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GALOIS SCAFFOLDING
IN ONE-DIMENSIONAL ELEMENTARY ABELIAN EXTENSIONS

G. GRIFFITH ELDER

(Communicated by Ted Chinburg)

Abstract. A Galois scaffold is defined to be a variant of a normal basis that
allows for an easy determination of valuation and thus has implications for
the questions of the Galois module structure. We introduce a class of ele-
mentary abelian p-extensions of local function fields of characteristic p, which
we call one-dimensional and which should be considered no more complicated
than cyclic degree p extensions, and show that they, just as cyclic degree p
extensions, possess a Galois scaffold.

1. Introduction

The Normal Basis Theorem states that in a finite Galois extension L/K with
G = Gal(L/K), there are elements ρ ∈ L whose conjugates {σρ : σ ∈ G} provide
a basis for L over K. In the setting of local field extensions, the most important
property of an element is its valuation, and so we asked the following question in [5]
about the valuations of these elements: Is there a valuation (integer certificate) that
guarantees that any element bearing this valuation is a normal basis generator?
In other words, is there a v ∈ Z such that ρ ∈ L and vL(ρ) = v implies that
{σρ : σ ∈ G} is a basis for L over K?

In this paper, we ask for more. Let L/K be a fully ramified p-extension of local
fields with perfect residue field of characteristic p, and let vL denote the normalized,
additive valuation. We ask, in addition to the existence of an integer certificate
v, that there be a set of t = logp |G| elements θi ∈ K[G] which depend on the
extension L/K but are independent of ρ with vL(ρ) = v such that {vL(

∏t
i=1 θji

i ρ) :
0 ≤ ji ≤ p − 1} is a complete set of residues modulo |G|. Of course, this means
that {

∏t
i=1 θji

i : 0 ≤ ji ≤ p − 1} is a basis for the group ring K[G] over K. These
two ingredients, an integer certificate and a particularly nice basis, make up what
we call a Galois scaffold.

Cyclic, ramified extensions of degree p form the prototype for our considerations.
Suppose now that L/K is cyclic of degree p with G = 〈σ〉. Assume that the
ramification break number for L/K is b and gcd(p, b) = 1. This does not restrict
the extension when K has characteristic p and is a minor restriction when K has
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characteristic 0 [7, III. Prop 2.3]. If ρ ∈ L with vL(ρ) ≡ b mod p, then vL((σ −
1)jρ) ≡ (j + 1)b mod p for 0 ≤ j ≤ p− 1. In particular, vL((σ− 1)jρ) is a complete
set of residues modulo p. We have a Galois scaffold: Choose any integer ≡ b mod p
along with {(σ − 1)j : 0 ≤ j ≤ p − 1}.

Galois scaffolds are not universally available. Consider, for an example, any
unramified extension where there is no integer certificate. Indeed, Galois scaffolds
should be viewed as normal bases with an advantage: the valuation of any el-
ement expressed in terms of a Galois scaffold can be easily determined. In the
example above, since L/K is fully ramified, every α ∈ L can be expressed as α =∑p−1

i=0 ai(σ − 1)iρ for some ai ∈ K. Then vL(α) = min{vL(ai) + ib + vL(ρ) :
0 ≤ i ≤ p − 1}. We repeat ourselves for emphasis. Normal bases and power bases
(polynomial bases) in a prime element are two common bases. The first allows the
Galois action to be easily followed. The second allows the valuation to be easily
determined. These two properties are in tension. So Galois scaffolds are remarkable
for the delicate balance that they achieve.

The Galois scaffold for ramified cyclic extensions of degree p makes the ques-
tions of Galois module structure in these extensions tractable [1, 2, 3, 6]. In this
paper, we restrict our attention to fully ramified elementary abelian extensions of
local function fields that are, in a particular sense, as simple as a ramified cyclic
extension of degree p. We call these extensions one-dimensional, respectively near
one-dimensional, elementary abelian extensions (see §4), and give, for them, an
explicit Galois scaffold.

We will use the following notation throughout the paper. Let p be a prime integer
and let Fp be the finite field with p elements. Let K = F((t)) be a local function
field with perfect residue field F of characteristic p. Let ℘ : K → K denote the Fp-
linear map ℘(x) = xp−x, and let φ denote the ring homomorphism φ(x) = xp. Use
subscripts to denote the field of reference. So πK is a prime element of K, and vK

is the valuation normalized so that vK(πs
K) = s. Let OK = {x ∈ K : vK(x) ≥ 0}

be the valuation ring, and let PK = πKOK be its maximal ideal. Let L/K denote
a fully ramified Galois p-extension, with G = Gal(L/K). Define its ramification
filtration by

Gi = {σ ∈ G : vL((σ − 1)πL) ≥ i + 1}.
Define the binomial coefficient

(
X
i

)
= X · (X − 1) · · · (X − i + 1)/i! ∈ Q[X], and

define truncated exponentiation by the polynomial that results from the truncation
of the binomial series at the pth term:

(1) (1 + X)[Y ] :=
p−1∑
i=0

(
Y

i

)
Xi ∈ Z(p)[X, Y ],

where Z(p) denotes the integers localized at p.

