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THE BOUNDING GENERA AND w-INVARIANTS

YOSHIHIRO FUKUMOTO

(Communicated by Daniel Ruberman)

ABSTRACT. In this paper, we give an estimate from below of the bounding gen-
era for homology 3-spheres defined by Y. Matsumoto in terms of w-invariants.
In particular, combining with Matsumoto’s estimates we determine the val-
ues of the bounding genera for several infinite families of Brieskorn homology
3-spheres.

1. INTRODUCTION

In this paper, we give an estimate from below of the bounding genera for ho-
mology 3-spheres defined by Y. Matsumoto in terms of w-invariants. In particular,
combining with Matsumoto’s estimates we determine the values of the bounding
genera for several infinite families of Brieskorn homology 3-spheres.

In 1982, Y. Matsumoto introduced the notion of a bounding genus for integral
homology 3-spheres to study the kernel of the Rohlin invariant. Let I" be a non-
singular symmetric bilinear form over Z. A homology 3-sphere ¥ is said to bound
the form I' if and only if 3 bounds a compact, oriented, homologically 1-connected
smooth 4-manifold W whose intersection form defined on Hy (W) is isomorphic
to I'. Here a topological space X is said to be homologically 1-connected if it is
connected and H; (X) = {0}. Let H be the hyperbolic form, i.e., the intersection
form of S? x S2. Then the bounding genus is defined as follows.

Definition 1.1 (Y. Matsumoto [II]). Let ¥ be a homology 3-sphere. Then the
bounding genus |X| of ¥ is defined to be

5] = min {n |X bounds nH}, wu(X)=0,
o +00, n(x) =1
where ©(X) is the Rohlin invariant of 3.

Remark 1.2. If the Rohlin invariant p (3) of the homology 3-sphere 3 vanishes,
then ¥ bounds a smooth spin 4-manifold W with signature Sign (W) divisible by
16. By taking the connected sum with several copies of K3 surfaces or the K3
surface with reversed orientation, if necessary, we may assume that Sign (W) = 0
and hence W is an indefinite spin 4-manifold. It is known that the intersection
form of indefinite spin 4-manifolds is isomorphic to the direct sum of several copies
of the hyperbolic form H.

Received by the editors September 26, 2007, and, in revised form, May 11, 2008.
2000 Mathematics Subject Classification. Primary 57TR57, 55N22; Secondary 58J20, 57R80.
Research supported by MEXT Grant-in-Aid for Scientific Research (18740039).

(©2008 American Mathematical Society
Reverts to public domain 28 years from publication

1509



1510 YOSHIHIRO FUKUMOTO

Remark 1.3. The bounding genus |X| gives a homology cobordism invariant; i.e.
it gives a map | | : O — Z>q U {oo} from the homology cobordism group ©% of
homology 3-spheres.

Remark 1.4. The bounding genus |X| satisfies the triangle inequality | + X'| <
|Z| + |¥’| and in fact gives a distance in ©4 allowing the value to be infinity.

Remark 1.5. The notion of 1-connected bounding genus ||X|| is also defined by
replacing “homological 1-connectedness” by ordinary “l-connectedness” in the def-
inition of the bounding genus |X|. Clearly the inequality |X| < ||X]|| holds.

Matsumoto gave upper estimates on the bounding genera for several families of
homology 3-spheres using Dehn-Kirby calculus. For example, he gave the following
estimates.

Proposition 1.6 (Y. Matsumoto [11I, §4, Proposition 4.4]). |2 (2,7,14m —1)| <3
for any positive odd integer m.

For example, the bounding genus of the Brieskorn homology 3-sphere 3(2,7,13)
satisfies [3(2,7,13)| < 3. Matsumoto called this estimate “hard-to-improve”. In
fact, R. Kirby proved that X (2,7,13) bounds the plumbed 4-manifold P (I'yg) as-
sociated to the intersection form I'ig. Hence if ¥ (2,7,13) bounds 2 - H, then the
closed 4-manifold M = —P (I'16) U |2 - H| obtained by gluing —P (I'1¢) and |2 - H|
along the boundary ¥ (2,7, 13) leads to the inequality

11 11

5 [Sign (M)| = T [—16] > 16 +4 = by (M),
which violates the following 11/8-conjecture proposed by Y. Matsumoto [11].
Conjecture 1.7 (Y. Matsumoto [I1]). Let M be a closed spin 4-manifold. Then
the following inequality holds:

11 .
5 SiEn(M)] < by (M),

To determine the bounding genera we need an estimate from below. In fact,
M. Furuta proved an inequality called the 10/8-inequality close to the 11/8-conjec-
ture by using the finite-dimensional approximation of the Seiberg-Witten monopole
equation on closed spin 4-manifolds.

