hence (G, V )
is a prehomogeneous vector space (abbreviated PV). Such a PV is called a finite
PV (abbreviated FP). If G is semisimple, we call (G, V ) semisimple. Some classes
of FPs have already been classified, for example, by Sato–Kimura [9, §8] in the case
of irreducible ρ, by Kimura–Kasai–Yasukura [6] in the case where each irreducible
component has sufficient scalar multiplication, and by Kimura–Kamiyoshi–Maki–
Ouchi–Takano [5] in the case of type (G × GLn, ρ ⊗ Λ1).

In the case where Γ is finite-type (i.e., its underlying graph is one of the Dynkin
diagrams of type An, Dn, E6, E7, or E8), it is well-known that (Gd, Rd(Γ )) is an
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FP for arbitrary d. However, the scalar-removed representation (Sd, Rd(Γ )), where
Sd =

∏
i∈Γ0

SL(d(i)) ⊂ Gd, may not be a PV, and not even an FP. Note that
the condition whether (Sd, Rd(Γ )) is an FP does not depend on the choice of an
orientation of Γ , but the condition whether it is a PV does. In the case where Γ
is of type An, it is known that such a condition can be characterized by existence
of a certain relative invariant (see §5 of [7]). Such a characterization via relative
invariants, however, fails even for D4-type Γ , and it seems more complicated, in
general, to write down concretely the condition whether (Sd, Rd(Γ )) for a given
dimension vector d is an FP or not (see Theorem 4.1).

In this paper, we classify all scalar-removed FPs associated with finite-type quiv-
ers. According to the result of [6], to classify such scalar-removed FPs is fundamen-
tal to the classification of all semisimple (i.e., without any scalar multiplication)
FPs, because (G, ρ, V ) is also necessarily an FP if (H, ρ|H , V ) for a subgroup H ⊂ G
is an FP. Our theorem (Theorem 3.4) gives a necessary and sufficient condition, for
a given dimension vector d, whether (Sd, Rd(Γ )) is an FP or not. As mentioned
in §3, this condition can be paraphrased as a condition whether a certain lattice of
small rank spanned by positive roots of Γ contains d or not. This viewpoint gives
us a lucid explanation for conditions on d (look again at the twenty conditions listed
in Theorem 4.1); that is, to determine FPs, (Sd, Rd(Γ )) is nothing but determining
lattices of small rank spanned by positive roots. Thus, for an arbitrary finite-type
quiver Γ and a dimension vector d, we can mechanically determine whether a given
representation (Sd, Rd(Γ )) is an FP or not.

2. Preliminaries

We consider everything over an algebraically closed field K of characteristic zero.
Let Γ = (Γ0, Γ1) be a quiver with r vertices, where Γ0 = {1, 2, . . . , r} is the set of

vertices and Γ1 is the set of arrows. For each arrow α ∈ Γ1, we denote its starting
point, respectively ending point, by sα, respectively eα; for example, if i

α−→ j for
an arrow α ∈ Γ1, we have sα = i and eα = j.

For an r-tuple of non-negative integers d = (d(i))i∈Γ0 (we will call such an r-
tuple a dimension vector), the direct product of general linear algebraic groups
Gd =

∏
i∈Γ0

GL(d(i)) acts on the vector space Rd(Γ ) =
⊕

α∈Γ1
M(d(eα), d(sα)) by

g · X = (g(eα)X(α)(g(sα))−1)α∈Γ1 for g = (g(i))i∈Γ0 ∈ Gd and X = (X(α))α∈Γ1 ∈
Rd(Γ ), where we denote by M(d(i), d(j)) the set of d(i) × d(j) matrices. In the case
of d(i) = 0, we will consider corresponding things to be trivial. We call (Gd, Rd(Γ ))
a representation associated with Γ .