2. Cyclic extensions of degree p

Consider our prototype now in greater detail: Let L/K be a ramified cyclic
extension of degree p. So L = K(x) with ℘(x) = xp − x = β for some β ∈ K,
vK(β) = −b, b > 0 and gcd(b, p) = 1. Let Gal(L/K) = 〈σ〉 with σx = x + 1.
Since ℘(x) = β is a statement about the norm of x, namely NL/K(x) = β, we have
vL(x) = −b. Since vL((σ − 1)x) = 0, the ramification break number for L/K is b.
Write xp − x = β as x ·

(
x−1
p−1

)
= −β, so the binomial coefficient

(
x−1
p−1

)
generates
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L/K. Notice, using (1), that σ[i] = σi for 0 ≤ i ≤ p − 1. Moreover, there is a
striking similarity between

σ[i]

(
x − 1
p − 1

)
=

(
x − 1 + i

p − 1

)
for i ∈ Fp

and the equation in

Lemma 2.1. Let L/K be a cyclic, ramified extension of degree p with x and σ as
above. Given A ∈ L,

σ[A]

(
x − 1
p − 1

)
=

(
x − 1 + A

p − 1

)
.

Proof. A nice observation of [6] is that Pascal’s identity
(
X−1
i−1

)
+

(
X−1

i

)
=

(
X
i

)
∈

Q[X] for 1 ≤ i ≤ p− 1 means (σ − 1)
(
x−1

i

)
=

(
x−1
i−1

)
, and therefore (σ − 1)i

(
x−1
p−1

)
=(

x−1
p−1−i

)
. Substituting X = σ − 1 and Y = A ∈ L in (1), we find σ[A]

(
x−1
p−1

)
=∑p−1

i=0

(
A
i

)
(σ − 1)i

(
x−1
p−1

)
=

∑p−1
i=0

(
A
i

)(
x−1

p−1−i

)
∈ L. We now use Vandermonde’s

Convolution Identity
∑p−1

i=0

(
X
i

)(
Y

p−1−i

)
=

(
X+Y
p−1

)
∈ Z(p)[X, Y ], which results from

considering the coefficient of Zp−1 in the identity (1+Z)X(1+Z)Y = (1+Z)X+Y ∈
Q[X, Y ][[Z]]. Set X = A and Y = x − 1. So

∑p−1
i=0

(
A
i

)(
x−1

p−1−i

)
=

(
x−1+A

p−1

)
∈ L. �

In [4] a refined ramification filtration was introduced, which grew out of the
possibility that the natural Fp-action on σ could be extended to a residue field
“action”, a possibility that is certainly suggested by this lemma. In this paper, the
lemma motivates a Galois scaffold.

3. A Galois scaffold

In this section, we begin with an abelian p-extension that we organize using
the ramification filtration. This “organization” defines a matrix (∆i,j)0≤i,j≤n. If
the coefficients of (∆i,j)0≤i,j≤n lie in our base field K, the extension satisfies a
strong assumption, which makes it possible for us to construct a Galois scaffold,
but also makes the extension elementary abelian. At the end of the section, one
question remains: Are there any elementary abelian extensions that satisfy this
strong assumption? In §4, we construct extensions that do.

Let Kn/K be a fully ramified abelian extension of degree pn+1. A Galois scaffold
for the case n = 0 was given in §1. So assume n ≥ 1. Let G = Gal(Kn/K) with
break numbers b1 < · · · < bm such that G = Gb1 , Gbi

� Gbi+1 = Gbi+1 and
Gbm+1 = 〈e〉. Because K has characteristic p, gcd(b1, p) = 1, and by [8, IV,
§2, Prop. 11], bi ≡ b1 mod p. Organize the extension by choosing a filtration of
n + 1 subgroups G(i) ⊆ G that include the ramification groups Gi and satisfy
G(i)/G(i+1)

∼= Cp. So

G = G(0) � G(1) � · · · � G(n) � G(n+1) = 〈e〉.
Indeed, since each quotient of consecutive ramification groups is elementary abelian,
this is easy to do. Now for each i, pick σi ∈ G(i)\G(i+1). So G(i) = 〈σi, σi+1, . . . , σn〉,
though {σi, . . . , σn} is probably not a minimal generating set. For i ≥ 0, let Ki−1

be the fixed field of G(i), with K−1 = K and define b(i) = vn((σi − 1)πn)− 1. This
means that b(0) ≤ . . . ≤ b(n) is a list of n+1 integers, which are not necessarily dis-
tinct. We get b1 < · · · < bm from this list by eliminating repetitions. Since Kn/K
is abelian, the Hasse-Arf Theorem states that the upper ramification numbers are
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integers [8, IV §3], which is equivalent to bi ≡ bm mod [G : Gbi+1 ] for 1 ≤ i ≤ m,
and also to

(2) b(i) ≡ b(n) mod pi+1 for 0 ≤ i ≤ n.

