
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 137, Number 4, April 2009, Pages 1421–1429
S 0002-9939(08)09708-6
Article electronically published on October 29, 2008

ON THE TOPOLOGY OF POINTWISE CONVERGENCE
ON THE BOUNDARIES OF L1-PREDUALS

WARREN B. MOORS AND JIŘÍ SPURNÝ

(Communicated by Nigel J. Kalton)

Abstract. In this paper we prove a theorem more general than the following:
“If (X, ‖ · ‖) is an L1-predual, B is any boundary of X and {xn : n ∈ N} is any
subset of X, then the closure of {xn : n ∈ N} with respect to the topology of
pointwise convergence on B is separable with respect to the topology generated
by the norm, whenever Ext(BX∗ ) is weak∗ Lindelöf.” Several applications of
this result are also presented.

1. Introduction

We shall say that a Banach space (X, ‖ · ‖) is an L1-predual if X∗ is isometric to
L1(µ) for some suitable measure µ. Some examples of L1-preduals include (C(K),
‖ · ‖∞), and more generally, the space of continuous affine functions on a Choquet
simplex (see [10] for the definition) endowed with the supremum norm (see, [4,
Proposition 3.23]). We shall also consider the notion of a boundary. Specifically,
for a nontrivial Banach space X over R we say that a subset B of BX∗ , the closed
unit ball of X∗, is a boundary if for each x ∈ X there exists a b∗ ∈ B such that
b∗(x) = ‖x‖. The prototypical example of a boundary is Ext(BX∗), the set of all
extreme points of BX∗ , but there are many other interesting examples given in [9].

In the recent paper [9] the authors investigate the topology on a Banach space X
that is generated by Ext(BX∗) and, more generally, the topology on X generated
by an arbitrary boundary of X. This paper continues this study.

To be more precise we must first introduce some notation. For a nonempty
subset Y of the dual of a Banach space X we shall denote by σ(X, Y ) the weakest
linear topology on X that makes all the functionals from Y continuous. In [9]
the authors show (see, [9, Theorem 2.2]) using [3, Lemma 1] that for any compact
Hausdorff space K, any countable subset {xn : n ∈ N} of C(K) and any boundary
B of (C(K), ‖ · ‖∞), the closure of {xn : n ∈ N} with respect to the σ(C(K), B)
topology is separable with respect to the topology generated by the norm. In this
paper we extend this result by showing that if (X, ‖ · ‖) is an L1-predual, B is any
boundary of X and {xn : n ∈ N} is any subset of X, then the closure of {xn : n ∈ N}
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in the σ(X, B) topology is separable with respect to the topology generated by the
norm whenever Ext(BX∗) is weak∗ Lindelöf.

We conclude this paper with some applications that indicate the utility of our
results.

2. Preliminary results

Let X be a topological space and let F be a family of nonempty, closed and
separable subsets of X. Then F is rich if the following two conditions are fulfilled:

(i) for every separable subspace Y of X, there exists a Z ∈ F such that Y ⊆ Z;
(ii) for every increasing sequence (Zn : n ∈ N) in F ,

⋃
n∈N

Zn ∈ F .
For any topological space X, the collection of all rich families of subsets forms

a partially ordered set, under the binary relation of set inclusion. This partially
ordered set has a greatest element, namely,

GX := {S ⊆ X : S is a nonempty, closed and separable subset of X}.
On the other hand, if X is a separable space, then the partially ordered set has a
least element, namely, G∅ := {X}.

The raison d’être for rich families is revealed next.

Proposition 1. Suppose that X is a topological space. If {Fn : n ∈ N} are rich
families of X, then so is

⋂
n∈N

Fn.

For a proof of this proposition see [2, Proposition 1.1].
Throughout this paper we will be primarily working with Banach spaces, so a

natural class of rich families, given a Banach space X, is the family of all closed
separable linear subspaces of X, which we denote by SX . There are however many
other interesting examples of rich families that can be found in [2] and [7].

For our first result we will provide another nontrivial example of a rich family,
but to achieve this we first need a preliminary result that characterises when a
given Banach space is an L1-predual.

Lemma 1 ([6, §21, Theorem 7]). For a Banach space X the following are equiva-
lent:

(i) X is an L1-predual;
(ii) for each weak∗ continuous convex function f on BX∗ ,

f∗(0) =
1
2

max{f(x∗) + f(−x∗) : x∗ ∈ BX∗},

where f∗ = inf{h : h ≥ f and h is weak∗ continuous and affine on BX∗}.