On the other hand, each element of the vector space Rd(Γ ) is sometimes called
a representation of Γ . In such a context we call d the dimension of X ∈ Rd(Γ )
and denote it by dimX = d. For two representations X and Y of Γ with the same
dimension d (that is, X, Y ∈ Rd(Γ )), we say that they are isomorphic if X and Y
belong to the same Gd-orbit. We will express such representations as X ∼= Y .

Let X and Y be representations of Γ with dimensions d and d′, respectively.
We define their direct sum X ⊕ Y by

X ⊕ Y =
([

X(α) 0
0 Y (α)

])
α∈Γ1

.

This is a representation of Γ with dimension d + d′, that is, an element of the
vector space Rd+d′(Γ ). If a representation X cannot be expressed as the direct
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sum of two non-zero representations, then we say that X is indecomposable. It is
known that any representation X can be uniquely decomposed (up to order) into a
direct sum of indecomposable representations; that is, there exist indecomposable
representations X1, X2, . . . , Xs such that

X ∼= m1X1 ⊕ m2X2 ⊕ · · · ⊕ msXs,

where mkXk = Xk ⊕ · · · ⊕ Xk is the direct sum of mk copies of Xk.
In fact, if Γ is a finite-type quiver, there are only finitely many isomorphic classes

of representations of Γ , and the correspondence X �→ dimX gives a bijection
between the isomorphic classes of representations and the positive roots of Γ .

Next we define homomorphisms between two representations X and Y , where
we put dim X = (d(i))i∈Γ0 and dimY = (d′(i))i∈Γ0 respectively. A homomor-
phism from X to Y is an element g = (g(i))i∈Γ0 ∈

⊕
i∈Γ0

M(d′(i), d(i)) satisfying
g(eα)X(α) = Y (α)g(sα) for any arrow α ∈ Γ1. In other words, if we regard each
matrix X(α) as a linear map between numerical vector spaces, a homomorphism
g = (g(i))i∈Γ0 makes the following diagram commutative for each α ∈ Γ1:

K
d(sα) X(α)

−−−−→ K
d(eα)

g(sα)

⏐⏐� ⏐⏐�g(eα)

K
d′(sα) Y (α)

−−−−→ K
d′(eα)

.

We denote by Hom(X, Y ) the set of all homomorphisms from X to Y , which can
be regarded as a K-vector space in the natural way.

Example 2.1. Let us consider the following D4-type quiver Γ :

Γ : � � �

�

� �

�

1 2 3

4

α β

γ

There are twelve positive roots of type D4, which are given by the following:

d1 = (1, 0, 0; 0), d2 = (1, 1, 0; 0), d3 = (1, 1, 1; 0), d4 = (1, 1, 0; 1),

d5 = (0, 1, 0; 0), d6 = (1, 2, 1; 1), d7 = (0, 1, 0; 1), d8 = (0, 1, 1; 0),

d9 = (1, 1, 1; 1), d10 = (0, 1, 1; 1), d11 = (0, 0, 1; 0), d12 = (0, 0, 0; 1).

Let Xk be an indecomposable representation corresponding to the positive root dk.
For example, X6 = (X(α), X(β), X(γ)) ∈ Rd6(Γ ) = M(d(2)

6 , d
(1)
6 ) ⊕ M(d(3)

6 , d
(2)
6 ) ⊕

M(d(4)
6 , d

(2)
6 ) is given by

X(α) =
[
1
0

]
, X(β) =

[
1 0

]
, X(γ) =

[
1 1

]
.

We see that the above representative system X1, X2, . . . , X12 satisfies the condition

(2.1) Hom(Xi, Xj) = 0 if i < j.

Remark 2.2. In the above example, we have numbered the positive roots of Γ
(and also a complete representative system of the isomorphic classes of its inde-
composable representations) to satisfy the condition (2.1). In fact, in the case of
finite-type Γ , we can always do such a numbering. Recall the so-called Auslander–
Reiten quiver (see, for example, Chapter VII of [2]). The vertices of the AR-quiver
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of Γ are in one-to-one correspondence with the isomorphic classes of indecompos-
able representations of Γ , and there is an arrow [Xi] → [Xj ] if and only if there
exists an irreducible morphism Xi → Xj . For example, the AR-quiver of the above
Γ is given by

[X9] [X5] [X1].

