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RELATIVE BRAUER GROUPS IN CHARACTERISTIC p

ROBERTO ARAVIRE AND BILL JACOB

(Communicated by Martin Lorenz)

Abstract. This paper gives a description of the relative Brauer group
Br(E/F ) when F has characteristic p, [E : F ] = p, and the Galois group
Gal(E1/F ) is solvable, where E1 is the Galois closure of E over F .

In the theory of central simple algebras, splitting fields are of special importance.
In particular they provide information about maximal subfields and hence insight
into the structure of an algebra. Turning this around, it is often useful to determine
the relative Brauer group of a field extension, namely to characterize the Brauer
classes that vanish in the extension. For example, if E/F is a cyclic extension
and if D is an algebra for which [D] ∈ Br(E/F ) := ker(BrF → BrE), then of
course D is a cyclic algebra and we can express D = (E/F, σ, t) for a generator σ
of Gal(E/F ) and t ∈ F . It is well-known (see, for example, [6], pp. 259-262) that
the map F ∗ → BrF given by t �→ (E/F, σ, t) is multiplicative with t �→ 0 if and
only if t ∈ NE/F (E∗). In other words, in the cyclic case the relative Brauer group
Brp(E/F ) is computed by the classical exact sequence

0 → F ∗

NE/F (E∗)
→ BrpF → BrpE.

A natural approach to try to generalize this is to use the restriction-corestriction
sequence. For example, if [E : F ] = p is separable of prime degree, then there
exists an extension F1 of F so that E1 = E · F1 is cyclic Galois over F1 and
with [F1 : F ] = s, where (s, p) = 1. Since the composite corF1/F ◦ resF1/F :
BrpF → BrpF1 → BrpF is multiplication by s, it is injective, so we have an
embedding BrpF ↪→ BrpF1. This induces an inclusion Brp(E/F ) ↪→ Brp(E1/F1)
and reduces the problem of determining Brp(E/F ) to explicitly computing its image
in Brp(E1/F1). In general, however, this is not an easy thing to do; that is, it can
be very difficult to find an explicit description of the image. In this paper we
show how to carry this out in characteristic p where [E : F ] = p and where E/F
is no longer cyclic, but has solvable Galois group. In this case we find a ∈ F

and decompositions F ∗
1 /F ∗p

1 = νF1(1) =
⊕s−1

i=1 νai

F (1) and E∗
1/E∗p

1 = νE1(1) =⊕s−1
i=1 νai

E (1) for which the norm acts on summands as NE1/F1 =
⊕s−1

i=1 Nai

E/F :⊕s−1
i=1 νai

E (1) →
⊕s−1

i=1 νai

F (1). It is then shown that the image of Brp(E/F ) in
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Brp(E1/F1) is the quotient νa
F (1)/Na

E/F (νa
E(1)), so one obtains an analogue of the

above exact sequence,

0 → νa
F (1)

Na
E/F (νa

E(1))
→ BrpF → BrpE.

As a corollary of this work we obtain a new proof of Albert’s result [1] that
p-algebras of index p with solvable group are cyclic. The decomposition of relative
norm groups indicates why one should expect such a result. Away from character-
istic p it is known that dihedral algebras are cyclic ([5], [7]), but those calculations
do not appear to give a general description of the relative Brauer group.

1. The basic setup

Let F be a field of characteristic p > 0 and assume that E is a separable extension
of F of degree p. Suppose that E1 is the Galois closure of E over F and that
Gal(E1/F ) is solvable. Our main result is an explicit computation of Br(E/F ) :=
ker(BrF → BrE). In this first lemma we show that the extension E has a simple
form. This result is presumably well-known, but is included for lack of a reference.

Lemma 1.1. Suppose that [E : F ] = p and Gal(E1/F ) is solvable, where E1 is
the Galois closure of E over F . Then E = F (β), where βp − aβ − b = 0 for some
a, b ∈ F p. Moreover, E1 = F (α, β), where αp−1 = a and [F (α) : F ] = s for some
s | p − 1.