Before proceeding further we shall introduce the following notation. If X is a
normed linear space, then each x ∈ X defines a weak∗ continuous affine function x̂
on BX∗ via the canonical embbeding, that is, x̂(x∗) := x∗(x) for all x∗ ∈ BX∗ .

Theorem 1. Let X be an L1-predual. Then the set of all closed separable linear
subspaces of X that are themselves L1-preduals forms a rich family.

Proof. Let L := {Z ∈ SX : Z is an L1-predual}. We shall verify that L is a rich
family. So first let us consider an arbitrary separable closed linear subspace Y of
X. Then by [6, §23, Lemma 1] there exists a closed separable subspace Z ∈ L
such that Y ⊆ Z. Next, let us consider an increasing sequence (Zn : n ∈ N) in L
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and let Z :=
⋃

n∈N
Zn. To show that Z ∈ L we shall appeal to Lemma 1. Let f

be a weak∗ continuous convex function on BZ∗ . Since
1
2

max{f(x∗) + f(−x∗) : x∗ ∈ BZ∗} ≤ f∗(0),

it is enough to verify that for each ε > 0, f∗(0) ≤ 1
2 max{f(x∗) + f(−x∗) : x∗ ∈

BZ∗}+ε. To this end, suppose that ε > 0. Since f is weak∗ continuous and convex
and BZ∗ is weak∗ compact, by [1, Corollary I.1.3] there exist zi ∈ Z and ci ∈ R,
i = 1, . . . , n, such that the weak∗ convex continuous g : BZ∗ → R defined by

g := max{ẑ1 + c1, ẑ2 + c2, . . . , ẑn + cn}
satisfies

f(z∗) − ε < g(z∗) < f(z∗), z∗ ∈ BZ∗ .

Since
⋃

n∈N
Zn is dense in Z we may further assume that all the elements zi are

contained in some fixed Zj , j ∈ N.
Next, let r : BZ∗ → BZ∗

j
be the restriction mapping (i.e., r(z∗) = z∗|Zj

for all
z∗ ∈ BZ∗) and let h : BZ∗

j
→ R be defined by h := max{ẑ1+c1, ẑ2+c2, . . . , ẑn+cn}.

Then h is weak∗ continuous and convex on BZ∗
j

and g = h ◦ r. Moreover, by the
definition of g (and the fact that r is weak∗-to-weak∗ continuous and linear) we
have that g∗(z∗) ≤ h∗(r(z∗)) for all z∗ ∈ BZ∗ . Now, by the assumption that Zj is
an L1-predual (and Lemma 1) there exists a y∗ ∈ BZ∗

j
such that

h∗(0) =
1
2
[h(y∗) + h(−y∗)].

Choose z∗ ∈ r−1(y∗), which is nonempty by the Hahn-Banach extension theorem.
Then,

g∗(0) ≤ h∗(0) =
1
2
[h(y∗) + h(−y∗)] =

1
2
[g(z∗) + g(−z∗)] ≤ g∗(0).

Therefore,

f∗(0) − ε = (f − ε)∗(0) ≤ g∗(0) =
1
2
[g(z∗) + g(−z∗)]

≤ 1
2
[f(z∗) + f(−z∗)]

≤ 1
2

max{f(x∗) + f(−x∗) : x∗ ∈ BZ∗}.

That is, f∗(0) ≤ 1
2 max{f(x∗) + f(−x∗) : x∗ ∈ BZ∗} + ε, which completes the

proof. �

Before we can introduce another class of rich families, we require the following
lemma, which is a Banach space version of [11, Theorem 2.10].

Lemma 2. Let Y be a closed separable linear subspace of a Banach space X and
suppose that L ⊆ Ext(BX∗) is weak∗ Lindelöf. Then there exists a closed separable
linear subspace Z of X, containing Y , such that for any l∗ ∈ L and any x∗, y∗ ∈
BZ∗ , if l∗|Z = 1

2 (x∗ + y∗), then x∗|Y = y∗|Y .