[X10] [X6] [X2]

[X11] [X7] [X3]

[X12] [X8] [X4]
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In the case where Γ is finite-type, it is known that the AR-quiver of Γ consists of
a single component and that it is acyclic (see, for example, Proposition 5.13 of [1]).
Hence, if Γ is finite-type, we may assume that a complete representative system
which is numbered by an appropriate order (that is, we number from one of the
tips of the component) satisfies condition (2.1).

We will denote by EndX = Hom(X, X) the endomorphism ring of X and by
HX = (EndX)× its multiplicative group. In other words, HX is nothing but the
isotropy subgroup at X ∈ Rd(Γ ); that is, HX = {g ∈ Gd | g · X = X}. In the case
of X ∼= Y , we see that HX and HY are conjugate to each other.

We are interested in the restriction map ϕX between rational character groups
X (Gd) and X (HX), where we denote by X (G) the group consisting of all rational
characters of G. It is known that rational character groups of linear algebraic groups
are finitely generated abelian groups.

According to Proposition 1.2 of [8], the rank of ImϕX describes the condition
whether the Gd-orbit GdX decomposes into infinitely many Sd-orbits, where we
put Sd =

∏
i∈Γ0

SL(d(i)). Now we note the following fact:

Lemma 2.3. Let X be a point of Rd(Γ ) and ϕX : X (Gd) → X (HX) the restriction
map which is induced by the canonical injection HX ↪→ Gd. Then, the Gd-orbit
GdX is decomposed into infinitely many Sd-orbits if and only if rank Im ϕX < r,
where r is the number of vertices of Γ .

Proof. We put H ′
X = HX ∩Sd, which is a normal subgroup of HX . Let us consider

the following commutative diagram with exact rows:

1 −−−−→ Sd −−−−→ Gd −−−−→ Gd/Sd −−−−→ 1�⏐⏐ �⏐⏐ �⏐⏐
1 −−−−→ H ′

X −−−−→ HX −−−−→ HX/H ′
X −−−−→ 1,
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where each vertical map is the canonical injection. Then this induces the following
commutative diagram with exact rows:

1 −−−−→ Ker ψX −−−−→ Ker ϕX −−−−→ 1⏐⏐�
⏐⏐�

1 −−−−→ X (Gd/Sd) −−−−→ X (Gd) −−−−→ 1⏐⏐�ψX

⏐⏐�ϕX

1 −−−−→ X (HX/H ′
X) −−−−→ X (HX) −−−−→ X (H ′

X).

Note that ψX is surjective since both Gd/Sd and HX/H ′
X are tori. On the other

hand, we see that X (Gd/Sd) is isomorphic to X (Gd) since any character of Sd is
trivial; hence we have KerψX 	 KerϕX . According to Proposition 1.2 of [8],
the Gd-orbit GdX is decomposed into infinitely many Sd-orbits if and only if
dim GdX > dim SdX, which is equivalent to the condition that r = rankX (Gd) =
rankX (Gd/Sd) > rankX (HX/H ′

X). Since these character groups are finitely gen-
erated abelian groups, we see that this condition is equivalent to the condition
r − rank Im ψX = rank KerψX > 0; that is, r − rank Im ϕX = rank Ker ϕX > 0.
Thus we obtain our assertion. �

Lemma 2.4. Let X be an indecomposable representation of a finite-type quiver Γ
and dimX = (d(i))i∈Γ0 its dimension. Then we have

EndX =
{(

α · Id(i)

)
i∈Γ0

| α ∈ K
}
,

where Iu means the identity matrix of degree u. That is to say, EndX is isomorphic
to the base field K and each component is a scalar matrix.