Remark 1.2. The calculations also show that E1 = F (α, β′), where β′ = β/α and
℘(β′) = β′p − β′ = b/αp ∈ F1 := F (α).

Proof. According to ([3], Th. 7, p. 77), as p is prime one knows that Gal(E1/F ) is
a Frobenius subgroup of AGL(Fp); that is, there exists a cyclic extension F1 of F
of degree s with s | p−1 such that E1 = E ·F1 is the Galois closure of E over F and
such that E1/F1 is cyclic of degree p. Since F contains primitive (p − 1)th roots
of unity we express F1 = F (α1), where αs

1 = a1 ∈ F . Without loss of generality,
replacing α1 by αp3

1 we can assume that αs
1 = a1 ∈ F p3

and α1 ∈ (F (α1))p3
.

We let τ be a generator of Gal(F1/F ), so τ (α1) = ζα1 where ζ ∈ Fp is a primitive
sth root of unity. As F1 = F⊕α1F⊕· · ·⊕αs−1

1 F and since E1/F1 is Galois and cyclic
of degree p we know by Artin-Schreier theory that E1 = F1(β1), where ℘(β1) =
c0 + c1α1 + · · ·+ cs−1α

s−1
1 for ci ∈ F . Replacing β1 by βp

1 and α1 by αp
1 if necessary

we can assume each ci ∈ F p, α1 ∈ F (α1)p2
and a1 ∈ F p2

. Now, as τ j(α1) = ζjα1 we
have τ j(αi

1) = ζijαi
1 and therefore ℘(τ j(β1)) = c0 + ζjc1α1 + · · ·+ ζj(s−1)cs−1α

s−1
1 .

Since the s× s matrix with (i, j) entry ζij is invertible over Fp it is possible to find
Fp-linear combinations of τ j(β1), β1,j , so that ℘(β1,j) = cjα

j
1, where cj ∈ F p for

j = 0, 1, . . . , s − 1. (This uses the fact that ℘ is Fp-linear.)
Now, as β1 �∈ F , and as β1 is an Fp-linear combination of the β1,j , we see that

for some j, β1j �∈ F . We express α1 = α′p for α′ ∈ (F (α1))p so that

℘(β1,j) = cjα
j
1 = cj(α′p)j = cj(α′p)s/(α′p)s−j

and therefore

(α′s−j
β1,j)p − α′(p−1)(s−j)(α′s−j

β1,j) = cjα
′ps

.

We set a = α′(p−1)(s−j) and b = cjα
′ps so that β = α′s−j

β1,j satisfies βp − aβ = b.
We claim that a, b ∈ F p. As (α′s)p = αs

1 = a1 ∈ F and [F (α′s) : F ] < p, since F
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has characteristic p we must have α′s ∈ F . As s | p − 1 and as α′ps = a1 ∈ F p2
we

find that α′s ∈ F p. Finally, since cj ∈ F p, so are a and b.
If we set α = α′s−j we find αp−1 = a as required. We note as βp − aβ = b

that ℘(β/α) = b/αp. Therefore, as [F (β, α) : F (α)] = p (Artin-Schreier extensions
either have degree p or 1), we must have [F (β) : F ] = p as well. As all extensions
of degree p over F inside E1 must be isomorphic to F (β), we find E ∼= F (β), and
this proves the lemma. �

For the remainder of this paper we use the notation set up in Lemma 1.1. In
particular, a, b ∈ F p, and we denote by F1 := F (α) a cyclic extension of F , where
αp−1 = a and s is chosen minimal with s | p − 1 and αs ∈ F . We set E = F (β)
where βp − aβ − b = 0 and we assume E is a separable extension of F of degree
p. The extension E1 = F (α, β) is the cyclic extension of degree p over F1 given by
E1 = F1(β/α), where ℘(β/α) = b/αp ∈ F1. We will denote by σ the generator of
the Galois group Gal(E1/F1) for which σ(β/α) := β/α + 1. This also implies that
σ(β) = β + α.