Since {b(0), . . . , b(n)} is the set of ramification break numbers for Kn/K, the
ramification break numbers for Ki/K are {b(0), . . . , b(i)} [8, IV, §1, Prop. 3,
Cor.]. Therefore Ki/Ki−1 has ramification break number b(i), Gal(Ki/Ki−1) =
Gb(i)/Gb(i+1) = 〈σ̄i〉 ∼= Cp, and there are Xi ∈ Ki such that vi(Xi) = −b(i),
℘(Xi) = Xp

i − Xi ∈ Ki−1 and σiXi = Xi + 1. Define

∆i,j = (σi − 1)Xj .

So ∆i,j = 0 when i > j, ∆i,i = 1 for all i and vj(∆i,j) = vj((σi − 1)Xj) =
b(i) − b(j) ≤ 0 for i < j. Collect these ∆i,j into a matrix (∆) = (∆i,j)0≤i,j≤n.
Motivated by the fact that we want a basis for K[G] over K, we impose

Assumption 1. ∆i,j ∈ K for all 0 ≤ i, j ≤ n.

Lemma 3.1. Under Assumption 1, Kn/K is elementary abelian.

Proof. Since vn(Xn) = −b(n), gcd(vn(Xn), p) = 1 and thus Kn = K(Xn). Since
∆i,n ∈ K, σk

i Xn = Xj + k∆i,n for 0 ≤ k ≤ p. So σp
i Xn = Xn for all 0 ≤ i ≤ n. �

Define Θ(0) = σn and Θ(i) ∈ K[σn, σn−1, . . . , σn−i] recursively for 1 ≤ i ≤ n by

(3) Θ(i) = σn−iΘ
[−∆n−i,n]

(0) Θ[−∆n−i,n−1]

(1) · · ·Θ[−∆n−i,n−(i−1)]

(i−1) ,

using truncated exponentiation. Note that each Θ(i) is a 1-unit, i.e. Θ(i) ∈ 1 +
(σ − 1 : σ ∈ G) ⊆ K[G], where (σ − 1 : σ ∈ G) is the augmentation ideal.
Note that αp = 0 for all α ∈ (σ − 1 : σ ∈ G). So (Θ(i) − 1)p = 0, and thus
Θ[∆j,k]

(i) Θ[−∆j,k]

(i) = 1. As a result, since ∆n−r,n−r = 1, we can rewrite (3) as σn−i =

Θ[∆n−i,n]

(0) Θ[∆n−i,n−1]

(1) · · ·Θ[∆n−i,n−(i−1)]

(i−1) Θ[∆n−i,n−i]

(i) . If we replace multiplication by
addition and truncated exponentiation by multiplication, a vector of these units,
namely

(
Θ(n−j)

)
, solves the matrix equation⎛

⎜⎜⎜⎝
∆0,0 ∆0,1 · · · ∆0,n

0 ∆1,1 · · · ∆1,n

. . .
0 · · · 0 ∆n,n

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

Θ(n)

Θ(n−1)

...
Θ(0)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

σ0

σ1

...
σn

⎞
⎟⎟⎟⎠ .

However, truncated exponentiation does not distribute. (It is easy to check that
for p = 2, the units (Θ(i)Θ(j))[∆] and Θ[∆]

(i) Θ[∆]
(j) are not equal.) So we cannot apply

the inverse matrix (∆)−1 to both sides of this equation and preserve the equality.
Since the vectors

(
Θ(n−j)

)
and (∆)−1 · (σi) are unequal, this matrix equation is

simply a convenient way to express the recursive definition – no more, no less.

Lemma 3.2. For 0 ≤ i, j ≤ n,

Θ(i)

(
Xj

p − 1

)
=

{(
Xj

p−1

)
if j 
= n − i,(

Xj+1
p−1

)
if j = n − i.
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Proof. We use induction on i. For i = 0, Θ(0) = σn and the result is clear. Now
assume the result for 0 ≤ i < k and consider Θ(k)

(
Xj

p−1

)
. Recall that Θ(k) is a product

(3) and examine the effect of each factor Θ[−∆n−k,n−i]

(i) of Θ(k) on
(

Xj

p−1

)
. By induction

(Θ(i) − 1)r
(

Xj

p−1

)
= 0 for r > 0 and j 
= n − i, and (Θ(i) − 1)r

(
Xn−i

p−1

)
=

(
Xn−i

p−1−r

)
for

0 ≤ r ≤ p − 1. Arguing as in Lemma 2.1, we have

Θ[−∆n−k,n−i]

(i)

(
Xj

p − 1

)
=

{(
Xj

p−1

)
for j 
= n − i,(

Xj−∆n−k,j

p−1

)
for j = n − i.