Proof. Put T =
{(

α · Id(i)

)
i∈Γ0

| α ∈ K
}
; then T is a field that is isomorphic to the

field K. It is clear that T is contained in EndX, which can be regarded as a K-vector
space. On the other hand, it is known that, for each indecomposable representation
X of a finite-type quiver, EndX is nothing but the base field K (see [3], §7.2). Since
EndX is finite dimensional over the field T , we have EndX = T . �

Lemma 2.5. Let X be an indecomposable representation, with dimension dimX =
(d(i))i∈Γ0 , of a finite-type quiver. For each positive integer m, the endomorphism
ring End(mX) of mX = X ⊕· · ·⊕X (the direct sum of m copies of X) is given by

End(mX) =
{(

A ⊗ Id(i)

)
i∈Γ0

| A ∈ M(m, m)
}
	 M(m, m),

where ⊗ denotes Kronecker’s product of matrices. In particular, we have HmX 	
GL(m) and the rational character group X (HmX) is of rank one.

Proof. Let g = (g(i))i∈Γ0 be an element of End(mX), and write each part g(i) as
the following m × m blocks:

g(i) =

⎡
⎢⎢⎣

g
(i)
11 · · · g

(i)
1m

...
. . .

...
g
(i)
m1 · · · g

(i)
mm

⎤
⎥⎥⎦ ,

where each block g
(i)
pq is a d(i) × d(i) matrix. Then, for each arrow α ∈ Γ1, we have

g(eα)
pq X(α) = X(α)g(sα)

pq (p, q = 1, 2, . . . , m).
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That is to say, for each p and q, we see that (g(i)
pq )i∈Γ0 is contained in the endomor-

phism ring End X of an indecomposable X. Therefore it follows from Lemma 2.4
that, for each p and q, there exists a scalar αpq ∈ K satisfying g

(i)
pq = αpq · Id(i) .

Putting A = [αpq] ∈ M(m, m), we have g(i) = A ⊗ Id(i) . �

Proposition 2.6. Let X = m1X1 ⊕m2X2 ⊕ · · · ⊕msXs ∈ Rd(Γ ) be a representa-
tion, where the Xi’s are distinct indecomposable representations which are numbered
to satisfy condition (2.1). Then we have rankX (HX) = s.

Proof. Put dimXk = dk = (d(i)
k )i∈Γ0 , and let X̃k = mkXk be the direct sum of mk

copies of Xk. Then we have dim X̃k = mkdk = (mkd
(i)
k )i∈Γ0 . Let h = (h(i))i∈Γ0

be an element of the isotropy subgroup HX̃1⊕···⊕X̃s
, and decompose each part h(i)

into s × s blocks:

h(i) =

⎡
⎢⎢⎣

h
(i)
11 · · · h

(i)
1s

...
. . .

...
h

(i)
s1 · · · h

(i)
ss

⎤
⎥⎥⎦ ,

where each block h
(i)
pq is an mpd

(i)
p × mqd

(i)
q matrix. In the case of d

(i)
k = 0, we

should remove its corresponding blocks. Thus we have

h(eα)
pq X̃(α)

q = X̃(α)
p h(sα)

pq

for each arrow α ∈ Γ1, and hence hpq = (h(i)
pq )i∈Γ0 ∈ Hom(X̃q, X̃p). Then condition

(2.1) implies hpq = (h(i)
pq )i∈Γ0 = 0 for any p and q satisfying q < p. Therefore we see

that each part h(i) is contained in a subgroup consisting of upper triangular block
matrices (i.e., it is contained in the standard parabolic subgroup corresponding to
the partition m1d

(i)
1 + m2d

(i)
2 + · · · + msd

(i)
s ):

h(i) =

⎡
⎢⎢⎢⎢⎣

h
(i)
11 h

(i)
12 · · · h

(i)
1s

0 h
(i)
22 · · · h

(i)
2s

...
. . . . . .

...
0 · · · 0 h

(i)
ss

⎤
⎥⎥⎥⎥⎦ .