2. Differential forms

We use the standard notation for differential forms in characteristic p (see [2] for
details) and will repeatedly make use of the Bloch-Kato-Gabber [4] theorem which
gives the exact sequence

0 → F ∗/F ∗p dlog→ Ω1
F

℘→ Ω1
F /dF → H2

p (F ) → 0

and which defines the group H2
p (F ) := Ω1

F /(℘(Ω1
F ) + dF ). Here ℘ : Ω1

F → Ω1
F /dF

is defined by ℘(adf
f ) = (ap − a)df

f . It was proved by Witt [8] that Brp(F ) ∼= H2
p (F )

where the class of a cyclic algebra (t, b] corresponds to the class of the form bdt
t , and

therefore we can use differential forms to study Brp(E/F ). We also use the exact
sequence to repeatedly express certain w ∈ Ω1

F for which ℘(w) ∈ dF as w = dlog(f)
for some f ∈ F .

We use notation from [2] when computing ℘. If t1, t2, ... is a fixed p-basis for
F and if u =

∑n
i=1 ci

dti

ti
∈ Ω1

F , then one can define relative to this p-basis u[p] :=∑n
i=1 cp

i
dti

ti
. One then knows that ℘(u) ≡ u[p] − u (mod dF ), and for the purposes

of computation, whenever a ∈ F , (au)[p] = apu[p]. Finally, the image of F ∗/F ∗p

under dlog is denoted νF (1), and so by the exact sequence we have νF (1) ∼= ker(℘).
We now consider the problem of describing ker(Brp(F ) → Brp(E)). Let w ∈ Ω1

F

be a differential form such that

w = ℘(u) + d(v) in Ω1
E

for u ∈ Ω1
E , v ∈ E. Since Ω1

E = Ω1
F + βΩ1

F + · · · + βp−1Ω1
F we have that

(2.1) w ≡ ℘(u0 + βu1 + · · · + βp−1up−1) (mod dE)

with ui ∈ Ω1
F . Expanding (1) we obtain

w ≡ ℘(u0) +
(
βpu

[p]
1 − βu1

)
+ · · · +

(
β(p−1)pu

[p]
p−1 − βp−1up−1

)

≡ ℘(u0) +
(
(aβ + b)u

[p]
1 − βu1

)
+ · · ·

+
(
(aβ + b)p−1

u
[p]
p−1 − βp−1up−1

)
(mod dE).
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Since dE = dF + βdF + · · · + βp−1dF we have inside Ω1
F :

w ≡ ℘(u0) + bu
[p]
1 + b2u

[p]
2 + · · · + bp−1u

[p]
p−1 (mod dF ),

0 ≡ au
[p]
1 − u1 +

(
2
1

)
abu

[p]
2 +

(
3
1

)
ab2u

[p]
2 + · · · +

(
p−1
1

)
abp−2u

[p]
p−1 (mod dF ),

...

0 ≡ ap−2u
[p]
p−2 − up−2 +

(
p−1
p−2

)
ap−2bu

[p]
p−1 (mod dF ),

0 ≡ ap−1u
[p]
p−1 − up−1 (mod dF ).(2.2)

For u = u0+βu1+· · ·+βp−1up−1, let k be the maximal index such that uk �= 0.
The last two nontrivial equations in (2) above will be

0 ≡ ak−1u
[p]
k−1 − uk−1 + kak−1bu

[p]
k (mod dF ),(2.3)

0 ≡ aku
[p]
k − uk (mod dF ).(2.4)

The proof of our main theorem will be based on reducing to the case where k = 1.
To carry out our proof we need to be able to compute norms additively inside

Ω1
E1

. That is the point of the next lemma. The automorphism σ of E1 induces an
automorphism of Ω1

E1
which can be used to compute the norm.

Lemma 2.1. The operator (σ − 1)p−1 on Ω1
E1

is equivalent to the trace map tr∗;
that is, (σ − 1)p−1(u) = tr∗(u) for each u ∈ Ω1

E1
. Moreover,

(σ − 1)p−1

(
dγ

γ

)
= tr∗

(
dγ

γ

)
=

dNE1/F1(γ)
NE1/F1(γ)

for each γ ∈ E∗
1 .