Theorem 1.8 (M. Furuta [9]). For any closed spin 4-manifold M with Sign (M) #
0, the following inequality holds:

10
5 [Sign (M) +2 < by (M)
If we apply this inequality to M = —P (I'14)U|2 - H|, then we have the inequality
10
o |16/ +2=22>20 =16 + 4

violating the 10/8-inequality above and hence |X(2,7,13)| = 3. For other Brieskorn
homology 3-spheres X, we need to find “good” spin 4-manifolds such as P (T'1¢)
which ¥ bounds.

In a joint work with M. Furuta [7], we used a V-manifold version of the
10/8-inequality to define a homology cobordism invariant for a class of homol-
ogy 3-spheres which we call the w-invariant. The notion of V-manifold is defined
by I. Satake [I5] as a generalization of manifolds which allows neighborhoods to be
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the quotients of Euclidean spaces divided by finite group actions. The w-invariant
can be considered as the Seiberg-Witten theory counterpart of the invariant [3] of
R. Fintushel and R. Stern defined by using the Donaldson theory. In fact, the
w-invariant is defined for a triple (¥, X, ¢) composed of a homology 3-sphere ¥, a
compact smooth spin 4-V-manifold X with boundary ¥, and a V-spin® structure ¢
on X, and it takes values in the integers, w (3, X, ¢) € Z. If the V-spin® structure
¢ comes from the V-spin structure on X, then the value w (X, X, ¢) modulo 2 is
equal to Rohlin’s p-invariant.

By using this invariant w (¥, X, ¢), we give the following estimate on bounding
genera from below whose proof will be given in Section

Theorem 1.9. Let ¥ be an integral homology 3-sphere bounding a compact smooth
spin 4-V -manifold X with V -spin® structure ¢ which comes from a V -spin structure
on X. Then the following inequalities hold:

(1) If w(%, X, c) >0, then |X| > w(X, X, c) — by (X) + 1.

(2) Ifw(X, X,c) <0, then |X| > —w(X, X,c) — by (X) + 1.

As in the case of smooth manifolds, we need to find a “good” spin 4-V-manifold
X to give an efficient estimate. However, for Seifert homology 3-spheres ¥ =
¥ (a1, .. .,a,), we can take X to be the canonical D?-V-bundle X — S2 over S?
associated to the Seifert fibration ¥ — S2?. Then X is a 4-V-manifold with n-
singular points which are cones over lens spaces and with b (X) = 0, b, (X) = 1.
If one of the a;’s is even, then X admits a unique V-spin structure ¢ on X. For
example, the value of the w-invariant of the Brieskorn homology 3-sphere (2,7, 13)
is w(X(2,7,13),X,¢) = 2 > 0. Hence by Theorem [[L9, we see that |3(2,7,13)| >
2—0+1 = 3. Therefore the bounding genus of 3(2, 7, 13) is certainly |X(2,7,13)| =
3. In Section Bl we will prove the following:

Proposition 1.10. |X(2,7,14m — 1)| = 3 for any positive odd integer m.

R. Fintushel and R. Stern defined the invariant R (aq,...,a,) for Seifert ho-
mology 3-spheres ¥ (aq,...,a,) by using the Donaldson theory and proved that
if R(a,...,a,) > 0, then ¥ (ay,...,a,) cannot be the boundary of an acyclic
4-manifold [3]. Hence if R (aq,...,a,) > 0, then we can show that | (ay,...,a,)|
> 1. Matsumoto proved for example that |¥(2,3,12k — 1)| < 1, whereas the w-
invariant of 3 (2, 3,11) is zero, and hence the above Theorem [[.9] cannot be applied.
However we see that R (2,3,11) > 0 and therefore |X(2,3,11)] = 1. In Section [3
we will prove the following:

Proposition 1.11. |X(2,3,12k — 1)| = 1 for any non-negative integer k.