Hence, for k = 1, 2, . . . , s, we have the canonical projection HX → HX̃k
by h =

(h(i))i∈Γ0 �→ (h(i)
kk)i∈Γ0 (here we will consider h

(i)
kk to be trivial if d

(i)
k = 0). It follows

from Lemma 2.5 that there exists Ak ∈ GL(mk) satisfying h
(i)
kk = Ak ⊗ I

d
(i)
k

for
any i ∈ Γ0; hence we can define the character λk(h) = det Ak for h ∈ HX . Then
we see that each rational character group X (HX̃k

) is generated by λk and that
λ1, λ2, . . . , λs constitute a basis of the rational character group X (HX); that is, it
is a free abelian group of rank s. �

For each i ∈ Γ0, we define the character χi : Gd → K
× by χi(g) = det g(i) for

g = (g(i))i∈Γ0 ∈ Gd.

Corollary 2.7. In the same notation as in Proposition 2.6, the representation
matrix of the restriction map ϕX : X (Gd) → X (HX), with respect to bases χ1, χ2,
. . . , χr and λ1, λ2, . . . , λs, is given by [td1|td2| · · · |tds], where dk is the positive root
corresponding to Xk.
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Proof. Take an element h = (h(i))i∈Γ0 ∈ HX . Then we have

χi(h) = det(h(i)
11 h

(i)
22 · · ·h(i)

ss ) = (deth
(i)
11 )(deth

(i)
22 ) · · · (deth(i)

ss )

=
(
λ1(h)

)d
(i)
1

(
λ2(h)

)d
(i)
2 · · ·

(
λs(h)

)d(i)
s

=
(
λ

d
(i)
1

1 λ
d
(i)
2

2 · · ·λd(i)
s

s

)
(h)

for each i ∈ Γ0. Hence the representation matrix of ϕX with respect to such bases
is given by ⎡

⎢⎢⎢⎢⎣

d
(1)
1 d

(1)
2 · · · d

(1)
s

d
(2)
1 d

(2)
2 · · · d

(2)
s

...
...

...
d
(r)
1 d

(r)
2 · · · d

(r)
s

⎤
⎥⎥⎥⎥⎦ = [td1|td2| · · · |tds];

that is, for each k, the k-th column is nothing but the transpose of the positive root
dk. �

3. Characterization of semisimple FPs

Now we are standing at the position required to prove our main theorem:

Theorem 3.1. Let Γ be a finite-type quiver with r vertices. For a dimension vector
d, the following conditions are equivalent:

(1) The scalar-removed representation (Sd, Rd(Γ )) is not an FP.
(2) There exist some positive roots di1 , di2 , . . . , dip

of Γ such that d ∈ 〈di1 , di2 ,
. . . , dip

〉Z≥0 and rank[tdi1 |tdi2 | · · · |tdip
] < r.

Proof. Assume that (Sd, Rd(Γ )) is not an FP. Then there exists a point X ∈
Rd(Γ ) such that its Gd-orbit is decomposed into infinitely many Sd-orbits. By
Lemma 2.3, this is equivalent to the condition that rank ImϕX < r. Now we can
choose some positive integers m1, m2, . . . , mp and indecomposable representations
Xi1 , Xi2 , . . . , Xip

such that X ∼= m1Xi1 ⊕m2Xi2 ⊕· · ·⊕mpXip
. Here, as mentioned

in Remark 2.2, we may assume that the Xk’s are numbered to satisfy the condition
(2.1). Then it follows from Corollary 2.7 that rank ImϕX = rank[tdi1 |tdi2 | · · · |tdip

],
and we have d = dimX = m1di1 + m2di2 + · · · + mpdip

; therefore we obtain (2).
Conversely, the condition d ∈ 〈di1 , di2 , . . . , dip

〉Z≥0 implies that we can construct
the representation X = m1Xi1 ⊕ m2Xi2 ⊕ · · · ⊕ mpXip

∈ Rd(Γ ). Then the second
condition means that the Gd-orbit of X is decomposed into infinitely many Sd-
orbits; i.e., the representation (Sd, Rd(Γ )) is not an FP. �

In fact, condition (2) of Theorem 3.1 can be improved a little. Here we will
review a few properties of positive roots.