If j < n − k, then every factor of Θ(k) and thus Θ(k) acts trivially on
(

Xj

p−1

)
. If

j = n − k, then σn−k = σj is the only factor of Θ(k) to act nontrivially, and
σj

(
Xj

p−1

)
=

(
Xj+1
p−1

)
. If j > n− k, then two factors of Θ(k) act nontrivially, σn−k and

Θ[−∆n−k,j ]

(n−j) . So Θ(k)

(
Xj

p−1

)
= σn−kΘ[−∆n−k,j ]

(n−j)

(
Xj

p−1

)
= σn−k

(
Xj−∆n−k,j

p−1

)
=

(
Xj

p−1

)
. �

It is natural to consider a product of these binomial coefficients, such as ρ =∏n
j=0

(
Xj

p−1

)
. So that the valuation of ρ can be described more simply, we use (2) to

choose αj ∈ K with vj(αj) = b(n)−b(j). Therefore vj(α
−(p−1)
j

(
Xj

p−1

)
) = −(p−1)b(n)

for 0 ≤ j ≤ n. Choose α ∈ K with vK(α) = b(n). Define A = α
∏n

j=0 α
−(p−1)
j ∈ K,

and define

X = Aρ = α

n∏
j=0

α
−(p−1)
j

(
Xj

p − 1

)
,

which has valuation vn(X) = pn+1b(n)−(p−1)
∑n

j=0 pn−jb(n) = b(n) = bm. For 0 ≤
r ≤ p − 1, we have (Θ(i) − 1)rX = X

(
Xn−i

p−1−r

)(
Xn−i

p−1

)−1
and hence

vn(αr
n−i(Θ(i)−1)rX) = b(n) +rpib(n). Therefore given ci ∈ {0, 1 . . . , p−1}, we have

(4) vn

(
n∏

i=0

αci
n−i(Θ(i) − 1)ciX

)
= vn(X) +

n∑
i=0

cip
ib(n) =

(
1 +

n∑
i=0

cip
i

)
b(n).

Proposition 3.3. Under Assumption 1, we have a Galois scaffold. Let X ∈ Kn be
any element with vn(X) ≡ b(n) = bm mod pn+1. Let Θ(i) ∈ K[G] be as defined in
(3), let ci ∈ {0, 1 . . . , p − 1}, and let αj ∈ K with vK(αj) = (b(n) − b(j))/pj+1 ∈ Z.
Then

vn

(
n∏

i=0

αci
n−i(Θ(i) − 1)ciX

)
= vn(X) +

n∑
i=0

cip
ibm.

Proof. Using (4), {
∏n

i=0 αci
n−i(Θ(i) − 1)ciX : 0 ≤ ci ≤ p − 1} is a basis for Kn over

K. Express X as a linear combination of these basis elements. It is enough to
show that when we apply

∏n
i=0 αdi

n−i(Θ(i) − 1)di with 0 ≤ di ≤ p − 1 to any term
in this linear combination, we increase the valuation by at least

∑n
i=0 dip

ibm. In
particular, we need to show that when we apply it to

∏n
i=0 αci

n−i(Θ(i) − 1)ciX we
get

vn

(
n∏

i=0

αci+di

n−i (Θ(i) − 1)ci+diX

)
≥ vn

(
n∏

i=0

αci

n−i(Θ(i) − 1)ciX

)
+

n∑
i=0

dip
ibm.

If any sum ci + di ≥ p, then (Θ(i) − 1)ci+di = 0 and the valuation of the left-hand
side is infinite. So we are left with the case where all sums ci + di < p. But in this
case, we can use (4) to determine that we have equality. �
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4. One-dimensional and near one-dimensional

elementary abelian extensions

In this section, we define one-dimensional and near one-dimensional elementary
abelian extensions L/K and organize each such extension by ordering its generators.
This defines a matrix

(
Ωφ

)
with coefficients in K. The main result of the section

is that this “organization” agrees with that of §3. Indeed, we have the matrix
equation (∆) ·

(
Ωφ

)
= I, where (∆) is as in §3. Thus L satisfies Assumption 1, (∆)

has coefficients in K, and L possesses a Galois scaffold.
It is a basic observation in Artin-Schreier Theory that elementary abelian exten-

sions of K correspond to finite subspaces of the Fp-vector space, K/K℘, where K℘

is the image of ℘. Define K(n) = φn(K) = F((tp
n

)) with n ≥ 1. Then K/K(n) is
an inseparable field extension, and K is a vector space over K(n). Pick any β ∈ K
with p � vL(β) < 0. This means that β maps nontrivially into K/K℘ and K(n)β is
a one-dimensional subspace of K, one that injects into K/K℘. It seems reasonable
to call those elementary abelian extensions of K that are associated with finite
Fp-subspaces of the image of K(n)β in K/K℘ one-dimensional. Moreover it seems
reasonable to hypothesize that they should closely resemble cyclic extensions of
degree p and thus possibly possess a Galois scaffold. This hypothesis is validated
below under an assumption on the size of the extension.