2. BOUNDING GENERA AND w-INVARIANTS
First we recall the V-manifold version of the 10/8-inequality.

Theorem 2.1 ([7]). Let X be a closed smooth spin 4-V -manifold. Fiz a Riemann-
ian V-metric on X and let D (X) be the positive chiral Dirac operator. Suppose
the V-index of the Dirac operator is positive: indy D (X) > 0. Then the following
inequality holds:

indy D (X) +1 < b (X).

The w-invariant is defined as follows.
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Definition 2.2. Let (3, X,¢) be a triple composed of a homology 3-sphere 3,
a compact smooth spin 4-V-manifold X with boundary 0X = ¥, and a V-spin®
structure ¢ on X. Then we define
Sign(W)

8 3
where W is a smooth spin 4-manifold with boundary W = —3.

w(X, X,¢) :=indy D(X Ug W) +

Remark 2.3. w(X, X, c) does not depend on the choice of W and its spin structure
by the excision properties of V-indices and the fact that the L-genus is (—8)-times
the A—genus. Moreover, if the V-spin® structure ¢ comes from a V-spin structure,
then w(X, X, ¢) is equal to the Rohlin invariant p (X) modulo 2. w(X, X, ¢) may
depend on the choice of X and ¢, but Theorem 2.1] implies a homology cobordism
invariance of w(X, X, ¢) in a certain class of homology 3-spheres ¥ including the set
of all Seifert homology 3-spheres [1].

By using this Theorem 2.7] we give a proof of Theorem [[.9

Proof of Theorem [[L9. Let m = |X| be the bounding genus of ¥. Then ¥ bounds
a homologically 1-connected compact oriented smooth spin 4-manifold W,, with
intersection form mH. This implies that b3 (W,,) = m and Sign W,,, = 0. On the
other hand, let X be a closed spin 4-V-manifold X with V-spin structure ¢ with
boundary 0X = 3. Let Z be a closed spin 4-V-manifold obtained by gluing X and
—W,, along the boundary X. Then we have bF (Z) = bF (X) + m. Note that

Sign W,
8
Suppose that w(X, X, ¢) > 0. Then by Theorem 21] we have

w(X, X, ¢) =indy D(Z) + = indy D(Z).

w(X, X,c) =indyD(Z) < b (Z) —1=bf(X)+m— 1.

Similarly, if w(X, X, ¢) < 0, then we apply Theorem 2.1] by replacing X with —X
and by noting bJ (—Z) = b, (Z) and indy D(—Z) = —indy D(Z) to get

—w(%, X,c) = —indy D(Z) = indy D(—2Z)
< (=Z)—1=by(Z)—1=0by(X)+m— 1.

Hence the assertion follows. O

3. BOUNDING GENERA OF BRIESKORN HOMOLOGY 3-SPHERES

In this section, we calculate w-invariants of Brieskorn homology 3-spheres to give
estimates of bounding genera from below, and combining with Matsumoto’s result
we determine the bounding genera for several examples of Brieskorn homology 3-
spheres.

The explicit formula of the w-invariant for the Brieskorn homology 3-spheres
is given in a joint work with M. Furuta [7], and more generally, the invariant for
the homology 3-spheres of plumbing type [I3] is calculated in [6] by using the
Kawasaki V-index formula [10]. In fact, the w-invariant of plumbed homology 3-
spheres X (I") is essentially equal to the fi-invariant defined by W. Neumann [12]
and L. Siebenmann [I7] as follows.
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Theorem 3.1 (N. Saveliev [16]; cf. Y. Fukumoto-M. Furuta-M. Ue [8], [B]). Let
¥ (T) be a plumbed homology 3-sphere associated to a weighted tree graph T'. Then

there exists a decoration I' of I' and a V -spin structure ¢ on the associated plumbed
4-V-manifold P(T') such that

w(E (L), P(F),¢) = —(S(D)).