Let E be a Euclidean space (over R) endowed with an appropriate inner product.
Fix a basis of E and define the lexicographical order with respect to the basis. Let
Φ+ be the set of all positive roots contained in a root system of E.

For a finite subset M ⊆ Φ+ we put Ψ = 〈M〉R ∩ Φ+ and dimR〈M〉R = p; i.e.,
the subspace generated by M is of dimension p. Now we choose p positive roots
α1, α2, . . . , αp as follows:

α1 := minΨ, and αk := min
(
Ψ � 〈α1, . . . , αk−1〉R

)
for k = 2, 3, . . . , p.
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Then we have the following lemma, which can be proved by induction on the
dimension of 〈M〉R.

Lemma 3.2. For any element α ∈ Ψ , there exist non-negative integers k1, k2, . . . ,
kp such that α = k1α1 + k2α2 + · · · + kpαp.

Proposition 3.3. Let d1, d2, . . . , ds be positive roots contained in a root system of
a Euclidean space. If rankZ〈d1, d2, . . . , ds〉Z = p, then there exist p positive roots
α1, α2, . . . , αp such that 〈d1, d2, . . . , ds〉Z = 〈α1, α2, . . . , αp〉Z. In particular, we
have 〈d1, d2, . . . , ds〉Z≥0 ⊆ 〈α1, α2, . . . , αp〉Z≥0 ; that is, the lattice with coefficients
of non-negative integers spanned by d1, d2, . . . , ds is contained in one spanned by
α1, α2, . . . , αp.

Proof. Put M := {d1, d2, . . . , ds}. Since 〈M〉R = R ⊗Z 〈d1, d2, . . . , ds〉Z, we have
dimR〈M〉R = rankZ〈d1, d2, . . . , ds〉Z = p. By Lemma 3.2, each dk can be expressed
as a linear combination of α1, α2, . . . , αp with coefficients of non-negative integers.
Thus we obtain our assertion. �

Therefore we have gained a more sophisticated characterization of scalar-removed
FPs associated with finite-type quivers.

Theorem 3.4. Let Γ be a finite-type quiver with r vertices. For a dimension vector
d, the following conditions are equivalent:

(1) The scalar-removed representation (Sd, Rd(Γ )) is not an FP.
(2) There exist r − 1 positive roots di1 , di2 , . . . , dir−1 of Γ satisfying d ∈ 〈di1 ,

di2 , . . . , dir−1〉Z≥0 ; that is, d can be expressed as a linear combination of
r − 1 positive roots with coefficients of non-negative integers.

In particular, the condition whether (Sd, Rd(Γ )) is an FP or not does not depend
on the choice of an orientation of Γ .

4. Examples of D4-type

In this section, we give some examples of D4-type. Let Γ be the D4-type quiver
mentioned in Example 2.1. We are interested in lattices of small rank because we
will determine dimension d such that (Sd, Rd(Γ )) is not an FP.

First we note that there exist twenty distinct lattices of rank three (with each
component of the sum of generators being positive) spanned by positive roots of
D4-type.

(1) L1 = 〈2, 11, 12〉
(2) L2 = 〈1, 8, 12〉
(3) L3 = 〈1, 7, 11〉
(4) L4 = 〈3, 5, 12〉
(5) L5 = 〈1, 5, 10〉
(6) L6 = 〈4, 5, 11〉
(7) L7 = 〈2, 8, 12〉