We define L/K to be a one-dimensional elementary abelian extension of degree
pn+1 if L = K(x0, . . . , xn) with ℘(xi) = xp

i −xi = φn(Ωi)·β for some β ∈ K with p �
vK(β) = −b < 0, and some Ωi ∈ K that span an (n+1)-dimensional subspace over
Fp. Without loss of generality we may organize these generators by setting Ω0 = 1,
assuming vK(Ωn) ≤ · · · ≤ vK(Ω1) ≤ vK(Ω0) = 0, and furthermore assuming that
whenever vK(Ωi) = · · · = vK(Ωj) for i < j, the projections of Ωi, . . .Ωj into
ΩiOK/ΩiPK are linearly independent over Fp. This final assumption means that
K(xi, . . . , xj) has one break in its ramification filtration at −vK(φn(Ωi)β).

More generally, our Galois scaffold will apply to the broader class of near one-
dimensional elementary abelian extensions, where ℘(xi) ≡ φn(Ωi) · β + εi for some
error terms εi ∈ K that satisfy a technical bound: For 1 ≤ i ≤ n, define mi =
vK(Ωi−1) − vK(Ωi) ≥ 0, and assume that for 1 ≤ i ≤ n,

(5) vK(εi) > − b

pn
−

i∑
j=1

pjmj +
n∑

j=i+1

(pn − pj)mj

= vK(φn(Ωi)β) +
(pn − 1)b

pn
− (p − 1)

n−1∑
j=1

pjvK(Ωj).

Note that since vK(Ωj) ≤ 0, this technical bound is stronger than vK(εi) >
vK(φn(Ωi)β). Thus whenever vK(Ωi) = · · · = vK(Ωj) for i < j, it continues
to be the case that K(xi, . . . , xj) has one break in its ramification filtration at
−vK(φn(Ωi)β).

4.1. Main Theorem. We define a matrix
(
Ωφ

)
: Let Ω(0)

j = Ωj , and perform

the following elementary row operations on the matrix
(
φi(Ω(0)

j )
)

0≤i,j≤n
, which

resembles the square root of a discriminant matrix. The first column is a column
of 1’s. So start with the i = n row and work up to the i = 1 row, subtracting the
(i− 1)st row from the ith row. The i = 0 row and j = 0 column of our matrix now
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agree with (6) below. Ignore them. The result is
(
φi−1(℘(Ω(0)

j ))
)

1≤i,j≤n
. Divide

each entry in a row by the first entry of the row and get(
φi−1(℘(Ω(0)

j )

℘(Ω(0)
1 ))

)
1≤i,j≤n

.

Define Ω(1)
j = ℘(Ω(0)

j )/℘(Ω(0)
1 ) for 1 ≤ j ≤ n. Observe that vK(Ω(1)

n ) ≤ · · · ≤
vK(Ω(1)

1 ) = 0 and that the set {Ω(1)
j }1≤j≤n spans an n-dimensional vector space

over Fp. We have a matrix
(
φi−1(℘(Ω(1)

j ))
)

1≤i,j≤n
whose first column is a column

of 1’s. Again, starting with the i = n row and working up to the i = 2 row, we
subtract the (i − 1)st row from the ith row. If we continue, following the same
sequence of steps as above, and repeat as often as necessary, we get a matrix over
K:

(6) (Ω) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 Ω(0)
1 Ω(0)

2 · · · Ω(0)
n

0 1 Ω(1)
2 · · · Ω(1)

n

. . .
0 0 · · · 1 Ω(n−1)

n

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

with entries in row i that are at or above the diagonal. Moreover {Ω(i)
j }i≤j≤n is

the set of nonzero entries in row i. It is linearly independent over Fp, and defined
recursively in terms of the nonzero entries in row i−1 by Ω(i)

j = ℘(Ω(i−1)
j )/℘(Ω(i−1)

i ).
Let (

Ωφ
)

=
(
φn−i−1(Ω(i)

j )
)

0≤i,j≤n
.

In §4.2 we prove that (∆) ·
(
Ωφ

)
= I, where (∆) is as in §3. This means that

near one-dimensional elementary abelian extensions satisfy Assumption 1 and that
the Θ(i) defined in (3) can be defined in terms of the Ωj of this section. Thus using
Proposition 3.3, we obtain the main result of the paper.