To apply Theorem [ efficiently, we must find a “good” spin 4-V-manifold
X to evaluate the w-invariant w(X, X,c). For Seifert homology 3-spheres ¥ =
Y (ay,...,a,), we can take the canonical V-manifold X to be the total space of the
D?-V-bundle over the V-sphere S? associated with the Seifert fibration ¥ — 52
which can be regarded as an S'-V-bundle over a V-sphere S2. If one of the a;’s
is even, then X admits a unique V-spin structure c. In this case, we can take a
spin resolution P(T') of X with an even weighted star-shaped graph I'" which satis-
fies X(T') & X. Then a decoration I’ of I is obtained by drawing circles enclosing
linear arms emanating from the central vertex, and the plumbed V-manifold P(T")
is diffeomorphic to X with induced V-spin structure ¢ isomorphic to ¢. Then by

Theorem Bl we have w(X, P(T'),é) = —(3(T")). When all a;’s are odd, we must
take other choices of X, such as plumbed V-manifolds P(I") for some decorated
plumbing graph I' [16] or “4-dimensional Seifert fibrations” [§].

In the following, we list several results by Y. Matsumoto [I1] of estimates on
the bounding genera of Brieskorn homology spheres and calculate w-invariants to

determine the bounding genera.

Proposition 3.2 ([I1], §4, Proposition 4.4]). Let p,q, m be positive integers with
ged (p,q) = 1. Then
(1) X (p,q:pgm £ 1)|| < 1 for m even;
(2) if m is odd and Arf (K (p,q)) =0, then
1% (P, ¢, pgm £ 1) < (p—1) (¢ —1) /2.

Remark 3.3. The Arf invariant of the (p, ¢)-torus knot K (p, q) is as follows [11, §4,
Remark]:

1—p?)/8 (mod 2), :odd, ¢ :even,
AT (K () = A (5 ) = { {1 777)/% (0020 peodd e

Example 3.4. ||X(2,3,11)

<1 227.13)] <3
As an application of Theorem in this case, we have the following;:

Proposition 3.5. Let p,q be coprime positive integers and m be a positive odd
integer.

(1) Ifw(p,q,pg £ 1) >0, then
1% (p, g, pgm £ 1)| > w (p, q,pq £ 1) + 1;

and
(2) if w(p,q,pqg+1) <0, then
I (p, ¢, pgm £1)| > —w (p,q,pg £ 1).

Proof. Let k be a non-negative integer such that m = 2k + 1. Let X be the
disk V-bundle over S? associated with the Seifert fibration X (p, ¢, pgm 4 1). Then
by (X) = 0 and b; (X) = 1. Since one of the p,q,pgm + 1 is even, X admits
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a unique V-spin structure. By Theorem B] and a formula of W. Neumann [12],
(X (p,g,7)) = (2 (p,q,r + 2kpq)) for any non-negative integer k, we have

w(p,q,pgm 1) =w(p,q,pq(2k +1) £ 1) = w (p,q,pq £ 1 + 2kpq)
=—i(E(p,q,pg £ 1+ 2kpq)) = = (X (p, ¢, pg £ 1))
=w(p,q,pqg£1).

Hence the assertion follows. (]
The following is an application of Proposition
Proposition 3.6. |X(2,7,14m — 1)| = 3 for any positive odd integer m.

Proof. The w-invariant of ¥ (2,7,13) is w (2,7,13) = 2 > 0 and hence by Proposi-
tion 3.5l we have
¥ (2,7, 14m — 1)| > w(2,7,13) —0+1=2-0+1=3.
On the other hand, by Matsumoto’s estimate
2-1)(71-1)
2
Therefore |¥(2,7,14m — 1)| = 3 for any odd m. O

12(2,7,14m — 1)| = [$(2,7,14- 2k — 1) — 1)| < =3.

The following two propositions are cases where we could not determine the
bounding genera.

Proposition 3.7. 2 < |X(2,7,14m + 1)| < 3 for any positive odd integer m.

Proof. The w-invariant of ¥ (2,7,15) is w(2,7,15) = —2 < 0 and hence by Propo-
sition B3, we have |¥(2,7,14m +1)] > —(—2) — 1+ 1 = 2. On the other hand,
by Matsumoto’s estimate |X(2,7,14m +1)] < (2—-1)(7—1)/2 = 3. Hence the
assertion follows. O

Proposition 3.8. 2 < [X(3,5,15m +1)| <4, 3<[X(3,5,16m —1)| <4 for any
positive odd integer m.