(8) L8 = 〈1, 7, 8〉
(9) L9 = 〈2, 7, 11〉

(10) L10 = 〈4, 5, 10〉
(11) L11 = 〈3, 4, 5〉
(12) L12 = 〈3, 5, 10〉
(13) L13 = 〈6, 11, 12〉
(14) L14 = 〈1, 6, 12〉

(15) L15 = 〈1, 6, 11〉
(16) L16 = 〈2, 8, 9〉
(17) L17 = 〈7, 8, 9〉
(18) L18 = 〈2, 7, 9〉
(19) L19 = 〈2, 7, 8〉
(20) L20 = 〈3, 4, 10〉

In the above list, for example, L1 = 〈2, 11, 12〉 means that the lattice (free
Z-module) L1 is spanned by three roots d2, d11, d12 (we recall that the roots
of D4-type Γ have been numbered in Example 2.1). Therefore a dimension vector
(i.e., a four-tuple of positive integers) d = (d(1), d(2), d(3); d(4)) is contained in L1 if
and only if d(1) = d(2). Thus we obtain the following theorem for D4-type:
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Theorem 4.1. Let Γ be a D4-type quiver. Then, for a given dimension vector
d = (d(1), d(2), d(3); d(4)), the scalar-removed representation (Sd, Rd(Γ )) is not an
FP if and only if at least one of the following twenty conditions is satisfied:

(1) d(1) = d(2)

(2) d(3) = d(2)

(3) d(4) = d(2)

(4) d(1) = d(3) < d(2)

(5) d(3) = d(4) < d(2)

(6) d(4) = d(1) < d(2)

(7) d(1) + d(3) = d(2)

(8) d(3) + d(4) = d(2)

(9) d(4) + d(1) = d(2)

(10) d(1) + d(3) = d(4) < d(2)

(11) d(3) + d(4) = d(1) < d(2)

(12) d(4) + d(1) = d(3) < d(2)

(13) 2d(1) = d(2)

and d(1) < min
{
d(3), d(4)

}

(14) 2d(3) = d(2)

and d(3) < min
{
d(4), d(1)

}
(15) 2d(4) = d(2)

and d(4) < min
{
d(1), d(3)

}
(16) d(1) + d(3) = d(4) + d(2)

and max
{
d(1), d(3)

}
< d(2)

(17) d(3) + d(4) = d(1) + d(2)

and max
{
d(3), d(4)

}
< d(2)

(18) d(4) + d(1) = d(3) + d(2)

and max
{
d(4), d(1)

}
< d(2)

(19) d(1) + d(3) + d(4) = d(2)

(20) d(1) + d(3) + d(4) = 2d(2)

and max
{
d(1), d(3), d(4)

}
< d(2)

Note that Theorem 4.1 was independently obtained by Dr. Tomohiro Kamiyoshi,
a researcher (non-full-time) at the University of Tsukuba. He has investigated
representations associated with D4-type quivers under various scalar restrictions
(see [4]).

Among D4-type FPs (Sd, Rd(Γ )), we are interested in representations of dimen-
sion d = (d(1), d(2), d(3); d(4)) satisfying d(2) > max{d(1), d(3), d(4)}, because if an
A3-type representation of dimension (d(1), d(2), d(3)) is an FP, then so is any D4-type
with dimensional condition d(2) < d(4). (Recall the elementary transformations of
matrices. A precise statement is mentioned in, for example, [5, Proposition 1.3].)

Example 4.2. For d = (2, 8, 3; 4), we have d = −2d1 + 4d6 − d11 and hence
d ∈ L15. However, we can conclude that (Sd, Rd(Γ )) is an FP, because d cannot be
expressed as a linear combination of positive roots with coefficients of non-negative
integers (i.e., the dimension d does not satisfy any of the twenty conditions listed
in Theorem 4.1). In fact, Rd(Γ ) is decomposed into 439 Sd-orbits.

Thus we realize that the conditions on d whether (Sd, Rd(Γ )) is an FP or not
can be obtained in this way. To know such conditions, it is sufficient to list lattices
of small rank. For example, there exist 26 (resp. 76, 633) lattices of A5-type (resp.
D5, E6-type) of small rank with each component of the sum of generators being
positive.
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