Proof. Since the Galois group Gal(E1/F1) is cyclic, we have

(σ − 1)p−1 =
p−1∑
s=0

(−1)p−1−s
(
p−1

s

)
σs.

As (−1)p−1−s
(
p−1

s

)
= (−1)p−1−s (p−1)(p−2)···(p−s)

s! ≡ (−1)p−1−s (−1)(−2)···(−s)
s! ≡

1 (mod p) for each s, we have

(σ − 1)p−1 =
p−1∑
s=0

σs = tr∗.

According to ([2], Lem. 2.5) the trace restricts to a map tr∗ : νE1(1) → νF1(1),
where it coincides with the norm. Thus we have

(σ − 1)p−1

(
dγ

γ

)
= tr∗

(
dγ

γ

)
=

dNE1/F1(γ)
NE1/F1(γ)

as desired. �

Our initial computations will take place over F1, and then we will pull back to
F . For this we need some notation. We have

Ω1
E1

= βp−1Ω1
F1

⊕ · · · ⊕ βΩ1
F1

⊕ Ω1
F1

.

This decomposition provides a filtration of Ω1
E1

, given next.
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Definition 2.2. For t with 0 ≤ t < p we denote by Vt the subgroup of Ω1
E1

defined
by Vt = βtΩ1

F1
⊕ βt−1Ω1

F1
⊕ · · · ⊕ Ω1

F1
.

Remark 2.3. As σ(β) = β + α where α ∈ F1 it is clear that the operator (σ − 1)
has the property (σ − 1) (Vt) ⊆ Vt−1 for 1 ≤ t ≤ p − 1. In particular, we find
(σ − 1)j (Vt) ⊆ Vt−j , where Vt−j = 0 in case j > t.

The next result shows how the operators (σ − 1)i can be used to study elements
of Ω1

E1
.

Lemma 2.4. Suppose η ∈ Ω1
E1

and (σ − 1)k−1(η) ≡ βαk−1uk (mod Ω1
F1

), where
1 ≤ k ≤ p − 1 and uk ∈ Ω1

F1
. Then η ≡ k−1βkuk (mod Vk−1).

Proof. We express η =
∑t

i=0 βiηi, where ηi ∈ Ω1
F1

and t is chosen to be the maximal
index i with ηi �= 0 . By a direct calculation, as (σ−1)(β) = (β+α)−β = α we find
(σ − 1)�βj ≡

(
j
�

)
βj−�α� (mod Vj−�−1), and from this we see that (σ − 1)k−1(η) ≡(

t
k−1

)
βt−k+1αk−1ηt (mod Vk−1). The hypothesis shows we have t − k + 1 = 1, so

in fact t = k. From this it follows that ηk = k−1uk. �

We have an analogous decomposition of Ω1
F1

as

Ω1
F1

= αs−1Ω1
F ⊕ · · · ⊕ αΩ1

F ⊕ Ω1
F .

Thus we can uniquely express η ∈ Ω1
F1

as η =
∑s−1

i=0 αiηi with ηi ∈ Ω1
F . Further,

since α ∈ F p
1 and F1 = αs−1F ⊕ · · · ⊕ αF ⊕ F we have

dF1 = αs−1dF ⊕ · · · ⊕ αdF ⊕ dF

with each αidF ⊆ αiΩ1
F . As these direct-sum decompositions are compatible, it

makes sense to consider the quotient αiΩ1
F /αidF . Further, for any i and ηi ∈ Ω1

F

we have ℘(αiηi) = (αpiη
[p]
i −αiηi) = αi(aiη

[p]
i −ηi), and therefore ℘(αiΩ1

F ) ⊆ αiΩ1
F .

So the following definition makes sense. It is the key to our computation of the
relative Brauer group Br(E/F ).

Definition 2.5. Suppose F1 = F (α) where αp−1 = a ∈ F p, [F1 : F ] = s, and
s | p − 1. Then for i with 0 ≤ i ≤ s − 1 we denote by

νai

F (1) := ker(αiΩ1
F

℘−→ αiΩ1
F /dαiF ).