Proof. The w-invariant of X (3,5, 16) is calculated to be w(3,5,16) = —2 < 0 and
hence by Proposition B35 | (3,5,15m 4+ 1)| > (—2) — 141 = 2 for m odd. On the
other hand, the w-invariant of ¥ (3, 5, 14) is calculated to be w (3, 5,14) = 2 > 0 and
hence by Proposition B3 |X (3,5, 15m — 1)| > 3 for m odd. Since Arf (K (3,5)) = 0,
Proposition 3212 can be applied to obtain |X (3,5,15m +1)| < (3-1)(5—-1)/2 =
4 for any m odd. O

The above estimate is sharpened by Matsumoto for small m’s.

Proposition 3.9 ([I1, §4, Proposition 4.5]). Suppose that Arf (K (p,q)) = 0. Let
m be an odd integer such that 0 < m < |p/2] |¢/2|+1. Then |X (p,q,pgm £ 1)|| <

(p—1)(¢—1)/2-1.

This proposition enables us to determine the bounding genera in the following
case.

Proposition 3.10. |X(2,7,14m + 1)| =2 for m = 1,3.
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Proof. By Proposition 317 we have |X(2,7,14m + 1)| > 2 for any odd m. On the
other hand, by Matsumoto’s estimates (Proposition[3.9]), we have || £ (2,7, 14m=+1)||
<2-1)(7-1)/2—-1= 2 for m = 1,3 and therefore |X (2,7,14m + 1)| = 2 for
m=1,3. O

The following is a case where we could not determine the bounding genera even
if we use the sharpened estimate.

Proposition 3.11. 2 < |X(3,5,15m+1)| < 3 and |X(3,5,15m —1)| = 3 for
m=1,3.

Proof. By Proposition B8 we have |2 (3,5,15m + 1)| > 2 and [X (3,5,15m — 1)| >
3. On the other hand, for m odd with m < |3/2][5/2] + 1 = 3, we have the in-
equality |2 (3,5,15m+1)| < (3—-1)(5—1)/2—1 = 3 for m = 1,3 by Matsumoto’s
estimates (Proposition 39). ]

In the case where the w-invariant vanishes for Brieskorn homology 3-spheres
¥ (p,q,7) such as ¥ (2,3,12k — 1) for any integers k, we can apply the Fintushel-
Stern invariant R (p,q,r) [3]. The explicit formula of the invariant is given in
terms of the trigonometric sums by using the Kawasaki V-index formula. W. Neu-
mann and D. Zagier [I4] derived the useful expression R (aq,...,qn) = 2b— 3
by using the “b-invariant” of the Seifert fibration X (aq,...,a,) where b satisfies
b+ >0 Bifay = 1/[[i-, a; and 0 < B; < a; with Bj/a; = —1 (mod «;). By
using this expression we have the following;:

Proposition 3.12. Let p, q,r be pairwise coprime positive integers. If R (p,q,r) >
0, then

2 (p, .7 + kpg)| > 1
for any non-negative integers k.

Proof. The b-invariants of ¥ (p, ¢, ) and ¥ (p, ¢, + pq) coincide, and hence by the
formula of W. Neumann and D. Zagier [I4] we have R (p,q,r) = R (p,q,r + pq).
Therefore if R(p,q,r) > 0, then R(p,q,r + kpqg) > 0, and by the theorem of
R. Fintushel and R. Stern [3], £ (p, ¢, + kpq) cannot be the boundary of an acyclic
4-manifold for any non-negative integer k. (I

As an application of Proposition [3.12], we have the following:
Proposition 3.13. |X(2,3,12k — 1)| = 1 for any non-negative integer k.

Proof. By Matsumoto’s estimate |X(2,3,12k £ 1)| < 1 for any integer k. The w-
invariant of ¥ (2,3,11) is w(2,3,11) = 0; hence we cannot apply Proposition
However, the Fintushel-Stern invariant R (2,3,11) = 1 > 0, and hence by Propo-
sition we have |X(2,3,12k —1)] > 1 for any integer k, and the assertion
follows. Note that in the case ¥ (2,3,12k + 1), the w-invariant of ¥ (2,3,13) is
w(2,3,13) = 0 and the Fintushel-Stern invariant is R(2,3,13) = —1 < 0, and
hence we cannot apply Proposition nor Proposition B2l In fact, it is known
that 3(2,3,13) [1], [] and (2, 3,25) [2] bound contractible smooth manifolds. O

Matsumoto also gave estimates for the so-called Casson series of Brieskorn ho-
mology spheres.