Proof. Let B be a countable base for the topology on (BY ∗ , weak∗) consisting of
closed convex sets. Recall that such a base exists because (BY ∗ , weak∗) is com-
pact, by the Banach-Alaoglu Theorem, and (BY ∗ , weak∗) is metrizable, since Y is
separable. Let:
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(i) F := {r−1(B) : B ∈ B}, where r : BX∗ → BY ∗ is the restriction mapping;
(ii) R := { 1

2 (F1 + F2) : F1, F2 ∈ F and F1 ∩ F2 = ∅}.
By construction

⋃
R ⊆ BX∗ \ Ext(BX∗) and so L ∩

⋃
R = ∅. Furthermore, for

each l∗ ∈ L and F ∈ R there exists a y ∈ X such that

sup{ŷ(f∗) : f∗ ∈ F} < ŷ(l∗).

Therefore, since L is weak∗ Lindelöf for each F ∈ R there exists a countable subset
CF in X such that, for each l∗ ∈ L there exists a y ∈ CF such that sup{ŷ(f∗) :
f∗ ∈ F} < ŷ(l∗). If we set C :=

⋃
{CF : F ∈ R} and Z := span(C ∪ X), then

X ⊆ Z and Z is a closed separable linear subspace of X.
It now only remains to verify that if l∗ ∈ L, x∗, y∗ ∈ BZ∗ and l∗|Z = 1

2 (x∗ +y∗),
then x∗|Y = y∗|Y . So, in order to obtain a contradiction, suppose that for some
l∗ ∈ L and x∗, y∗ ∈ BZ∗ , l∗|Z = 1

2 (x∗ + y∗) but x∗|Y 
= y∗|Y . Then there
exists B1, B2 ∈ B such that x∗|Y ∈ B1 and y∗|Y ∈ B2 and B1 ∩ B2 = ∅. Set
F1 := r−1(B1) and F2 := r−1(B2). Then F1, F2 ∈ F and F1 ∩ F2 = ∅. Now, by
the Hahn-Banach Extension Theorem there exist x∗

1 ∈ BX∗ and y∗
1 ∈ BX∗ such

that x∗
1|Z = x∗ and y∗

1 |Z = y∗. Moreover,

x∗
1|Y = (x∗

1|Z)|Y = x∗|Y ∈ B1 and y∗
1 |Y = (y∗

1 |Z)|Y = y∗|Y ∈ B2.

That is, x∗
1 ∈ F1 and y∗

1 ∈ F2. Therefore, 1
2 (x∗

1 + y∗
1) ∈ 1

2 (F1 + F2) =: F . Since
F ∈ R, by the construction there exists a y ∈ CF ⊆ C ⊆ Z such that sup{ŷ(f∗) :
f∗ ∈ F} < ŷ(l∗). In particular,

1
2
(x∗ + y∗)(y) = ŷ(

1
2
(x∗

1 + y∗
1)) < l∗(y) = (l∗|Z)(y).

However, this contradicts the fact that 1
2 (x∗ + y∗) = l∗|Z . �

Theorem 2. Let X be a Banach space and let L ⊆ Ext(BX∗) be a weak∗ Lindelöf
subset. Then the set of all Z in SX such that {l∗|Z : l∗ ∈ L} ⊆ Ext(BZ∗) forms a
rich family.

Proof. Let L denote the family of all closed separable linear subspaces Z of X such
that {l∗|Z : l∗ ∈ L} ⊆ Ext(BZ∗). We shall verify that L is a rich family of closed
separable linear subspaces of X. So first let us consider an arbitrary closed separable
linear subspace Y of X, with the aim of showing that there exists a subspace
Z ∈ L such that Y ⊆ Z. We begin by inductively applying Lemma 2 to obtain
an increasing sequence (Zn : n ∈ N) of closed separable linear subspaces of X such
that: Y ⊆ Z1 and for any l∗ ∈ L and any x∗, y∗ ∈ BZ∗

n+1
, if l∗|Zn+1 = 1

2 (x∗ + y∗),
then x∗|Zn

= y∗|Zn
.