Of course, in this notation, νa0

F (1) = νF (1). Analogously we have groups νai

E (1) for
each i with 0 ≤ i ≤ s − 1.

The direct sum decompositions above give that

Ω1
F1

/dF1 = (αs−1Ω1
F /αs−1dF ) ⊕ · · · ⊕ (αΩ1

F /αdF ) ⊕ (Ω1
F /dF ),

so it is reasonable to expect a similar decomposition for νF1(1). This is given next.

Lemma 2.6. Assume F1 = F (α) as in Definition 2.5 and η =
∑s−1

i=0 αiηi ∈ Ω1
F1

where ηi ∈ Ω1
F . Then ℘(η) ∈ dF1 if and only if for each i, ℘(αiηi) ∈ αidF ⊆ αiΩ1

F .
In particular, νF1(1) =

⊕s−1
i=0 νai

F (1).

Proof. If η =
∑s−1

i=0 αiηi ∈ Ω1
F1

with ηi ∈ Ω1
F we calculate

℘(η) =
s−1∑
i=0

℘(αiηi) =
s−1∑
i=0

(αpiη
[p]
i − αiηi) =

s−1∑
i=0

αi(aiη
[p]
i − ηi).
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As dF1 =
⊕s−1

i=0 αidF , we obtain ℘(η) ∈ dF1 if and only if for each i, ℘(αiηi) =
αi(aiη

[p]
i − ηi) ∈ αidF , giving the first statement. The final statement now follows

because νF1(1) = ker(℘ : Ω1
F1

→ Ω1
F1

/dF1) ∼=
⊕s−1

i=0 ker(αiΩ1
F

℘−→ αiΩ1
F /dαiF ) =⊕s−1

i=0 νai

F (1). �

We next note that the norm behaves well when restricted to the decompositions
of νE1(1) and νF1(1).

Lemma 2.7. The norm NE1/F1 : νE1(1) → νF1(1) restricts on summands to maps
Nai

E/F : νai

E (1) → νai

F (1).

Proof. The group νai

E (1) is the subgroup ker(℘)∩ αiΩ1
E ⊆ Ω1

E1
, and by Lemma 2.1

the norm is given by the operator (σ − 1)p−1 on this subgroup. Since (σ − 1)p−1

vanishes on Vp−2, if η = βp−1η1 + η2 ∈ νai

E (1) where η1 ∈ αiΩ1
F and η2 ∈ Vp−2,

to prove the result it suffices to verify that (σ − 1)p−1(βp−1η1) ∈ αiΩ1
F . As the

operator (σ − 1) is F1-linear on Ω1
E1

and as (σ − 1)p−1(βp−1) = −a ∈ F , the result
follows. �

Remark 2.8. It is possible to define the groups νai

F (1) without reference to the field
extension F1 = F (α). In view of the isomorphism αiΩ1

F
∼= Ω1

F these groups are
given by νai

F (1) ∼= ker(Ω1
F

℘ai→ Ω1
F /dF ), where ℘ai(cdf

f ) = (aicp − c)df
f . In our case

the well-definition of ℘ai follows by extending to F (α) where αp−1 = a, although
there is presumably a direct proof. The norm map Nai

E/F : νai

E (1) → νai

F (1) can
also be defined without reference to the field extensions. It is induced by the
trace Ω1

E → Ω1
F . However, in our applications we need to view νa

F (1) ⊂ νF1(1)
and explicitly represent elements of νa

F (1) as df
f for f ∈ F1, so we have given the

definition in terms of the extension F1 = F (α).

3. The main theorem

The idea behind studying an element w ∈ ker(Brp(F ) → Brp(E)) is to system-
atically reduce the power k of β in an expression w ≡ ℘(u0 + βu1 + · · · + βkuk)
(mod dE) to where we have a useful description of w over F . This next lemma is
the key to this reduction.

Lemma 3.1. Suppose 2 ≤ k ≤ p − 1 and uk, uk−1 ∈ Ω1
F satisfy equations (3) and

(4) in Section 2 above. Then there exists γ ∈ E such that

dγ

γ
= βkuk + βk−1vk−1 + · · · + βv1 + v0,

where vi ∈ Ω1
F for 0 ≤ i ≤ k − 1.