Theorem 4.1. Let L/K be a near one-dimensional elementary abelian extension.
Let Θ(i) ∈ K[Gal(L/K)] be defined as in (3). For 1 ≤ i ≤ n, let mi = vK(Ωi−1) −
vK(Ωi), and for 0 ≤ j ≤ n choose αj ∈ K with vK(αj) = pn−j−1

∑n
i=j+1 pimi. Let

bm be the largest (lower) ramification break number of L/K. Given any ρ ∈ L with
vL(ρ) ≡ bm mod pn+1 and any as ∈ {0, . . . , p − 1} with 0 ≤ s ≤ n,

vL

(
n∏

s=0

αas
n−s(Θ(s) − 1)asρ

)
= vL(ρ) +

n∑
s=0

asp
sbm.

As the integers
∑n

s=0 asp
s run through all possibilities from 0 to pn+1 − 1, the

integers (
∑n

s=0 asp
s)bm run through all residues modulo pn+1. This yields

Corollary 4.2. L has a Galois scaffold.

Corollary 4.3. Any element in L of valuation bm generates a normal field basis.

This last corollary provides evidence for the Conjecture in [5] that fully ramified,
elementary abelian p-extensions in characteristic p possess integer certificates (as
in the definition of Galois scaffold).
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4.2. Proof of (∆) ·
(
Ωφ

)
= I. Choose σi ∈ G = Gal(L/K), based upon our

choice of generators, so that we have the equality of matrices: ((σi − 1)xj)0≤i,j≤n =
(δij)0≤i,j≤n = I (i.e. σixi = xi + 1 and σixj = xj for j 
= i). This gives a filtration
H(i) = 〈σi, . . . , σn〉 of G. Let Ki−1 = K(x0, . . . , xi−1) be the fixed field of H(i). So
K−1 = K and Kn = L. Then

u(i) = b + pn
i∑

j=1

mj = −vK(φn(Ωi)β)

is the ramification number of K(xi)/K, and is therefore an upper ramification
number of L/K. Our assumptions on the Ωi mean that {u(0), . . . , u(n)} is the set
of upper ramification numbers. Use the Herbrand function ψ(x) [8, IV, §3] to pass
to the lower ramification numbers. Again, our assumptions on the Ωi mean that
{b(0), . . . , b(n)} with

b(i) = b + pn
i∑

j=1

pjmj

is the set of lower ramification numbers. Moreover, b(i) is the ramification number
of Ki/Ki−1. The groups H(i) can now be identified with the G(i) defined in §3,
and we begin to see that the two organizations (by ramification groups in §3 and
by generators in §4) might agree.

To see that the two organizations actually agree, we proceed to construct the
Xj ∈ Kj of §3 as follows: First, in §4.2.1, we construct Xj ∈ Kj such that
((σi − 1)Xj)0≤i,j≤n ·

(
Ωφ

)
= I. Then in §4.2.2, using (5), we prove that vj(Xj) =

−b(j). Therefore (∆) = ((σi − 1)Xj)0≤i,j≤n, and thus (∆) ·
(
Ωφ

)
= I.

4.2.1. Construction of the Xj ∈ Kj. Let X
(0)
j = xj . Recall the definition of the

Ω(i)
j , and for j ≥ i, recursively define

(7) X
(i)
j = X

(i−1)
j − φn−i(Ω(i−1)

j )X(i−1)
i−1 .

If we use this definition to replace X
(i−1)
j in (7) with X

(i−2)
j −φn−i+1(Ω(i−2)

j )X(i−2)
i−2 ,

we find X
(i)
j = X

(i−2)
j − φn−i+1(Ω(i−2)

j )X(i−2)
i−2 − φn−i(Ω(i−1)

j )X(i−1)
i−1 . Continue in

this way until X
(i)
j = X

(0)
j −

∑i−1
k=0 φn−k−1(Ω(k)

j )X(k)
k . Consider i = j. Since

xj = X
(0)
j and Ω(j)

j = 1, this becomes xj =
∑j

k=0 φn−k−1Ω(k)
j X

(k)
k .

Let Xj = X
(j)
j , for 0 ≤ j ≤ n. Clearly Kj = K(x0, . . . , xj) = K(X(0)

0 , . . . , X
(j)
j )

= K(X0, . . . , Xj). Moreover the collection of equations,

xj =
j∑

k=0

φn−k−1Ω(k)
j X

(k)
k =

j∑
k=0

φn−k−1Ω(k)
j Xk,

can be rewritten as the matrix equation

(X0, X1, . . . , Xn) ·
(
Ωφ

)
= (x0, x1, x2, · · · , xn) .