We now claim that if Z :=
⋃

n∈N
Zn, then l∗|Z ∈ Ext(BZ∗) for each l∗ ∈ L. To

this end, suppose that l∗ ∈ L and l∗|Z = 1
2 (x∗ + y∗) for some x∗, y∗ ∈ BZ∗ . Then

for each n ∈ N,

l∗|Zn+1 = (l∗|Z)|Zn+1 =
1
2
(x∗ + y∗)|Zn+1 =

1
2
(x∗|Zn+1 + y∗|Zn+1)

and x∗|Zn+1 , y
∗|Zn+1 ∈ BZ∗

n+1
Therefore, by construction, x∗|Zn

= y∗|Zn
. Now since⋃

n∈N
Zn is dense in Z and both x∗ and y∗ are continuous, we may deduce that

x∗ = y∗, which in turn implies that l∗|Z ∈ Ext(BZ∗). This shows that Y ⊆ Z and
Z ∈ L .
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To complete this proof we must verify that for each increasing sequence of closed
separable subspaces (Zn : n ∈ N) in L ,

⋃
n∈N

Zn ∈ L . This, however, follows
easily from the definition of the family L . �

Let X be a normed linear space. Then we say that an element x∗ ∈ BX∗ is
weak∗ exposed if there exists an element x ∈ X such that y∗(x) < x∗(x) for all
y∗ ∈ BX∗ \ {x∗}. It is not difficult to show that if Exp(BX∗) denotes the set of
all weak∗ exposed points of BX∗ , then Exp(BX∗) ⊆ Ext(BX∗). However, if X is
a separable L1-predual, then the relationship between Exp(BX∗) and Ext(BX∗) is
much closer.

Lemma 3 ([13, Lemma 3.3(b)]). If X is a separable L1-predual, then Exp(BX∗) =
Ext(BX∗).

Let us also pause for a moment to recall that if B is any boundary of a Banach
space X, then

Exp(BX∗) ⊆ B ∩ Ext(BX∗) ⊆ Ext(BX∗) ⊆ B
weak∗

.

The fact that Ext(BX∗) ⊆ B
weak∗

follows from Milman’s theorem, [10, page 8] and
the fact that BX∗ = coweak∗

(B), which in turn follows from a separation argument.
Let us also take this opportunity to observe that if BX denotes the closed unit ball
in X, then BX is closed in the σ(X, B) topology for any boundary B of X. Finally,
let us end this section with one more simple observation that will turn out to be
useful in our later endeavours.

Proposition 2. Suppose that Y is a linear subspace of a Banach space (X, ‖ · ‖)
and B is any boundary for X. Then for each e∗ ∈ Exp(BY ∗) there exists b∗ ∈ B
such that e∗ = b∗|Y .

Proof. Suppose that e∗ ∈ Exp(BY ∗). Then there exists an x ∈ Y such that y∗(x) <
e∗(x) for each y∗ ∈ BY ∗ \ {e∗}. By the fact that B is a boundary of (X, ‖ · ‖) there
exists a b∗ ∈ B such that b∗(x) = ‖x‖ 
= 0. Then for any y∗ ∈ BY ∗ we have

y∗(x) ≤ |y∗(x)| ≤ ‖y∗‖‖x‖ ≤ ‖x‖ = b∗(x) = (b∗|Y )(x).

In particular, e∗(x) ≤ b∗|Y (x). Since b∗|Y ∈ BY ∗ and y∗(x) < e∗(x) for all y∗ ∈
BY ∗ \ {e∗}, it must be the case that e∗ = b∗|Y . �

This ends our preliminary section.

3. The main results

Theorem 3. Let B be any boundary for a Banach space X that is an L1-predual
and suppose that {xn : n ∈ N} ⊆ X. Then

{xn : n ∈ N}σ(X,B) ⊆ {xn : n ∈ N}σ(X,Ext(BX∗ ))
.

Proof. In order to obtain a contradiction let us suppose that

{xn : n ∈ N}σ(X,B) 
⊆ {xn : n ∈ N}σ(X,Ext(BX∗ ))
.

Choose x ∈ {xn : n ∈ N}σ(X,B) \ {xn : n ∈ N}σ(X,Ext(BX∗ ))
. Then there exists a

finite set {e∗1, e∗2, . . . , e∗m} ⊆ Ext(BX∗) and ε > 0 so that

{y ∈ X : |e∗k(x) − e∗k(y)| < ε for all 1 ≤ k ≤ m} ∩ {xn : n ∈ N} = ∅.
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Let Y := span({xn : n ∈ N} ∪ {x}), let F1 be any rich family of L1-preduals
whose existence is guaranteed by Theorem 1, and let F2 be any rich family such
that for every Z ∈ F2 and every 1 ≤ k ≤ m, e∗k|Z ∈ Ext(BZ∗), whose existence is
guaranteed by Theorem 2. Next, let us choose Z ∈ F1 ∩ F2 so that Y ⊆ Z. Recall
that this is possible because, by Proposition 1, F1 ∩ F2 is a rich family. Since Z
is a separable L1-predual we have by Lemma 3 that e∗k|Z ∈ Exp(BZ∗) for each
1 ≤ k ≤ m. Now, by Proposition 2, for each 1 ≤ k ≤ m there exists a b∗k ∈ B such
that e∗k|Z = b∗k|Z . Therefore,