Proof. As α ∈ F p
1 and as αkp = akαk, multiplying equation (4) by αk gives that

αkpu
[p]
k − αkuk = ℘(αkuk) ∈ αkdF ⊆ dF1. Consequently, we find

αkuk =
df

f
for some f ∈ F1.
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It now follows, multiplying equation (3) by αk−1, that

α(k−1)pu
[p]
k−1 − αk−1uk−1 + kα(k−1)pbu

[p]
k = ℘(αk−1uk−1) + k(b/αp)αkpu

[p]
k

= ℘(αk−1uk−1) + k(b/αp)
(

df

f

)[p]

lies in αk−1dF1 = dF1. As ℘(k(β/α)) = k(b/αp) we get ℘(αk−1uk−1 +k(β/α)df
f ) ∈

dE1, from which we find

αk−1uk−1 + k(β/α)
df

f
=

dδ

δ
for some δ ∈ E1.

Using Remark 2.3 we apply (σ−1)p−1 to the latter equation to find that dNE1/F1 (δ)

NE1/F1 (δ) =
0. Consequently, NE1/F1(δ) ∈ F ∗p, and by Hilbert’s Theorem 90 we can express
δ = tγσ−1

1 for t ∈ F1 and γ1 ∈ E1. From this we obtain

αk−1uk−1 + k(β/α)
df

f
=

dt

t
+ (σ − 1)

dγ1

γ1
.

Assume we have shown that

αk−1uk−1 + k(β/α)
df

f
=

dt

t
+ (σ − 1)� dγ�

γ�

for γ� ∈ E1. If p − (� + 1) > 1, then (as df
f ∈ Ω1

F1
) we apply (σ − 1)p−�−1 to find

(σ − 1)p−1(dγ�

γ�
) = 0. So we can write γ� = t�γ

σ−1
�+1 ∈ E1. Substitution gives

αk−1uk−1 + k(β/α)
df

f
=

dt

t
+ (σ − 1)�+1 dγ�+1

γ�+1
.

So by induction we have produced γ1, γ2, . . . , γj as long as p − j > 1. But we have
k < p so p − (k − 1) > 1, and we have produced γk−1 ∈ E1 with

αk−1uk−1 + k(β/α)
df

f
=

dt

t
+ (σ − 1)k−1 dγk−1

γk−1
.

We note that (σ − 1)dγ1
γ1

= (σ − 1)2 dγ2
γ2

= · · · = (σ − 1)k−1 dγk−1
γk−1

∈ V1 and

also that (σ − 1)k−1 dγk−1
γk−1

≡ k(β/α)df
f = k(β/α)αkuk (mod Ω1

F1
). Applying

Lemma 2.4 with η = dγk−1
γk−1

shows dγk−1
γk−1

≡ sβkuk (mod Vk−1), where s �= 0 ∈ Fp.

By Lemma 2.6 applied to E1/E we may uniquely express η =
∑p−2

i=0 αiηi where
η0 ≡ sβkuk (mod Vk−1) with ℘(η0) ∈ dE, and when i > 0 we have αiηi ∈ Vk−1.
We now select γ ∈ E with dγ

γ = s−1η0, and the lemma is proved. �

We may now give the proof of the main result.

Theorem 3.2. Suppose that char(F ) = p, [E : F ] = p and Gal(E1/F ) is solvable,
where E1 is the Galois closure of E over F . Let a, b ∈ F p with αp−1 = a be as in
Lemma 1.1. Then Brp(E/F ) ∼= νa

F (1)/Na
E/F (νa

E(1)).