Proposition 3.14 (Casson’s series [I1], §5, Proposition 5.1]). Let p,q,r be odd
integers satisfying qr +rp + pqg = —1. Then |Z (Ip|, ¢/, 7D < 1.
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In fact, we have the following:

Proposition 3.15. Let p,q,r be odd integers satisfying qr + rp + pg = —1. Then
12 (Ipl. lal s )| = 1.

Proof. By the equality gr+rp+pg = —1, we see that the b-invariant of X (|p|, |q| , |7])
is 2, and hence by the formula of W. Neumann and D. Zagier [14], we have
R(pl,lql,Ir]) = 2-2—-3 =1 > 0 and therefore |X(|p|,|q|,|r])] > 1. Hence
the assertion follows. O

Example 3.16. |X(2n+ 1,4n + 1,4n + 3)| = 1 for any positive integer n.

We have the following estimates of the bounding genera for Brieskorn homology
3-spheres in [I1l §5, Proposition 5.5]. The upper bounds are given by Matsumoto.

Proposition 3.17 (cf. [I1], §5, Proposition 5.5]).

| q | Brieskorn ZHS? | (12]] < | w (X) | R (%) | |2 |
5| S(23,12k£1) <1 ] 0 —1(+),1(=) | 20(+),=1(-)
¥(2,3,12k £ 5) +oo | 1 | 1(#),~1(=) | +o0
5 (2,5,20k £ 1) <1 |0 “1(4),1(—) | =0(1H),=1(—)
. 2(2,5 20k + 3) 400 | £1 | 1(4),-1(-) | 4o
¥ (2,5,20k £ 7) <1 |0 =1(+),1(=) | 20(+),=1(-)
¥ (2,5,20k £9) +00 +1 1(+),-1(—) +o0
¥ (2,7,28k £ 1) <1 0 —1(+),1(-) >0(+),=1(-)
¥(2,7,28k + 3) +oo | F1 —1(+),1(—) +00
| S@7.28k=5) <1 |0 —1(+),1(=) | >0(+),=1(-)
¥(2,7,28k £ 9) <1 |0 1(4),-1(=) | =1(4+),>0(-)
$(2,7,28k +11) | 400 | £1 | 1(+),-1(=) | H4oo
$(2,7,28k+13) | <3 | £2 | 1(+),-1(=) | =3(+),>2(-)
> (2,9,36k £ 1) <1 |0 =1(+),1(=) | 20(+),=1(-)
¥ (2,9,36k £5) +00 +1 1(+),-1(—) +00
o| =(2.9,36k=7) <2 |0 L(4),—1(=) | =1(+),>0(-)
$(2,9,36k+11) | <1 | 0 “1(+),1(=) | >20(4),=1(-)
2(2,9 6k+13) | 400 | F1 | —1(+),1(-) | 400
$(2,9,36k+17) | <4 | £2 | 1(4),-1(=) | >3(+),>2(-)

Remark 3.18 ([II, §5, Remark]). Matsumoto improved the estimates for several
Brieskorn homology 3-spheres in the above lists. We give estimates below for them.

| q | Brieskorn ZH S? ‘ IZ] < | w (%) | R(Y) | |2 ‘
3 ¥(2,3,12k+1), k=1,2 0, k=1,2 0 -1 =0
2 (2,3,12k — 1) <1e, VE>0 | 0 1 =1
AN 0 0 1 =0
> (2,5,21) 0 0 1 | =0
S(2,7,28k —13), k=1,2 <92 k=12 2 | —1 | =2
| T@27.13) < 34 2 1 —3
2 (2,7,15) <2, 2 | -1 | =2
2 (2,7,19) 0 0 -1 | =0
o] =(29,10) 0 0 1 | =0
$(2,9,36k —17), 1< k<3 | <3,1<k<3 | -2 | -1 | >2
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