|b∗k(x) − b∗k(xj)| = |(b∗k|Z)(x) − (b∗k|Z)(xj)|
= |(e∗k|Z)(x) − (e∗k|Z)(xj)| = |e∗k(x) − e∗k(xj)|

for all j ∈ N and all 1 ≤ k ≤ m. Thus,

{y ∈ X : |b∗k(x) − b∗k(y)| < ε for all 1 ≤ k ≤ m} ∩ {xn : n ∈ N} = ∅.

This contradicts the fact that x ∈ {xn : n ∈ N}σ(X,B)
, which completes the proof.

�
Corollary 1 ([13, Theorem 1.1(a)]). Let B be any boundary for a Banach space X
that is an L1-predual. Then every relatively countably σ(X, B)-compact subset is
relatively countably σ(X, Ext(BX∗))-compact. In particular, every norm bounded,
relatively countably σ(X, B)-compact subset is relatively weakly compact.

Proof. Suppose that a nonempty set C ⊆ X is relatively countably σ(X, B)-
compact. Let {cn : n ∈ N} be any sequence in C. Then by Theorem 3

∅ 
=
⋂
n∈N

{ck : k ≥ n}σ(X,B) ⊆
⋂
n∈N

{ck : k ≥ n}σ(X,Ext(BX∗ ))
.

Hence C is relatively countably σ(X, Ext(BX∗))-compact. In the case when C is
also norm bounded the result follows from either [5] or [8]. �

Recall that a network for a topological space X is a family N of subsets of
X such that for any point x ∈ X and any open neighbourhood U of x there is an
N ∈ N such that x ∈ N ⊆ U , and a topological space X is said to be ℵ0-monolithic
if the closure of every countable set has a countable network.

The next corollary generalises [9, Theorem 2.2].

Corollary 2. Let B be any boundary for a Banach space X that is an L1-predual
and suppose that {xn : n ∈ N} ⊆ X. Then {xn : n ∈ N}σ(X,B)

is norm separa-
ble whenever X is ℵ0-monolithic in the σ(X, Ext(BX∗)) topology. In particular,

{xn : n ∈ N}σ(X,B)
is norm separable whenever Ext(BX∗) is weak∗ Lindelöf.

Proof. From Theorem 3, {xn : n ∈ N}σ(X,B) ⊆ {xn : n ∈ N}σ(X,Ext(BX∗ ))
. Since X

is ℵ0-monolithic in the σ(X, Ext(BX∗)) topology {xn : n ∈ N}σ(X,Ext(BX∗ ))
has a

countable network with respect to the σ(X, Ext(BX∗)) topology and hence so does

{xn : n ∈ N}σ(X,B)
. Let A(BX∗) denote the set of all weak∗ continuous real-valued

affine mappings on BX∗ . Then the mapping T : (X, ‖·‖) → (A(BX∗), ‖·‖∞) defined
by T (x)(x∗) := x∗(x) for all x∗ ∈ BX∗ is a homeomorphic embedding with respect
to both (i) the norm topologies on X and A(BX∗) and (ii) the σ(X, Ext(X∗))
and τp(Ext(BX∗)) topologies on X and A(BX∗) respectively. The result then fol-
lows from [9, Theorem 2.6]. The last claim follows from [9, Theorem 2.14], where
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it is shown that if Ext(BX∗) is weak∗ Lindelöf, then X is ℵ0-monolithic in the
σ(X, Ext(BX∗)) topology. �

In [9] many conditions are given under which σ(X, Ext(BX∗)) is ℵ0-monolithic.
To demonstrate how this last theorem may be applied we shall present some

sample applications.

4. Applications

Our first application is to metrizability of compact convex sets. If K is a compact
convex set in a real locally convex space, let A(K) stand for the space of all affine
continuous functions on K.

Proposition 3. Let K be a Choquet simplex in a separated locally convex space
(over R) such that every regular Borel probability measure carried on Ext(K) is
atomic. Then K is metrizable if, and only if, the space (BA(K), σ(A(K), B)) is
separable, for some boundary B of (A(K), ‖ · ‖∞).