Proof. We define φ : νa
F (1) → Ω1

F1
/dF1 to be the homomorphism given by φ(df

f ) =
(b/αp)df

f (mod dF1). Then by the classical theory of cyclic algebras, as E1 =
F1(℘−1(b/αp)) we know that the class [(b/αp)df

f ] = 0 ∈ Brp F1 if and only if
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df
f ∈ NE1/F1(νE1(1)). However, by Lemma 2.7 we know that νa

F (1)∩NE1/F1(νE1(1))
= Na

E/F (νa
E(1)), so φ induces an embedding

φ :
νa

F (1)
Na

E/F (νa
E(1))

↪→ Brp(E1/F1).

We claim that im(φ) = im(iF1/F ), where iF1/F : Brp(E/F ) ↪→ Brp(E1/F1) is the
map given by scalar extension. From this claim the theorem follows.

We suppose that w ∈ Ω1
F corresponds to a class in Brp(E/F ), and we assume

that k is minimal such that

w = ℘(u0 + βu1 + · · · + βkuk) + dv

for ui ∈ Ω1
F and v ∈ E. First we assume k > 1, and then we can apply Lemma 3.1

to obtain γ ∈ E such that dγ
γ = βkuk + βk−1vk−1 + · · ·+ βv1 + v0, where vi ∈ Ω1

F .

Since ℘(dγ
γ ) = dv′ for some v′ ∈ E, subtracting we see that

w = ℘((u0 − v0) + β(u1 − v1) + · · · + βk−1(uk−1 − vk−1)) + d(v + v′),

contradicting the minimality of k.
We are now in the case where k = 1. We have that

w = u
[p]
0 − u0 + bu

[p]
1 + dv0,

0 = au
[p]
1 − u1 + dv1,

where u0, u1 ∈ Ω1
F and v0, v1 ∈ F . As in the proof of Lemma 3.1 we find that

℘(αu1) ∈ dF1, and consequently we can express αu1 = df
f where f ∈ F1. As

u1 ∈ Ω1
F this means that df

f ∈ νa
F (1). Altogether we have

w ≡ bu
[p]
1 = b

(
1
α

df

f

)[p]

≡ b

αp

df

f
(mod ℘(Ω1

F1
) + dF1).

This shows that im(iF1/F ) ⊆ im(φ). Conversely, if df
f ∈ νa

F (1), then φ(df
f ) =

(b/αp)df
f = (b/a) 1

α
df
f ∈ im(iF1/F : H2

p (F ) → H2
p (F1)) as 1

α
df
f ∈ Ω1

F . So im(φ) ⊆
im(iF1/F ), and the theorem follows. �

As a consequence of this calculation we obtain the result of Albert [1] that al-
gebras in Br(E/F ) must be cyclic. Albert proved his result by finding a purely
inseparable splitting field of such an algebra. The proof below gives more informa-
tion by explicitly describing its Brauer class as a symbol.

Corollary 3.3 (Albert). Suppose that char(F ) = p, [E : F ] = p, and Gal(E1/F )
is solvable where E1 is the Galois closure of E over F . If a division algebra D is
split over E, then D is a cyclic algebra.

Proof. In the proof of Theorem 3.2 we established that if w ∈ Ω1
F corresponds to

a class in Brp(E/F ), then w = u
[p]
0 − u0 + bu

[p]
1 + dv0, where u0, u1 ∈ Ω1

F , v0 ∈ F ,
and αu1 = df

f for f ∈ F1. We express f = x0 + αx1 + · · · + αp−2xp−2, where each
xi ∈ F . As αfu1 = df we see that

α(x0 + αx1 + · · · + αp−2xp−2)u1 = dx0 + αdx1 + · · · + αp−2dxp−2
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and consequently

u1 =
dx1

x0
=

dx2

x1
= · · · =

dxp−2

xp−3
=

dx0

axp−2
.

From this we obtain

u
[p]
1 =

(
dx1

x0

)[p]

=
(

x1

x0

dx1

x1

)[p]

≡
(

x1

x0

)p
dx1

x1
(mod dF ).

But now we obtain from the first equation

w ≡ b

(
x1

x0

)p
dx1

x1
(mod ℘(Ω1

F ) + dF ).

So by Witt’s isomorphism it follows that D must be the cyclic algebra

D ∼=
(

x1, b

(
x1

x0

)p ]
.

This gives the corollary. �
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