Since I = ((σi − 1)xj)0≤i,j≤n, we have

(8) ((σi − 1)Xj)0≤i,j≤n ·
(
Ωφ

)
= I.
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4.2.2. Proof that vj(Xj) = −b(j). Since the Ω(i)
j are an important ingredient in

Xj = X
(j)
j , we begin with

Lemma 4.4. For 0 ≤ i < j ≤ n,

vK(Ω(i)
j ) = −pi

j∑
k=i+1

mk.

Proof. We use induction on i. Since mk = vK(Ω(0)
k−1)−vK(Ω(0)

k ), the result holds for
i = 0. For i ≥ 1, assume the result for i−1. Recall (6) and the fact that the elements
of Ω(i−1)

i−1 = 1, Ω(i−1)
i , . . . , Ω(i−1)

n are linearly independent over Fp. In particular,
Ω(i−1)

j 
∈ Fp for i ≤ j ≤ n. Since vK(Ω(i−1)
n ) ≤ · · · ≤ vK(Ω(i−1)

i ) ≤ vK(Ω(i−1)
i−1 ) = 0,

we have vK(℘(Ω(i−1)
j )) = pvK(Ω(i−1)

j ). Using the recursive definition for Ω(i)
j , we

find vK(Ω(i)
j ) = pvK(Ω(i−1)

j ) − pvK(Ω(i−1)
i ). �

To assist in our analysis of vj(X
(j)
j ), define B0 = β, E

(0)
j = εj for j > 0. Then for

0 < i < j define E
(i)
i = 0, and recursively define E

(i)
j = E

(i−1)
j − φn−i(Ω(i)

j )E(i−1)
i

along with

(9) Bi = −φn−i(℘(Ω(i−1)
i ))X(i−1)

i−1 + E
(i−1)
i .

The significance of these elements lies in the following result.

Lemma 4.5. For j ≥ i,

℘(X(i)
j ) = φn−i(Ω(i)

j )Bi + E
(i)
j .

Proof. We use induction on i. For i = 0, this is clear. So we assume ℘(X(i−1)
j ) =

φn−i+1(Ω(i−1)
j )Bi−1 + E

(i−1)
j and in particular, ℘(X(i−1)

i−1 ) = Bi−1. Consider

℘(X(i)
j ). Notice ℘(aX) = φ(a)℘(X) + ℘(a)X. So using (7) we find that

℘(X(i)
j ) = ℘(X(i−1)

j ) − φn−i+1(Ω(i−1)
j )℘(X(i−1)

i−1 ) − φn−i(℘(Ω(i−1)
j ))X(i−1)

i−1

= φn−i+1(Ω(i−1)
j )Bi−1 + E

(i−1)
j − φn−i+1(Ω(i−1)

j )Bi−1

− φn−i(℘(Ω(i−1)
j ))X(i−1)

i−1 = E
(i−1)
j − φn−i(℘(Ω(i−1)

j ))X(i−1)
i−1 ,

which, using (9) and the definition of Ω(i)
j , agrees with the statement for i. �

Lemma 4.6. Assume the bounds given in (5). Then for 1 ≤ i ≤ n, we have

vK(E(i−1)
i ) > −b(i)/pi.

Proof. Use Lemma 4.4 to determine that (5) is equivalent to vK(φn−i(Ω(i)
n )εi) >

−b(n)/pn. We are interested in vK(E(i−1)
i ). Recall E

(i)
j = E

(i−1)
j −φn−i(Ω(i)

j )E(i−1)
i

for j > i, which means that E
(i)
j = E

(0)
j −

∑i
k=1 φn−k(Ω(k)

j )E(k−1)
k , and so

(10) E
(i−1)
i = εi −

i−1∑
k=1

φn−k(Ω(k)
i )E(k−1)

k .
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In order that vK(E(i−1)
i ) > −b(i)/pi for 1 ≤ i ≤ n, it is sufficient to prove

vK(εi) > −b(i)/pi for 1 ≤ i ≤ n, and(11)

vK(φn−k(Ω(k)
i )E(k−1)

k ) > −b(i)/pi for 1 ≤ k ≤ i − 1 ≤ n − 1.(12)

Let ci = −b(i)/pi + vK(φn−i(Ω(i)
n )). Using Lemma 4.4, we find that −b(i)/pi +

vK(φn−i(Ω(i)
n )) = −b(i−1)/pi + vK(φn−i+1(Ω(i−1)

n )). As a result, ci > ci−1, since
−b(i−1)/pi > −b(i−1)/pi−1. Using (5), vK(φn−i(Ω(i)

n )εi) > −b(n)/pn = cn. So
vK(φn−i(Ω(i)

n )εi) > cj for all j, including j = i. Therefore (11) follows from (5).
Focus now on (12), which is equivalent to vK(E(k−1)

k ) > dk
i , where dk

i = −b(i)/pi −
vK(φn−k(Ω(k)

i )). Since −b(i)/pi − vK(φn−k(Ω(k)
i )) = −b(i−1)/pi − vK(φn−k(Ω(k)

i−1)),
we have dk

i > dk
i−1. Thus (12) is equivalent to

(13) vK(φn−k(Ω(k)
n )E(k−1)

k ) > −b(n)/pn for 1 ≤ k ≤ n − 1.