Proof. This follows directly from Theorem 3 and [9, Theorem 2.19]. �
We remark that there exists a nonmetrizable Choquet simplex K and a boundary

B of (A(K), ‖ ·‖∞) such that (BA(K), σ(A(K), B)) is separable. (It is shown in [13,
Section 4] that the construction of [9, Example 2.10] yields the required example.)

Our final few results concern automatic continuity. In particular, the next result
improves [12, Theorem 6].

Proposition 4. Let B be any boundary for a Banach space X that is an L1-predual
and suppose that A is a a separable Baire space. If X is ℵ0-monolithic in the
σ(X, Ext(BX∗)) topology, then for each continuous mapping f : A → (X, σ(X, B))
there exists a dense subset D of A such that f is continuous with respect to the
norm topology on X at each point of D.

Proof. Fix ε > 0 and consider the open set:

Oε :=
⋃

{U ⊆ A : U is open and ‖ · ‖-diam[f(U)] ≤ 2ε}.
We shall show that Oε is dense in A. To this end, let W be a nonempty open subset
of A and let {an : n ∈ N} be a countable dense subset of W . Then by continuity

f(W ) ⊆ {f(an) : n ∈ N}σ(X,B)
,

which is norm separable by Corollary 2. Therefore there exists a countable set
{xn : n ∈ N} in X such that f(W ) ⊆

⋃
n∈N

(xn + εBX). For each n ∈ N, let
Cn := f−1(xn + εBX). Since each xn + εBX is closed in the σ(X, B) topology
each set Cn is closed in A and, moreover, W ⊆

⋃
n∈N

Cn. Since W is of the second
Baire category in A there exist a nonempty open set U ⊆ W and a k ∈ N such that
U ⊆ Ck. Then U ⊆ Oε∩W and Oε is indeed dense in A. Hence f is ‖·‖-continuous
at each point of

⋂
n∈N

O1/n. �
Theorem 4. Suppose that A is a topological space with countable tightness that
possesses a rich family F of Baire subspaces and suppose that X is an L1-predual.
Then for any boundary B of X and any continuous function f : A → (X, σ(X, B))
there exists a dense subset D of A such that f is continuous with respect to the norm
topology on X at each point of D provided X is ℵ0-monolithic in the σ(X, Ext(BX∗))
topology.
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Proof. In order to obtain a contradiction let us suppose that f does not have a
dense set of points of continuity with respect to the norm topology on X. Since A
is a Baire space (by [7, Theorem 3.3]), this implies that for some ε > 0 the open
set

Oε :=
⋃

{U ⊆ A : U is open and ‖ · ‖-diam[f(U)] ≤ 2ε}
is not dense in A. That is, there exists a nonempty open subset W of A such that
W ∩Oε = ∅. For each x ∈ A, let Fx := {y ∈ A : ‖f(y)− f(x)‖ > ε}. Then x ∈ Fx

for each x ∈ W . Moreover, since A has countable tightness, for each x ∈ W , there
exists a countable subset Cx of Fx such that x ∈ Cx.

Next, we inductively define an increasing sequence of separable subspaces (Fn :
n ∈ N) of A and countable sets (Dn : n ∈ N) in A such that:

(i) W ∩ F1 
= ∅;
(ii)

⋃
{Cx : x ∈ Dn ∩ W} ∪ Fn ⊆ Fn+1 ∈ F for all n ∈ N, where Dn is any

countable dense subset of Fn.
Note that since the family F is rich, this construction is possible.

Let F :=
⋃

n∈N
Fn and D :=

⋃
n∈N

Dn. Then D = F ∈ F and ‖ ·‖-diam[f(U)] ≥
ε for every nonempty open subset U of F ∩ W . Therefore, f |F has no points of
continuity in F ∩ W with respect to the ‖ · ‖-topology. This, however, contradicts
Proposition 4. �

Our final result improves [7, Theorem 4.7].

Corollary 3. Suppose that A is a topological space with countable tightness that
possesses a rich family of Baire subspaces and suppose that K is a compact Haus-
dorff space. Then for any boundary of (C(K), ‖ · ‖∞) and any continuous function
f : A → (C(K), σ(C(K), B)) there exists a dense subset D of A such that f is
continuous with respect to the ‖ · ‖∞-topology at each point of D.
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