Switch i and k in (10) and apply φn−k(Ω(k)
n ) to both sides: φn−k(Ω(k)

n )E(k−1)
k =

φn−k(Ω(k)
n )εk −

∑k−1
i=1 φn−k(Ω(k)

n )φn−i(Ω(i)
k )E(i−1)

i . By Lemma 4.4, vK(φn−i(Ω(i)
n ))

= vK(φn−k(Ω(k)
n )φn−i(Ω(i)

k )). Therefore (13) follows from (5) by induction on k. �

Lemma 4.7. Assume the bounds in (5). Then for 0 ≤ j ≤ n, vj(X
(j)
j ) = −b(j).

Proof. It is clear that v0(X
(0)
0 ) = −b(0). So for i > 0, assume that vi−1(X

(i−1)
i−1 ) =

−b(i−1) = −b − pn
∑i−1

j=1 pjmj . Using Lemma 4.4, we see that vK(℘(Ω(i−1)
i )) =

−pimi. So vK(φn−i(℘(Ω(i−1)
i ))) = −pnmi and therefore vi−1(φn−i(℘(Ω(i−1)

i ))) =
−pn ·pimi. So vi−1(φn−i(℘(Ω(i−1)

i )X(i−1)
i−1 ) = −b(i). By Lemma 4.6, vi−1(E

(i−1)
i ) >

−b(i). Therefore vi−1(Bi) = −b(i). Lemma 4.5 implies that in particular the norm
NKi/Ki−1(X

(i)
i ) = ℘(X(i)

i ) = Bi, which means that vi(X
(i)
i ) = −b(i). �

5. Examples of near one-dimensional

elementary abelian extensions

Lemma 5.1. Fully ramified biquadratic extensions (so p = 2) are near one-dimen-
sional elementary abelian extensions.

Proof. Let L = K(x0, x1) with x2
0 − x0 = β, x2

1 − x1 = β1, vK(β1) ≤ vK(β) < 0
and both of vK(β1) and vK(β) odd. Because vK(β) − vK(β1) is even, there is a
µ0 ∈ K such that µ2

0β1 ≡ β mod βPK . So β = µ2
0β1 + τ0 for some vK(τ0) > vK(β).

We can replace β by any element in β + K℘. So vK(τ0) ≥ 0, or vK(τ0) < 0 with
vK(τ0) odd. If vK(τ0) odd, there is a µ1 ∈ K such that µ2

1β1 ≡ τ0 mod τ0PK , and
thus β = (µ0 + µ1)2β1 + τ1 for vK(τ1) > vK(τ0). Continue until β = µ2β1 + τ
for µ ∈ K and either τ = 0 or vK(τ ) = 0. If τ = 0, L/K is one-dimensional. If
vK(τ ) = 0, then β1 = Ω2

1β + ε1, where ε1 = τµ−2 and Ω1 = µ−1. So b = −vK(β),
m1 = −vK(Ω1) = vK(µ), and vK(ε1) = −2m1 > −b/2 − 2m1 satisfies (5). �
Lemma 5.2. Let Fq ⊆ F for some q = pf , and suppose that β ∈ K with vK(β) < 0
and gcd(vK(β), p) = 1. Then L = K(y) with yq − y = β is a one-dimensional
elementary abelian extension of K.

Proof. Let q = pf and {1 = ω0, ω1, · · · , ωf−1} be a basis for Fq over Fp. Then
xi =

∑f−1
r=0 φr(ωiy) satisfies xp

i − xi = ωiβ. Set Ωi = φ−f+1(ωi). �
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Lemma 5.3. Let L/K be a noncyclic, fully and weakly ramified p-extension. Then
L/K is a near one-dimensional elementary abelian extension.

Proof. Weakly ramified means G2 = {e}. Since G = G1, L/K is elementary
abelian [8, IV §2]. The one ramification break is 1. So L = K(x0, . . . xn) with
vK(℘(xi)) = −1. Let β = ℘(x0). So ℘(xi) ≡ ωiβ mod OK for some ωi ∈ F. Since
φ is an automorphism of F, set Ωi = φ−n(ωi). So ℘(xi) = φn(Ωi)β + εi with
vK(εi) ≥ 0 > −1/pn = −b/pn, and (5) holds. �
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J. Théor. Nombres Bordeaux 17 (2005), no. 1, 87–107, Les XXIIIièmes Journées Arithmétiques
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